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Note: all page and line numbers refer to those in the Track Change PDF file. 
 
Reviewer #1:  
 
Summary: 
Here, Nordquist et al. are interested in develop a Hsp70 peptide binding prediction method based 
on physics-based simulations to identify client proteins that can bind to SBD region. In their 
method, they were also able to identify the orientation of the peptides inside the cleft (N-C – 
“forward”; C-N - “reverse”). The authors also want to provide molecular details of the client 
protein-SBD binding. The research question is sound and relevant to the field. 
Current predictors failed to show molecular details on positions occupied in the SBD or the 
orientation of the bound peptide. Here, the authors try to fill this gap using their approach. In 
terms of predicting binding, Paladin performs similar (but still worst according to AUC ROC 
curve values) to other methods. One positive effect from its training models, possible through 
transfer learning mechanisms, was the ability to predict the orientation of the peptides (forward 
vs reverse) in the SBD cleft with accuracy around 70%. 
In my opinion, Paladin come to contribute with the field as a new Hsp70 binding predictor, and 
the main novelty is its capacity to differentiate to some extent the orientation of the peptides, 
something that is not performed by current predictors. 
In light of these facts and the comments below, I recommend the acceptance of this paper with 
minor revisions. 
 
Abstract and introduction: 
Strengths: 
- The authors summarize the main research question and key findings. 
- The authors covered current literature on the field and explained how previous findings relate  
to their study. 
Weaknesses: - None 
 
Results and conclusions: 
Strengths: 
- The results support the conclusions.  
- Limitations are discussed. 
 
Response: We would like to sincerely thank the reviewer for the support and constructive 
comments. 
 
Weaknesses: 
- Figure 2B is not sufficient to support this statement on Page 8, line 145-147. Here, I suggest to 
compare these two orientations with a different approach (e.g. peptide residue-SBD distance 
measures).  
 
Response: We have created a new Supplementary Movie S1 to more clearly show the conserved 
backbone and side chain interactions in forward and backward orientations. We have also 
modified Figure S1 to include the RMSD values of the βSBD for all complexes with both forward 
and reverse substrate orientations, which show that βSBD conformations are conserved regardless 
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of the substrate binding orientation. We have further revised the manuscript to clarify: “The 
backbone hydrogen bonds between βSBD and the substrate are shown in magenta dashed lines. 
Note that backbone hydrogen bonds involving M404, S427 and A429 completely overlap in two 
orientations.” (Figure 2 caption) and “… reveals that the backbone conformations remain 
conserved and all five hydrogen bonding interactions between the substrate backbone and βSBD 
are formed in both orientations (thick and thin magenta dashed lines). Importantly, the highly 
conserved backbone conformation projects the side chains into identical binding pockets 
regardless of the orientation. For example, Figure 2B illustrates that the slight shift of Cb positions 
does not affect the placement of the central L into site 0. As such, …” (Page 8, lines 168-174) 
 
- In section “Binding site geometry and surface properties determine the DnaK-substrate 
selectivit”, the authors mention predictions from LIMBO and Rudiger, but not ChaperISM. 
 
Response: ChaperISM uses a position Independent Scoring Matrix (PISM), so doesn’t contain 
information about the relative preferences for individual amino acids at different sites. There was 
a position-specific scoring matrix mentioned in the original publication, but the better-performing 
standard options are only for the PISM in (higher performance, default) “qualitative” mode and 
(slightly lower performance, not used in our paper) “quantitative mode”. 
 
- On Page 11, line 233, there is no graph or values showing correlation between vdW interaction 
energies and size of the side chain, only visual inspection of Figure 4 and S4. 
 
Response: To alleviate the apparent need for such a figure, we have referred to the correlation as 
“rough” to try to make it clearer that the trend isn’t critical to our argument (Page 12, line 318), 
but that the terms as calculated are consistent of what we’d expect. Given that the sidechains are 
in similar environments, it makes sense that as the number of atoms increases, the number of vdW 
contacts and thus vdW energy should roughly increase. 
 
- On Page 12, line 235-237, the authors should comment on the possible impact of the length of 
the simulation (3ns) on the backbone strain term. 
 
