
1	Supplementary Materials for
2	
3	Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in
4	colorectal cancer
5	Yaohui Gao ^{1#} , Dexi Bi ^{1#} , Ruting Xie ^{1#} , Man Li ¹ , Jing Guo ¹ , Hu Liu ¹ ,
6	Xianling Guo ² , Juemin Fang ² , Tingting Ding ¹ , Huiyuan Zhu ¹ , Yuan Cao ¹ ,
7	Meichun Xing ¹ , Jiayi Zheng ¹ , Qing Xu ² , Qian Xu ³ , Qing Wei ^{1*} , Huanlong
8	Qin ³ *.
9	
10	*Correspondence to: Wei-Li Zhao, Email: zhao.weili@yahoo.com, and
11	Meng-Meng Ji, Email: jimengmeng025@163.com.
12	
13	This PDF file includes:
14	Figures. S1 to S10
15	Tables S1 to S2
16	

Fig. S1 Patients with dMMR were more responsive to PD-1 blockade than those with pMMR. **a** Representative Immunohistochemistry images of mismatch repair proteins in CRC tumor tissues. **b** The progression-free survival of patients with CRC (n=35). **c** Correlation analysis between patient outcomes and different MMR status. Chi-square test (one-sided).

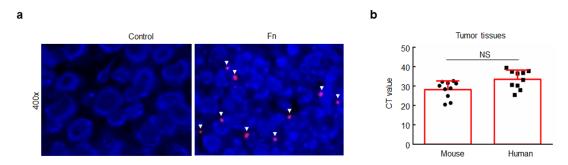


Fig. S2 F. nucleatum could colonize the tumor tissue of mice injected 3 intratumorally with F. nucleatum. CT26.WT cells were injected 4 mice. subcutaneously into BALB/c Tumor-bearing mice were 5 intratumorally injected with PBS (control) or *F. nucleatum* (10⁹ CFU) every 6 two days for two weeks. **a** A FISH assay showed that *F. nucleatum* (red) 7 was present in the tumor tissues of mice. The nuclei (blue) of cells in tumor 8 tissue samples were stained with DAPI. The white arrows indicate positive 9 staining (red) for F. nucleatum. The images are representative of the 10 different treatment groups. b F. nucleatum was detected by RT-PCR in 11 mouse and human CRC tissue samples (n=10). Data are expressed as mean 12 + s.d. Student's t-test. NS, not significant. Fn, F. nucleatum. 13

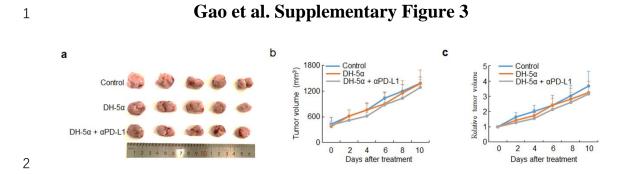


Fig. S3 Intratumoral injection of DH-5 α did not affect the therapeutic 3 efficacy of PD-L1 blockade. CT26.WT cells were subcutaneously injected 4 into BALB/c mice. Tumor-bearing mice were intratumorally injected with 5 PBS (control) or DH-5 α (10⁹ CFU) every two days and were 6 intraperitoneally injected with an anti-PD-L1 mAb or an isotype control 7 mAb. **a** An image of tumors collected in different groups at the end of the 8 experiment is shown. **b**, **c** Tumor volumes and relative tumor volumes in 9 different groups are shown. Data are shown as mean \pm s.d. One-way 10 ANOVA and Bonferroni's multiple comparison test. Fn, F. nucleatum. 11

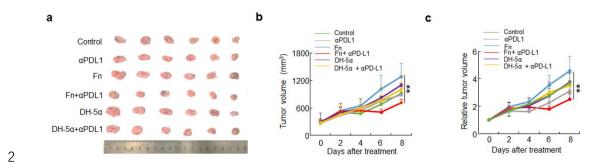
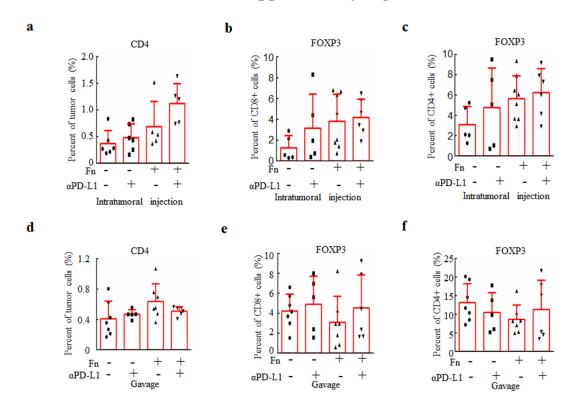



