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Supplementary Note 1

Expression of Cyanobacterial Siderophore BGCs at Night

Differential gene expression analysis (DESeqg2 ; P < 0.05; FDR = 5%) using mapped transcripts
revealed that 10 BGCs contained biosynthetic genes that underwent significantly more
transcription at night, all of which were cyanobacterial in origin. The most dramatic of these
enrichments involved two cyanobacterial NRPS-PKS hybrid BGCs, identified on Node_81 and
Node_86. These BGCs likely encode for a novel siderophore, putatively assigned based on genes
encoding predicted membrane proteins involved in siderophore and iron transport located in the
clusters (Fig. 2c). Additionally, a subset of cation acquisition genes was upregulated at night,
suggesting a multifaceted approach for cation import at night that is under significant control of
native regulatory constraints.

Node_81 (68 kb), appears to form a novel heptapeptide, while Node 86 (66 kb) is 2 kb shorter
and has one fewer NRPS module, thus forming a hexapeptide (Fig. 2c). We speculated these to
be rearranged BGCs based on the presence of transposases within Node_86, which were
supported by differences in G+C content flanking the transposases, potentially indicating recent
transposition. Overall, 80% of transposases located in BGCs were active across all time points.
We were also able to recover BGCs from the assembled metatranscriptomic data (Supplementary

Data 5).

Supplementary Note 2

Cation acquisition at night

To further investigate the transcriptional activity of cation acquisition genes at night, we mapped
reads to all the co-assembled metagenomes. A subset of putative cation acquisition and
sequestration gene were differentially expressed, specifically hemH (Ferrochelatase), hxuB
(Heme/hemopexin transporter protein), pacS (putative copper-transporting ATPase) and idiA

(iron ABC transporter) genes (Supplementary Data 6). The differential expression of siderophore
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and cation acquisition genes at night suggests a common ‘night-time’ strategy of cation import in

biocrust, which was consistent across most cyanobacterial BGCs (Figs. S6, S7).

Supplementary Note 3

Transposases are prevalent among biocrust BGCs

Two transposases and a phage integrase were found on Node_86, with the transposases located
upstream of the final NRPS gene in the cluster. G+C content surrounding the transposases within
the BGC had high levels of G-C skew (>1.5% deviation from the mean) potentially indicative of a
recent gene rearrangement. We hypothesized that these mobile elements were responsible for
the rearrangement of Node_81 into Node_86. This is supported by the perpetual expression of
the two transposases and phage integrase in Node_86, implicating a mechanism for BGC
rearrangement throughout the experiment and suggesting recombination events may still be
occurring. We speculate that BGC re-arrangements may be on-going, long-term processes rather
than brief, one-time events. Overall, 20% of transposases (Fig. S8) within BGCs were
constitutively transcribed, hinting that similar long-term recombination events may be occurring in
the biocrust community. Transposases located outside of BGCs, i.e., those more relevant to
primary metabolism, showed less constitutive transcription (~7% of transposases) compared to
those involved in secondary metabolism. Moreover, 26% of non-BGC transposases were never
transcribed while only 19% of BGC transposases were never transcribed.

Nine of the 10 genes comprising Node_ 86 showed differential expression, with significantly higher
transcription at night. As a putative siderophore, the function of this metabolite could be to acquire
iron at night in preparation for photosynthesis the following day. In contrast, Node_81 only had

one differentially expressed gene, but still tended towards nighttime activation.
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Supplementary Figure 1 | Workflow overview. 8 long-read metagenomes were generated
using Pacific Biosciences instruments that span 3 generations (RS Il -> Sequel -> Sequel II). 2
short-read metagenomes were generated from the same biocrust samples using an Illumina