Response: Given the highly conserved backbone structures of the complex (e.g., see Figure 2), 
we do not anticipate large scale conformational re-arrangements in response to different substrate 
side chain groups. Analysis of the simulation trajectories (up to 50 ns) suggested that local 
structural relaxation occurred rapidly, and all energetics quickly stabilized within 3 ns (e.g., see 
Figure S16 and S17). The convergence is further discussed in Methods (see Page 23-24, lines 
722-728). 
 
- On Page 15, line 303-305, authors should give details on the data set balance. If the data set is 
imbalanced, it may be more interesting to show a precision-recall curve. In case the data set is 
balanced, it would be interesting to show how Paladin would perform in a imbalanced idependent 
data set (look CD data set at doi:10.1002/prot.25084). Despite this data set came from a different 
protein, the authors claim that their method can be expanded to other Hsp70 chaperones. 
 
Response: We thank the reviewer for the excellent suggestion. The current dataset is imbalanced, 
and we have described the distribution of the four sub-categories in the manuscript (Page 25, lines 
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773-775). We have also included a new SI Figure S9 to compare the precision-recall curves, 
which supports that Paladin is comparable to other methods in recapitulating the peptide array 
data. Additional discussion has been added to the revised manuscript on the new analysis (Page 
16, lines 426-435 ). Our current model cannot be extended to other Hsp70s without resampling 
energy terms with the structure of the new Hsp70, which we respectfully argue is beyond the scope 
of our current study. 
 
- The AUC ROC values for Paladin, in comparison with Rudiger and ChaperISM, performs worst. 
The authors have provided possible reasons why this is happening, saying “...the small differences 
in ROC curves of Paladin and previous models are likely insignificant.”. However, none of these 
reasons were tested. 
 
Response: The criticism is well taken. Indeed, Paladin is the worst in reproducing the peptide 
array data but the difference is small. In particularly, The AUC PR values are similar for Paladin, 
ChaperISM and Limbo for all binders (Table S4, Figure S9) and Paladin yields the best AUC PR 
value (0.58) among all four methods evaluated for strong binders (0.37-0.52). In the revised 
manuscript, we delete the statement noted by the reviewer. Instead, we provide the following 
discussion: “On the other hand, the other models including Paladin perform comparably and the 
differences in ROC/PR curves are small. Importantly, apparent better fitting to the data do not 
necessarily reflect a superior model. Instead, by incorporating the physics of molecular 
interactions and using only a small number of free parameters (Table 1), the Paladin model is 
designed to be capable of predicting key molecular details of binding including backbone 
orientation and residue registry. This provides an opportunity to reveal the balance of various 
interactions from different sites in binding specificity and to be extended to modeling other Hsp70s 
without extensive peptide array data.” (Page 16-17, lines 435-488). 
 
- On Page 20, line 417-418, the authors should also mention how ChaperISM performs with Pro 
at site 0. 
 
Response: Because ChaperISM is position-independent, this cannot be done. ChaperISM scores 
a P at any position the same. For reference, P has a negative score in ChaperISM (higher score 
means stronger binder) so P isn’t predicted to be favorable at any site. 
 
- The final PSSM matrices with energetic terms need to be included, as this is common practice 
for prediction methods. 
 
Response: Thank you for pointing this out. We have now included the values of PSSM in a new 
SI Table S3. 
 
Figures and tables: 
It is of my opinion that the figures should be carefully revised, either in terms of resolution and 
labels, but specially in terms of legends. I will give some examples here: 
 
- Figure 1: Since ATP and ADP play an important role and it is mentioned in the text and in the 
legend of the figure, these molecules should be shown in the figure. 
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Response: This comment is well-taken, since we do mention the role of ATP/ADP in the 
functional cycle of DnaK and show the NBD without showing either the molecules themselves or 
at least the binding sites. We have updated Figure 1 as recommended. 
 
- Figure 2: The interpretation of image B is difficult. I'd recommend (i) different colors for each 
one of the orientation modes or (ii) two separate images, one with the forward orientation and 
another one with the reverse orientation. 
 
Response: Thank you for these excellent suggestions to improve the figure. We have considered 
both of them previously while workshopping this figure extensively over the last year prior to 
submission. The problems with these suggestions are that: i) Different colors erase the identity of 
the substrate atoms, which is really crucial detail, and ii) separate images make it difficult to see 
the striking similarities and symmetric differences between both orientations which are evident in 
the overlap. Instead, we have now included a new Supplementary Movie S1 to more clearly show 
the conserved backbone and side chain interactions in forward and backward orientations. 
 
