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Supplementary Methods13

Estimation of cell type means14

We estimate µ̂k,j as the empirical mean of normalized expression of gene i in cell type j 2 J within
the scRNA-seq reference:

µ̂k,j ⌘
1

Ik

IkX

i=1

Yi,k,j

Ni,k
(1)

Here, Ik is the number of cells in reference of cell type k, Ni,k is the number of UMIs of cell i of cell15

type k, and Yi,k,j is observed counts of gene j in this cell. If we assume there are many cells, then this16

will be an accurate and unbiased estimator of the true mean µk,j .17

Probabilistic model18

In this section, we revisit our probabilistic model of spatial transcriptomics, deriving the Poisson
sampling model from a more detailed independently-sampled unique molecular identifier (UMI) model.
For each UMI, the source cell type is first probabilistically determined based on the cell type mixture
proportions. Second, the gene is determined according to the probability vector of that cell type.
Formally, for each pixel 1  i  I and for each read 1  n  Ni, we select cell type 1  ✓n,i  K and
gene 1  zn,i  J as:

P (✓n,i = k | �) = �k,i, P (zn,i = j | ✓n,i, �, ") = �i,✓n,i,j (2)

Here, we define:

log(�i,k,j) = ↵i + log(µ̂k,j) + �j + "i,j , (3)

where �j ⇠ Normal(0,�2
�), "i,j ⇠ Normal(0,�2

"), ↵i fixed (4)

Similar to the probabilistic model of Latent Dirichlet Allocation [1], in the RCTD model, individual19

reads are sampled from a randomly chosen gene from a randomly chosen cell type. RCTD extends20

the LDA model with its introduction of platform e↵ects �j and random e↵ects "i,j accounting for21

gene-specific overdispersion.22
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We define �i,j (predicted gene probability) as:

�i,j ⌘ P (zn,i = j | �, ") =
KX

k=1

�i,kµk,j (5)

Multinomial to Poisson approximation23

As a consequence of our model, conditional on �i,j , Yi,j is distributed as the Multinomial distribution:

Yi,j =
NiX

n=1

I[zn,i = j],

Yi,1, Yi,2, . . . , Yi,J | � ⇠ Multinomial(Ni,�i,1,�i,2, . . . ,�i,J).

(6)

We will now argue to approximate this distribution using:

Yi,j
ind⇠ Poisson(Ni�i,j), (7)

thus justifying the use of the Poisson model by RCTD.24

Given Ni reads, and each read occurs independently with �i,j representing the probability of25

gene j, there are two ways of arriving at a Poisson approximation. First, we can assume that the26

number of UMIs Ni is a Poisson random variable rather than fixed. That is Ni ⇠ Poisson(µi), and27

Yi,1, Yi,2, . . . , Yi,J | Ni ⇠ Multinomial(Ni,�i,1,�i,2, . . . ,�i,J). It turns out that this formulation is28

equivalent to:29

Yi,j
ind⇠ Poisson(µi · �i,j) (8)

where the Poissonization of Ni leads to independence across genes [2,3]. Although µi is not known,30

it is approximately correct to estimate µ̂i =
P

j Yi,j = Ni. This approximation is valid when µi is large31

because Poisson(µi) will have standard deviation
p
µi which will lead to a small percentage error. We32

are in the regime of large µi because we only consider pixels with Ni � 100.33

A second approach is to assume that Ni is fixed (observed), and that,

Yi,1, Yi,2, . . . , Yi,J ⇠ Multinomial(Ni,�i,1,�i,2, . . . ,�i,J). (9)

For counts-based gene expression data, this expression has been previously approximated as a Poisson34

distribution. Details have previously been provided in [4]. In particular, this approximation is accurate35

when Ni is large and �i,j is small. We do have that Ni � 100, and that for most genes �i,j is small36

(< 10�3 for e.g. 98.7% of genes used in the cerebellum Slide-seq from snRNA-seq predictions).37

Role of ↵i38

We now provide further insight into the role of ↵i. Briefly, the parameter ↵i controls the overall rate of39

gene expression per pixel, and is equivalent to treating the number of UMIs, Ni, as a free parameter.40

While constraining ↵i = ��2
/2 would enforce the mean gene counts to be Ni�i,j , we observed better41

model fits by leaving ↵i unconstrained.42

More precisely, ↵i can best be understood as controlling, for pixel i, the probability that each read43

is in gene set J = {1, 2, . . . , J}, which represents a chosen subset of all genes.44

P (zn,i 2 J) =
JX

j

P (zn,i = j | ✓n,i, �, "i,j) =
JX

j

�i,✓n,i,j (10)
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Considering that this sum will be a weighted sum of the cell types present, for simplicity, we will45

consider this sum for each cell type k. We can compute (for an individual pixel i and cell type k):46

