iScience, Volume 24

Supplemental information

Removal and dispersal of biofluid films

by powered medical devices: Modeling

infectious agent spreading in dentistry

Ian Eames, Francesco D'Aiuto, Somayeh Shahreza, Yousef Javanmardi, Ramanarayanan Balachandran, Martin Hyde, Yuan-Ling Ng, Kishor Gulabivala, Sara Watson, Hywel Davies, Nicolas Szita, Janette Khajeh, Jeanie Suvan, and Emad Moeendarbary

SI Figure 1: Removal and dispersion of the adherent biofluid film in laboratory setting, related to Figure 2. (a) The raw (unsmoothed) data of particle count (for particle sizes of 0.3, 0.5, 1, 2, 5 and 10 μ m) as a function of time recorded by the air-particle counter for 5 min under 2 min operation of mode-1 (0.5-2.5min) (b) Normalisation of the curves in (a) by their baseline. (c) Normalization of the curves in (b) by their maximum values indicated their collapse into two distinct groups: group A: 0.3, 0.5, 1 and 2 μ m and group B: 5 and 10 μ m; therefore, throughout the main text we only presented curves for 0.3 μ m and 5 μ m as an indicative of the particle count trend in each group. (d,e) Effects of presence of water layer on aerosol generation (0.3 μ m in (d) and 5 μ m in (e)). (f) Simultaneous measurements of particle count (5 μ m) at 0.4m and 2.0m from drill only. The curves in (d), (e) and (f) are the smoothened, averaged of data from three independent experiments with shades indicating the standard error. (g,h) Simultaneous measurements of particle count at 0.4m and 2.0m from drill. The curves are from one individual experiment.

SI Figure 2: Splatter tests on a thin fluid layer placed on a circular glass slide, related to Figures 1 and 2, for (a,b) drill (no air) on saliva or water, respectively and (c,d) drill with air on saliva or water (respectively). Before and after procedure images were subtracted to generate the intensity images. The farthest areas with detectable particles are shown in the representative zoomed regions. No splatter or aerosolisation was detected in (d) and hence processed images were excluded.

SI Figure 3: Splatter tests on a thin fluid layer by an ultrasonic (US) agitator from a circular glass slide, related to Figures 1 and 2, for (a) saliva and instrument fixed position, (b) saliva and moving instrument. (c) instrument fixed on water drop. (d) Movement of the instrument around water droplet generated splatters which was imaged and analysed using the methods explained in SI Fig 2.

SI Table 1: Summary of the dental instruments used in the tests along with their specifications and relevant information, related to Fig 1.

Dovico namo	Manufacturer	Angular (0) valaaity ar	Air flow rate	Water flow rete	Goomotry
Device name	Wanuacturer	Angular (Ω) velocity of with rational fragmeney (f)	All now rate	water now rate	Geometry
		vibrational frequency (7)			
Air rota-turbine	NSK (Ti – Max Z 900	350 – 380 k rpm	3 Bar PSI	45 mL/min	4 chip air holes and 4
17	WL)		43 - 53 NL/min	: Z900WL	spray holes
		180-300 k rpm (cutting)		=φ0.43mm	
Creed Deducing	NEK (Ti May 7251)	0 101/ 7277	1 E NIL /min	4E mail /main	ZOEL O holos (holosy)
(clow)	NSK (11-Max 225L), Speed 1:1	0 – 40k ípm	1.5 NL/min	45 ML/MIN (00 5mm	225L = 2 holes (below
(5000)	Speed 1.1		φυ.4ππ	φυ.5ππ	is water, up is chip an)
Back-exhaust					
Speed reducing (slow)	WH – Synea WA-66	0 – 20k rpm	2 bars	50ml/min	
	LT, speed 2:1		1.5 NI/min		
Electric					
3 in 1	Henry Schein	0	Estimated to be	180 ml/min	1.5 mm hole
-			1.5NL/min		
1.04			0	7.40	Disals constant is about
Ultrasonic	Acteon (built in)	20-30 KHZ	0	7-40mi/min	20 mierone (Lee
					Jandini & Walmsley
					2002)
					2002)
and the second second					
2 3 6					
11 million					