- Figure 3: There is room for improvement in this image, specially in respect to the surfaces and 
the representation of the peptides (e.g. ribbon vs stick; colors; transparency). 
 
Response: We agree with the challenge of illustrating these shallow binding surfaces in static 2D 
figures. This again is a figure that we have revised extensively over time and there seems to be no 
perfect combination of angle, rendering and coloring. Instead, we have now included a new 
Supplementary Movie S2 to more clearly show the site 0 binding pocket. 
 
- Figure 4: I suggest to increase the space in between the charts. Also, the legend is interfering 
with the data in some cases (e.g. Backbone Conformational Propensity). I suggest to move the 
legend to another place. Additionally, what FE stands for? This should be written in the legend. 
 
Response: We have expanded FE to Free Energy, fixed the transparency of the legends and 
adjusted the spacing slightly to minimize clashes. 
 
- Figure S2: Label the residues in the figure. This is a important figure, however, the 
representation and labels are not adequate to show the relevant point. 
 
- Figure S3: Label the residues in the figure. 
 
Response: Both figures have been updated to include the labels. 
 
- Figure S4: The graph for "Backbone Conformational Propensity" is the same in A-D. Is this 
correct? If yes, why is so different from site 0? 
 
Response: Thanks for catching the error. The main text Figure 4 is correct, Figure S4 was a 
mistake we forgot to update during preparation.  
 
- Figure S7: Correct axis labels. 
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- Figure S8: The legend of the figure do not explain what the star and the spheres represent. 
“Correct” and “other” may not be the better label, unless explained in the legend. 
 
Response: Thanks, the figure caption has been clarified to explain the use of stars and circles. 
 
- Figure S12: Label the residues in the figure. 
 
- Figure S13: Please, correct y-axis titles appropriately (e.g. type of energy and unit). 
 
- Figure S14: Correct Y-axis (missing parenthesis). 
 
- Table 2: table caption is incomplete. 
 
- Table S1: Include a footnote to explain "Z" amino acid corresponds to cyclohexyalanine. 
 
Response: All figures and tables have been updated as suggested. We greatly appreciate the 
reviewer’s thorough reading of both the main text and SI. 
 
Methods: 
Strengths: 
- The code and additional files are freely available through GitHub. 
 - Information about the atomistic simulations are complete. 
- Parameterization of Paladin model is explained thoroughly. 
 
Response: Thank you for your positive constructive feedback. 
 
Weaknesses: 
- The authors should include: 
 
- a section showing how the structure conservancy was assessed (this is in respect to the first 
result). 
 
Response: This section has been included. (Page 23, lines 698-703) 
 
- one section explaining how the comparison among methods (limbo, rudiger, chaperism, etc) was 
performed. Also, explain the distribution of the data on the used datasets (e.g. balanced vs 
imbalanced).  
 
Response: This section has also been added, and a description of the balance of the peptide array 
dataset has been included. (Pages 25, lines 790-794, Page 25, lines 773-775) 
 
- README file on github should be updated with more information, specially about the output 
scores. 
 
Response: Thanks for paying attention to this detail. We have updated the README file to 
provide more information relevant to an end user. 
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Minor Issues: 
- Introduction is well-written. Results, however, should pass through some language editing to 
improve clarity. 
 
Response: The revised manuscript has been re-edited as suggested. 
 
- Standardize the nomenclature of amino acids (i.e. one letter vs three letter code). 
 
Response: All references to amino acids are now 1 letter code throughout. 
 
- Page 7, line 112: Please check if reference 25 is the correct one for this sentence. 
 
Response: The reference was intended to point to Rubenstein, et al. 2017 (“MFPred”), thanks for 
catching this. The in-text references should refer to the proper papers now. 
 
- Page 8, line 154: Please, correct the “Figure 3” statement. 
 
Response: This has been fixed. 
 
- Page 12, line 249: Misplaced reference (ChaperISM reference). 
 
Response: The reference has been added. 
 
- Page 16, line 332: “Figure 5” should be replaced by “Figure 6”. 
 