Fig. S4 Gavage administration of F. nucleatum augmented the antitumor 3 effects of PD-L1 blockade on CRC. CT26.WT cells were injected 4 mice. subcutaneously into BALB/c Tumor-bearing mice were 5 administered with PBS (control), F. nucleatum (10⁹ CFU) or DH-5 α (10⁹ 6 CFU) by gavage every two days and treated with an anti-PD-L1 mAb or 7 an isotype control mAb by intraperitoneal injection. Tumor volumes were 8 9 measured. **a** A picture of tumors from mice in different groups are shown. b, c Tumor volume growth and relative tumor volume growth were 10 assessed. One-way ANOVA and Bonferroni's multiple comparison test. 11 **P<0.01. 12

13

2

Fig. S5 F. nucleatum did not modulate the proportion of CD4⁺ and FOXP3⁺ 3 T cells during treatment with an anti-PD-L1 mAb. CT26.WT cells were 4 subcutaneously injected into BALB/c mice. **a-c** Tumor-bearing mice were 5 treated with PBS or F. nucleatum by intratumoral injection and 6 intraperitoneally injected with an anti-PD-L1 mAb or an isotype control 7 mAb. Flow cytometry was used to detect the levels of different types of T 8 lymphocytes in the tumor tissues of mice. One-way ANOVA and 9 Bonferroni's multiple comparison test. d-f Tumor-bearing mice were 10 treated with PBS or F. nucleatum by garage and intraperitoneally injected 11 with an anti-PD-L1 mAb or an isotype control mAb. Flow cytometry was 12 used to detect the levels of different types of T lymphocytes in the tumor 13 tissues. One-way ANOVA and Bonferroni's multiple comparison test. 14

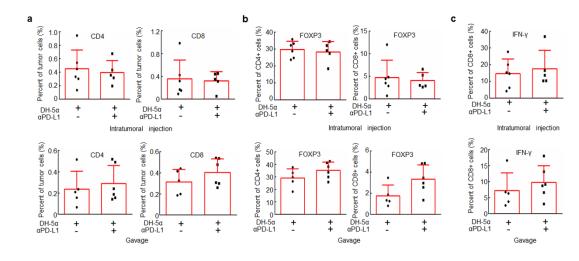
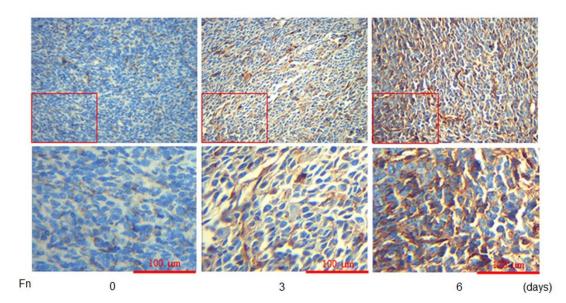
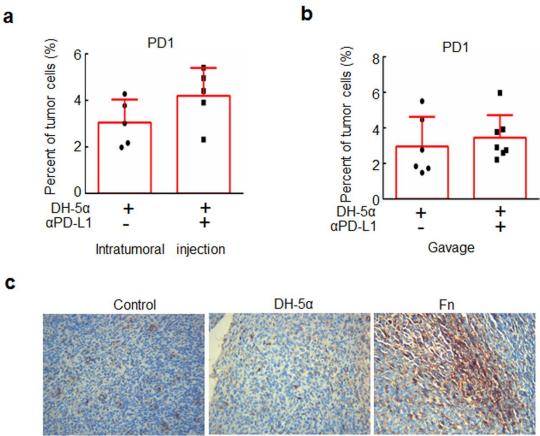



Fig. S6 DH-5 α does not modulate the proportion or activity of CD8⁺ T cells 3 during treatment with an anti-PD-L1 mAb. CT26.WT cells were 4 subcutaneously injected into BALB/c mice. Tumor-bearing mice were 5 treated with DH-5 α (10⁹ CFU) or PBS (control) by intratumoral injection 6 or garage and intraperitoneally injected with an anti-PD-L1 mAb or an 7 isotype control mAb. For mice treated with DH-5 α by intratumoral 8 injection, the anti-PD-L1 mAb treatment time was 9 days. For mice treated 9 with DH-5 α by garage, the anti-PD-L1 mAb treatment time is 7 days. **a-c** 10 Flow cytometry was used to detect the levels of different types of T 11 lymphocytes in the tumor tissue of mice. One-way ANOVA and 12 Bonferroni's multiple comparison test. All P>0.05. 13


7

14

1

Fig. S7 *F. nucleatum* treatment enhanced PD-L1 expression in mouse tumor tissues. CT26.WT cells were subcutaneously injected into BALB/c mice. When the tumor volumes reached more than 100 mm³, tumorbearing mice were intratumorally injected with *F. nucleatum* (10⁹ CFU) for 3 days or 6 days. The expression of PD-L1 (brown) was detected by IHC. Hematoxylin (blue) was used to visualize nuclei. The IHC images are representatives of different treatment groups.