HiSeq 2500 instrument.
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Supplementary Figure 2 | Estimates of sequencing effort. Nonpareil estimates sequence
coverage by calculating read redundancy. The generations of long-read technology (RS Il ->
Sequel -> Sequel II) lead to improvements in sequencing depth. Short-read sequencing required

orders of magnitude more sequencing to achieve a similar sequencing effort as RS II.
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Supplementary Figure 3 | Longest BGC recovered from a metagenome. The longest BGC
found across the metagenomes encodes a 111 kb transAT-PKS-NRPS. The domain architecture

is provided by PRISM.
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Supplementary Figure 4 | Mapping transcripts as a function of gene length. To test whether

gene length influenced mapping rates we compared how read recruitment differed for the longer

secondary metabolite genes (average gen e length=1153 bp) compared to the primary metabolic

genes (average gene length=688 bp). Visualizing the number of mapped transcripts by gene

length showed no correlation for either a) secondary or b) primary metabolic genes. Similarly,

comparing the number of timepoints with 5 or more transcripts (where 0 means never expressed

and 10 means constitutive expression) to gene length indicated no trend that followed an increase

in transcript recruitment onto longer genes for either ¢) secondary or d) primary metabolic genes.
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90 Supplementary Figure 5 | Diurnal trends in BGCs. a, Trends across the 3-day phase were
91 detected in 12,470 expressed biosynthetic genes (cutoff > 20 mapped transcripts across time

92  points). Read counts of transcript relative abundances per gene were Z-score normalized for the
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purpose of visualization. Each gene trend is color-coded by its taxonomic affiliation. The purple
background indicates night-time transcription. b, Clusters of bacterial phyla based on their
average Z-score from all contigs with BGCs. The single-colored lines indicate secondary
metabolism over time, while the dotted lines indicate the number of 16S rRNA transcripts at each

timepoint.
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Supplementary Figure 6 | Cyanobacterial transcription occurs primarily at night. All NRPS
gene clusters belonging to Cyanobacteria showed significantly more transcriptional activity 11.5
hours after wetting (P < 0.05). This first dark time point indicates a shunt of secondary metabolism
by Cyanobacteria that also includes the increased transcription of RiPPs, TIPKS and T3PKS
gene clusters. The boxes extend from Q1 to the Q3 quartile values of the data. The line is at the
median (Q2) while the whiskers extend from the edges of the box (Q1 and Q3) to show the range
of the data. The whiskers extend no more than 1.5 times the interquartile range (IQR = Q3 - Q1)
from the edges of the box and end at the farthest data point within that interval. All outliers are

plotted as separate dots beyond the whiskers.
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Supplementary Figure 7 | DESeq2 showed significantly enriched gene transcription at
night. Genes labelled on the heatmaps were those located within BGCs (Flye co-assembly), while
unlabeled rows are ‘non-BGC’ genes. Heatmap colors are based on DESeg2 comparisons
between night and day based on Log2Fold changes. Higher Log2Fold changes are shown in
warmer colors while cooler colors show less change between treatments. All genes are

significantly differentially transcribed at night. Left color axis indicates the condition, i.e. day

(yellow) or night (purple).
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117  Supplementary Figure 8 | DESeqg2 showed significantly enriched gene transcription at
118 night. Genes labelled on the heatmaps were those located within BGCs (Ultimate co-assembly),
119  while unlabeled rows are ‘non-BGC’ genes. Heatmap colors are based on DESeq2 comparisons
120 between night and day based on Log2Fold changes. Higher Log2Fold changes are shown in
121  warmer colors while cooler colors show less change between treatments. All genes are
122 significantly differentially transcribed at night. Left color axis indicates the condition, i.e. day

123 (yellow) or night (purple).
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Supplementary Figure 9 | Transposase transcription. Heatmap showing the transcriptional
Log2Fold change of all transposases located in BGCs over time, with O hours the bottom row and
3 days after wetting the top row as in Supplementary Figure 7. We identified 3 broad categories
of expression: (i) unexpressed (no mapped transcripts), (ii) weak- to moderate-expression, and
(iii) strongly expressed transposases. Reds indicate higher levels of transcription while blues are

lowly-transcribed.
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