Response: We intended to refer to the ROC figure (Fig 5), this is a reference to ChaperISM 
performing best on this metric which is most relevant for scanning a bunch of proteins for hotspots. 
 
- Page 16-17, lines 338-341: Repeated text about ChaperISM. 
 
Response: Thanks, the extra text has been removed. 
 
- Page 19, line 395: In Figure 7 I counted 18/22, and not 16/22. Which one is the correct? 
 
Response: Thanks for this insightful question. In fact, we did mean 16/22 here. Even though there 
are in principle 18 cases with the correct sign, 2 of those have very small free energy differences 
(ddG < kT or 0.6 kcal/mol). They are considered ambiguous instead of correctly predicted, even 
though we haven’t enough data to be confident of our error we believe the error of Paladin is 
certainly more than kT. We have revised the manuscript to include a clarification on this point 
(Page 20, lines 590-594). 
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Reviewer #2:  
 
Summary 
 
In this work, the authors develop a physics-based algorithm to predict binding sites of DnaK, the 
Hsp70 from E. coli. They posit their algorithm is unique in comparison to existing tools in that it 
is able to predict orientation (Forward versus reverse) as well as registry (i.e. the specific site 
occupied by each substrate residue in the DnaK substrate-binding-domain). 
In their first set of results, the authors perform a qualitative analysis of a set of previously 
determined DnaK structures by Zahn and colleagues, and discuss which residues are represented 
in each position in the substrate and what the underlying energetics are. They also cross-reference 
these data with LIMBO, a comparable DnaK-substrate prediction algorithm. 
Next, the authors describe and validate their own prediction algorithm, Paladin. They show that 
their algorithm performs similarly to existing algorithms in terms of predicting DnaK-binding 
peptides in a dataset generated by Rüdiger et al. They further show that Paladin can predict 
registry of forward- binding peptides, and can predict whether a peptide will bind in the forward 
or the reverse orientation based on a relatively small set of DnaK-substrate structures. 
 
The authors conclude that the algorithm they have designed is a good DnaK substrate predictor, 
and given the relatively small extent to which the algorithm was parameterized on the experimental 
data set, they predict the algorithm to be easily transferable to similar systems. 
 
General 
The physics-based algorithm described here adequately predicts DnaK-binding sites, and 
performs comparably to existing tools for the same purpose. Their use of a 5-residue binding site 
allows the authors to test for specific substrate registry, in which Paladin outperforms some of its 
competitors. The algorithm also predicts binding orientation reasonably well, although the 
authors do not compare the performance therein with other predictors. The explicit use of 
individual force terms allows for an assessment of which forces drive binding of certain peptides, 
which is not the case for predictors such as the one devised by Rüdiger, but is comparable to 
LIMBO. Another advantage of the algorithm seems to be its transferability to similar systems, 
although the authors should test this before claiming it. Furthermore, the authors provide an 
interesting analysis of how and why DnaK can interact with substrates in two opposite 
orientations. 
 
Overall, the authors describe a tool that satisfactorily predicts DnaK binding sites, their binding 
orientation, and in specific cases, their registry. Although it is not entirely novel and does not 
massively outperform competitors, the authors describe an additional approach to tackling the 
important question of DnaK-substrate interactions, and yield additional insight into binding 
orientation and registry. 
 
Response: Thank you kindly for your constructive and thoughtful remarks. 
 
Major remarks 
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Line 132: in order to determine how conserved the SBD conformation is, the authors align the 
structures from Table S1 and determine the RMSD to be small. However, they mention that they 
only look at structures with substrates in the forward orientation AND structures in which the 
substate does not contain Pro. Does this mean they have omitted 13 structures out of the 18 
forward-oriented structures? In that case, this analysis hardly shows the SBD structure to be 
highly conserved. Also, does this mean the authors find the SBD needs substantial conformational 
changes in order to accommodate Pro? This would be interesting information and the authors 
should comment on this. 
 
Response: The backbone RMSD values of SBD conformations are provided in Figure S1A for all 
complexes (with and without prolines and regardless of orientation), which are very small (< 2 Å). 
That is, no substantial conformational change is required for SBD to accommodate different 
peptide substrates, including proline-containing ones. We note that the presence of proline residues 
does lead to substantial local movement of the substrate backbone (~1-2 Å). We have revised the 
manuscript to make this clearer (Page 7, lines 141-144). 
 