2

Fig. S8 DH-5 α did not modulate the proportion of PD-1⁺ T cells or PD-L1 3 expression during treatment with an anti-PD-L1 mAb. CT26.WT cells 4 were subcutaneously injected into BALB/c mice. a, c Tumor-bearing mice 5 were treated with DH-5a, F. nucleatum or PBS (control) by intratumoral 6 injection or garage for 10 days. a Flow cytometry was used to detect the 7 proportion of PD-1⁺ cells in tumor tissue samples. Student's t-test. **c** The 8 expression of PD-L1 (brown) detected by IHC. Hematoxylin (blue) was 9 used to visualize nuclei. **b** Tumor-bearing mice were treated with DH-5 α 10 or PBS by garage for 8 days. Flow cytometry was used to detect the 11 proportion of PD-1⁺ cells in tumor tissue samples. Student's t-test. 12

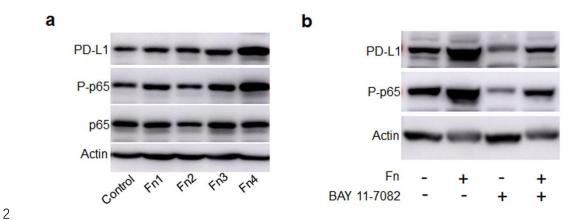


Fig. S9 *F. nucleatum* upregulated the expression of PD-L1 by
phosphorylation of P65. a DLD1 cells were treated with different *F. nucleatum* isolates obtained from CRC patients, and the expression of the
indicated proteins was detected. b Caco-2 cells were treated with Fn
(1:1000) and/or 5 μM BAY 11-7082 for 24 hours. Protein expression was
detected by Western blotting.

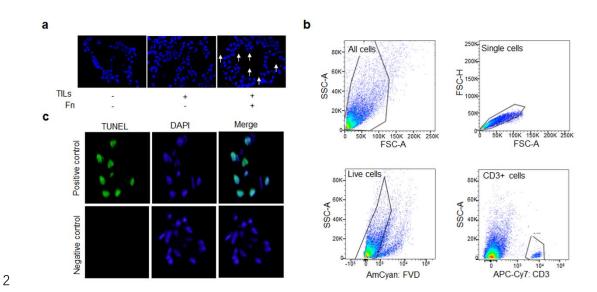


Fig. S10 Validation of tumor-derived organoid models of CRC. CRC 3 organoids were mixed with TILs (10^{5} /well) and *F. nucleatum* (10^{8} CFU) 4 for one week. a F. nucleatum was detected in the CRC organoids with a 5 FISH assay. The nuclei (blue) of cells in tumor tissue samples 6 were stained with DAPI. The white arrows indicate positive staining (red) 7 for *F. nucleatum*. **b** Flow cytometry was used to detect CD3⁺ T cells in the 8 CRC organoids. **c** The controls for the TUNEL assay are shown. The CRC 9 organoids without treatment were used as negative controls. The CRC 10 organoids with DNase I treatment (1500u/ml) for 30 min were used as 11 negative controls. 12

	••	•			
Characteristics		No. of Fn content			
Charactern	patients	High	Low	P value	
A = = ()	≥65	11	7	4	0.2006
Age (years)	<65	16	7	9	0.3096
Cardan	Male	17	10	7	0 2445
Gender	Female	10	4	6	0.3445
Liver	Yes	14	9	5	0.1507
metastasis	No	13	5	8	0.1796
_	Yes	13	7	6	
Lung metastasis	No	14	7	7	0.8416
Abdominal	Yes	7	1	6	
cavity metastasis	No	20	13	7	0.0208*
pelvic	Yes	4	2	2	0.026
metastasis	No	23	12	11	0.936
Ovarian	Yes	4	2	2	0.026
metastasis	No	23	12	11	0.936
	Yes	4	2	2	0.026
Bone metastasis	No	23	12	11	0.936

Supplementary Table 1

Table S1. Correlations between the relative *F. nucleatum* levels in tumor
tissues and clinicopathological characteristics of the patients with CRC.

5 ussues and ennicopatiological characteristics of the patients with v

4 The Chi-square test was used for analysis.

		•			
Characteristics		No. of Fn		n	P value
Charactern	patients	Yes	No	r value	
A = = ()	≥65	15	11	4	0.0000
Age (years)	<65	23	16	7	0.8023
Gender	Male	28	21	7	0.2602
Gender	Female	10	6	4	0.3693
Liver	Yes	23	15	8	0.226
metastasis	No	15	12	3	0.326
.	Yes	21	14	7	0.5076
Lung metastasis	No	17	13	4	0.5076
Abdominal	Yes	9	8	1	
cavity metastasis	No	29	19	10	0.1768
pelvic	Yes	4	2	2	0.3263
metastasis	No	34	25	9	0.3203
Ovarian	Yes	2	1	1	0.5
metastasis	No	36	26	10	0.5
Dono motostos'-	Yes	6	5	1	0 4609
Bone metastasis	No	32	22	10	0.4698

Supplementary Table 2

Table S2. Correlations between the relative *F. nucleatum* levels in feces
and clinicopathological characteristics of the patients with CRC. The Chisquare test was used for analysis.