Line 146: The authors mention that the SBD conformation is highly conserved between forward- 
and reverse-oriented substrates, though they never test for this since they don’t use reverse-
oriented substrates in their RMSD analysis. It would be useful to include such an analysis to show 
that not only the substrate sidechains are located in roughly the same positions, but also the SBD 
remains in largely the same conformation. 
 
Response: We have updated Figure S1A to include the backbone RMSD values of SBDs of all 
crystal structures, regardless of the substrate orientation. There is no correlation between 
orientation of the substrate and binding configuration of the SBD. We have also emphasized the 
more important observation (for our recycling of forward-orientation energy terms) that the site 0 
sidechain projects into similar sites regardless of orientation.  
 
In their construction of a physics-based model, the authors consider 6 physical forces, but don’t 
mention hydrogen bond formation at all. Could the authors comment on why they omit a crucial 
force in protein-protein interaction from their model, and why they feel this choice is justified? 
 
Response: We fully agree that hydrogen bonding is a crucial kind of interaction. Modern general-
purpose empirical protein force fields (including CHARMM22, used in this work) don’t explicitly 
include a hydrogen bonding term. Instead, hydrogen bonding is implicitly described using 
electrostatic and van de Waals interactions. This is in contrast to hybrid empirical/statistical energy 
functions such as FoldX or Rosetta, which often do contain such terms explicitly. Therefore, there 
is no omission of critical hydrogen bonding effects in this work. 
 
Line 242-249: How do the authors reconcile the fact that they see only a minor preference for 
Lysine and no preference for Arg whatsoever, although preferences for both basic references have 
been described in literature, including by Rudiger et al, and that Arg is represented in many DnaK-
substrate interaction structures? 
 
Response: There are two main sources for this apparent limitation of Paladin, namely the RDIE 
electrostatic model and SASA-based solvation term. In particular, the current model uses the 
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solvation free energy of each complete residue, whereas residues such as Arg and Lys might more 
accurately be treated as a hydrophobic sidechain and polar head. We did not attempt to treat these 
sidechains in this fashion in the final model, mainly due to lack of experimental data on such 
decomposition and concern of overfitting the peptide array data. For more discussion about the 
limitation of the RDIE model, please see Response to Reviewer #3, comment 2a. We have more 
strongly emphasized these limitations where appropriate in the manuscript (e.g., page 17-18, lines 
512-537 and page 24, lines 751-754). 
 
The authors compare Paladin to LIMBO for registry prediction, and find that LIMBO performs 
similarly to Paladin. However, they never test whether LIMBO is also capable of testing for 
orientation, and simply show results for their own algorithm. It would be interesting to see if 
Paladin is uniquely capable of registry prediction, or whether other tools can also do this. 
The authors claim the minimal training would allow Paladin to be easily transferable to similar 
systems. To show this, it should be straightforward to use the experimental data used for the 
production of the BiPPred tool, and test whether a paladin-type PSSM would also perform well in 
this system (without retraining on the experimental data, and only using structural information 
and the weights determined for this algo). 
 
Response: We now have a corresponding orientation prediction for Limbo, shown in new Figure 
S12 and briefly discuss it on Page 20, lines 593-597. 
 
Extending Paladin to similar systems will require re-calculation of the matrix of interaction terms 
using physics-based simulations. It does not in principle requires new peptide array data to training 
the interaction matrix itself, with the assumption that the site and energy term weights are likely 
similar for all Hsp70s. Nonetheless, it requires substantial amount of new simulations to extend 
Paladin to BiP and we respectfully argue that it is beyond the scope of this work. 
 
Minor remarks 
Abstract: “the chaperone is specific amino acids can vary considerably”, this phrase doesn’t make 
sense. 
 
Response: The sentence mentioned here has been corrected. 
 
Line 48: “Paladin provides a physical basis to understand why and how DnaK binds specific 
peptides”. The how is clear, I.e. the molecular modelling gives some information in the driving 
forces of binding, although some, like H-bonding, are ignored. The “Why” might be a stretch, 
since the authors don’t directly link the hsp70 binding preferences they observe to substrate 
protein characteristics that warrant hsp70 interaction. 
 
Response: This point is well taken, and the “why” has been removed. 
 
Line 67: “slow on/off binding” should be changed to “slow on/off” rates 
 
Response: The phrase was changed from binding to rates. 
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Figure 2 caption: “hydrogen bonds are shown in magenta with matching size to their 
corresponding substrate”. This is a little unclear, I assume the sizes of the hydrogen bond lines 
are thick/thin depending on whether they are formed with forward/reverse orientation. The 
differences are hard to make out in the figure 
 
Response: This is a good point. We have revised the Figure 2 caption to specify three of the five 
backbone hydrogen bonds that largely overlap between two orientations. Identifying particular 
hydrogen bonds is unnecessary, since one argument in the figure is that those interactions are 
largely identical. 
 
Line 154: “Figure 3” should be in brackets 
 
Response: Thanks, this has been fixed. 
 
Line 175: should the “+1” here be “-1”? 
 
Response: Yes, this has been corrected. 
 
Lines 188-199. It would be interesting if the authors address whether charge-charge interactions 
stabilize the Args that are observed in structures at positions -2 and +2. And if they don’t, which 
interactions do stabilize them? Given the general tendency for hsp70s to bind basic residues, this 
would be interesting to elaborate upon. 
 
Response: Examinations of various energy terms (summarized in Figure S4) suggest that the 
favorable electrostatic interactions of Arg and Lys at sites -2 and +2 are largely cancelled out by 
the desolvation penalty. As a result, the final Paladin PSSM (see new Table S3, Figure S5) 
suggests only a minor preference for Lysine and no preference for Arg at site +2. The likely reasons 
for this apparent limitation of Paladin are provided above in response to Reviewer 2’s critique (see 
Response to Reviewer #2, “Line 242-249 …”, Pages 8-9 of this response letter).  
 
Line 225: does “the site” refer here to the DnaK binding site? This is unclear.  
 
Response: The “site” does refer to the binding site. This term is calculated from the change in 
surface area of everything on the protein in contact with the substrate side chain. 
 
Line 459: R4467 should be R467 
 
Response: This has been corrected. 
 
Line 495-496: “A problem with this approach is that some residue side chains, such as those of 
Arg and Lys, which are hydrophobic chains with polar head groups.” This is not a full sentence.  
 
Response: Thank you for pointing this out. The sentence has been revised to “A problem with this 
approach is that like all other residues, R and K are considered as a whole sidechain rather than 
being split into their hydrophobic chains and polar head groups”. 
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Also, the authors state this is a problem, but don’t offer a solution for it. Would this offer an 
explanation as to why Arg is not favored in their algorithm, yet has been found in binders in vitro, 
as well as in DnaK- substrate structures? 
 
Response: Please see Response to Reviewer #2, critique “Line 242-249 …” above. 
 
Figure S7C: there seems to be a yellow square in the top right hand corner of each of the plots, 
which it seems is not supposed to be there? 
 
Response: These plots have been cleaned up and the legends (the source of the offending squares) 
were removed. 
 
Lines 338-340: The authors repeat themselves here, one of these sentences should be deleted. 
 
Response: Thanks for pointing this out. The second sentence has been deleted.  
 
Line 429: “revealS” 
 
Response: The typo has been fixed. 
 
It would be useful for the authors to describe how Paladin could be used on sequences of entire 
proteins. In this work, they design the algorithm and train it on existing experimental data. 
However, the power of such predictors lies in determining putative binding sites that have not been 
experimentally validated. Is Paladin capable of screening entire proteins and even proteomes for 
putative binding sites, and how (e.g. a sliding window approach)? And can it be used to that end 
by users in its current form? 
 
Response: The model can be evaluated from the command line as a python script. It takes an input 
file which can have as many FASTA-format sequences as desired. Every 5-mer in the input 
sequence(s) are scored. The Rüdiger dataset can be scored in about a second. A similar description 
has been added to the Methods section (Page 25, lines 784-787). In our opinion, many tools exist 
which can provide equal or better ability to scan for sticky hotspots. If you want a balance of good 
predictions of binders and non-binders, one can’t easily outperform the original Rüdiger algorithm. 
The power of the Paladin model is in looking deeper at atomistic interactions at each site and 
comparing them to predict why a substrate binds in some orientation or at some register, or how a 
change will affect those properties. 
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Reviewer #3: 
 
Nordquist et al provide a predictor for binding sites of the bacterial Hsp70 chaperone, DnaK, 
based on molecular dynamics simulations. Hsp70 chaperones are key for the cellular protein 
folding machinery. The bacterial DnaK homologue is the best understood paradigm for the overall 
mechanism of action of this family. Key to understand its function in protein folding is to 
understand how it recognises its substrates. Prediction of such sites is possible since 1997, based 
on empirical analysis of peptide sequences binding to DnaK. 
The present study has a different approach, as it bases the prediction on the analysis of the 
substrate binding site of DnaK. This conserved Hsp70 binding sites comprises binding positions 
for five consecutive residues. Contacts are made by both the side chains and the backbone. 
Additionally, coulomb interactions outside the binding pocket contribute to affinity. The authors 
test their model against the original data base from the 1997 study. 
Their prediction is slightly less accurate than the 1997 algorithm. However, there are two main 
selling points: (I) The predictor starts from analysing the chemical properties of the chaperone 
binding site, not the substrate. This may result in more insights into how substrate recognition of 
Hsp70 works. (II) The predictor can predict the orientation of the peptide stretch in the Hsp70 
binding pocket. Thus, if sufficiently accurate this new predictor is an interesting new tool to 
understand Hsp70 substrate interactions. There are some concerns the authors need to address 
before publication.  
 
Concerns and advice 
1. The predictor does not make full use of the information in the available experimental material. 
a. It neglects the flanking regions outside the 5-residue binding site. These regions can contribute 
via coulomb interactions, and considering their contribution improves the prediction in the 
Rüdiger algorithm. Thus, taking this into account would improve the quality of prediction. 
 
Response: We thank the reviewer for pointing out the potential contributions of the flanking 
region and completely agree that their inclusion could improve the algorithm. In fact, this is one 
of the future directions that we are interested in exploring with Paladin-based approaches. We have 
chosen not to include them in the algorithm at this point. The primary reason is that these regions 
are significantly less structured than the central five residues, requiring much more extensive 
sampling time and likely more accurate (and computationally more demanding) treatment of 
electrostatic interactions (such using GB or PB-based implicit solvent methods). The current model 
for the binding of the central five residues will provide a solid basis for extending to modeling the 
effect of flanking loops. We have revised the manuscript to better explain our choice to focus on 
the central five residues (Page 11, lines 288-291) 
 
b. The manuscript states that there is not information in the peptide data about where in a peptide 
DnaK may bind. This information can in fact be extracted from the peptides binding data by 
Rüdiger et al, 1997, as overlapping peptides allow to locate the highest affinity segment when 
comparing neighbouring peptides. It would allow the authors to test whether their algorithm would 
predict correctly the common core in overlapping peptides. How does it do on this? 
 
Response: We agree that the peptide array data could be used to extract a best binding region, 
although in our hands there remains substantial ambiguity about site occupancy and it is difficult 
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to pinpoint the binding registry at the residue level. We have updated the language in our 
manuscript to more accurately reflect that the information in the peptide array does contain some 
information about register but with ambiguity (Page 14, lines 380; page 22, lines 667-668).  
 
We have included two new supplemental figures which address Paladin’s ability to reproduce 
the peptide arrays. 1) Figure S8 contains a) the discrete peptide array data, b) the Rudiger model’s 
predictions for comparison, and c) Paladin’s predictions. The scores have been normalized to 
maximize readability. 2) Figure S9, which contains Precision-Recall curves, which more faithfully 
account for classification accuracy and error in this particular dataset (see Reviewer #2 comment 
and response starting with “- The AUC ROC values for Paladin,” for more information). The 
new PR curve and example peptide array predictions provide a similar story that the Rudiger 
model, as one would expect, fits the peptide array data it was derived from best, and that Paladin 
does reproduce the peptide array data reasonably well, but like the other predictors is noisy. The 
ROC and PR metrics provide a succinct and quantitative way to summarize this fitting. 
 
2. Some parameters in the prediction matrix do not fit previous experimental data. 
 
a. The negative effect of acidic residues in the 5-residue binding site only has a moderate effect, 
while positive charges are dramatically disfavoured. This is contrast to both the statistical 
composition of the binding peptides and the finding that negatively charged residues wipe out 
binding, while positively charged residues do not. This suggests that the MD analysis of the present 
study does not adequately takes charges into account. 
 
Response: We thank the reviewer for the insightful comment. We agree that the current Paladin 
model has apparent limitations in recapitulating the binding preference of charged residues, despite 
the apparent overall success. This may be attributed to two key approximations, namely RDIE 
electrostatics and SASA solvation model. Please refer to our response above to Reviewer #2, 
critique “Line 242-249: …” (pages 8-9 of this response letter) for additional details. In addition, 
we note that these approximations are adopted not only for computational efficiency, but also to 
allow full pair-wise decompositions of all energy terms required for deriving a PSSM. For the 
more accurate generalized Born (GB) model, the effective Born radii depend on the conformation 
of the whole complex and the interaction energies cannot be rigorously decomposed into a sum of 
side chain/site interaction contributions. This is discussed in the Methods section. (Page 23, lines 
715-719) 
 
b. The structural basis of the predictor is based on the Hendrickson structure of the DnaK substrate 
binding domain. This study describes that the central position 0 is tailored for Leucine. This is 
consistent with the analysis of the composition of the residues in this region, which shows Leu 
strongly favoured over all other residues. This is not the case for the predictor here, and it is 
unclear why. Here Ile is almost as good as Leu. 
 
Response: We agree with the reviewer that it is somewhat puzzling that our analysis suggests that 
Leu and Ile would be comparably compatible with site 0. We comment on this in the text with 
respect to Paladin’s inability to identify the flip of orientation between NRLLLTG (forward) and 
NRLILTG (reverse), which keeps L at site 0 in both cases (Page 21, lines 627-631). In addition, 
we note that the complementary experimental work in the Gierasch lab and previous experimental 
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work has not infrequently found I in the central site. For example, complexes listed in Table S1 
include 3 I and 15 L in site 0, which means you’d expect about -0.6*ln(3/15) = 0.97 kcal/mol based 
on this extremely limited dataset. Nonetheless, the description of nonpolar interactions in our 
atomistic simulations should be accurate and reliable. The peculiar preference of L over I thus may 
not be explained by local interactions. 
 
3. The peptide data to analyse forward/reverse binding are based on a relatively small number of 
peptides, which also appear relatively untypical. The impact of this is not adequately discussed, 
nor are data taken into account assessing the impact of D-amino acids on DnaK backbone binding 
(Rüdiger et al, 2001; Feifel et al, 1998). 
 
Response: We have further highlighted the limitations of the reverse binder dataset in the 
manuscript (Pages 21, lines 609-611). 
 
While a fascinating question, considering the effects of D-amino acids is beyond the scope of the 
current work as our goal was to predict DnaK binding sequences within physiological substrates. 
The possibility of binding of D-amino acids would become important in design of novel binders, 
for example as inhibitors. We have added a comment to this effect in the discussion, with citations 
to the two references the reviewer has noted. (pages 22-23, lines 682-695) 
 
4. There are experimental data available on the impact of the hydrophobic arch over the substrate 
binding cleft on affinity and specificity (Mayer et al, 2000, Rüdiger et al, 2000). These are not 
taken into account nor adequately discussed. 
 
Response: We thank the reviewer again for pointing out this important aspect of substrate binding 
to DnaK. We emphasize that the hydrophobic arch is present in all atomistic simulations, and thus 
all interactions between it and the substrate are included in the interaction matrix. Those residues 
are mentioned explicitly in our description of the binding sites and in a supplemental figure 
(Figure S3). We have now made revision to the text to more clearly point out their importance 
and cited the papers the reviewer notes (Page 9, lines 228-230). It could be an interesting future 
extension of our analysis to parse the contributions of each site in the beta-subdomain and the 
contributions of the arch residues, but this is beyond the scope of the current study. 
 
 
Have the authors made all data and (if applicable) computational code underlying the findings in 
their manuscript fully available? 
 
Reviewer #1: No: The final PSSM matrices with energetic terms need to be included, as this is 
common practice for prediction methods. 
Reviewer #2: Yes 
Reviewer #3: Yes     
 
Response: Thank you for reminding us of this, it has been now included (see Table S3). 
 