JX

j

�i,k,j =
JX

j

µ̂k,je
↵i+�j+"i,j (11)

Since µ̂k,j is the average observed expression of gene j in the scRNA-seq reference, we would havePJ
j µ̂k,j = 1 if using all genes or µ̂k,j ⌘ Sk < 1 if using a subset of genes. Also since �j and "i,j are

independent normal random variables, their sum,

�i,j = �j + "i,j ⇠ Normal(0,�2), �
2 = �

2
" + �

2
� , (12)

is also normally distributed. Therefore:47

JX

j

�i,k,j = e
↵i

JX

j

µ̂k,je
�i,j ⇡ e

↵i

JX

j

µ̂k,jE[e�i,j ] = e
↵iSke

�2/2 (13)

Where the above approximation will be with high probability accurate. One can prove that such48

an approximation is accurate with high probability using the same arguments that appear in the49

supplemental section “Quantitative bound for deviation of sum of independent random variables”.50

Lastly, we used the expectation of a lognormal distribution.51

Now, we can see that assumption that is made about the summed probabilities
PJ

j �i,k,j , or,52

equivalently, the total probability of observing a gene in our set of selected genes 1  j  J . If53

one were to constrain ↵i = ��2
/2, this would be equivalent to assuming that

PJ
j �i,k,j = Sk, that54

the total probability of the gene set is the same between the scRNA-seq reference and each spatial55

transcriptomics pixel. However, this assumption is not generally true, as can be seen by e.g. selecting56

genes in snRNA-seq and observing the proportion of those genes in scRNA-seq, within the same cell57

type. We often found that selecting for highly expressed genes in the snRNA-seq dataset tend to be in58

total less expressed in the target dataset/platform. As a result, we chose not to enforce the assumption59

that
PJ

j �i,k,j = Sk, but rather to allow ↵i to be a free parameter that controls the total probability60

of observing a gene in this gene set. Although we chose this approach, we certainly think it is worth61

considering other approaches such as (1) constraining ↵i = ��2
/2, (2) shrinking the estimates of ↵i62

using an empirical Bayes procedure.63

Platform E↵ect Normalization64

The platform e↵ects �i can be reliably estimated independently from the other parameters by summa-65

rizing the spatial transcriptomics data as a single pseudo-bulk measurement Sj :66

Sj ⌘
IX

i=1

Yi,j ⇠ Poisson(
IX

i=1

Ni�i,j) (14)
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where Sj are observed. Next, we calculate the rate parameter of this Poisson distribution:

E[Sj |�] =
IX

i=1

Ni�i,j =
IX

i=1

KX

k=1

Ni�k,i�i,k,j =
KX

k=1

IX

i=1

Ni�k,iµk,je
�j+↵i+"i,j

= e
�j

KX

k=1

µk,j

IX

i=1

Ni�k,ie
↵ie

"i,j

= Ie
�j N̄

KX

k=1

µk,jBk,j

⇡ Ie
�j N̄

KX

k=1

µk,j�k�0

(15)

Where we have defined �0 ⌘ E["i,j ] = e
�2
"/2 as a fixed scaling constant (using lognormal expectation),

�k = 1
I

PI
i=1

Ni

N̄
�i,ke

↵i is the average proportion of cell type k, and:

N̄ =
1

I

IX

i=1

Ni and Bk,j =
1

I

IX

i=1

Ni

N̄
�k,i exp(↵i + "i,j). (16)

Bk,j is a random variable that is approximately proportional to �k:

Bk,j ⇡ �k�0.

This follows from the fact that E(Bk,j) = �k�0, and Var(Bk,j) converges to 0 when I is large, which
we show now. Consider k to be fixed. Because each Bk,j is independently and identically distributed,
if we can show that with high probability, Bk,j does not deviate too much from E[Bk,j ], then we can
justify our approximation. The e

"i,j are independently and identically lognormally distributed. For
each j, Bk,j is the sum of independent random variables. If we assume Ni↵i is bounded and that we
have many samples I, then Chebyshev’s inequality implies that for any � > 0, as I !1,

P (|Bk,j � E[Bk,j ]| > �)! 0 (17)

A quantitative bound to (17) for finite I can be derived by Chebyshev’s inequality (See “Quan-67

titative bound for deviation of sum of independent random variables”). As such, we are justified in68

making the approximation that Bk,j ⇡ �k�0 ⌘ E[Bk,j ] for all k, j.69

Consequently, if we define Wk = �k�0,

Sj |�j ⇠ Poisson

 
IN̄e

�j

KX

k=1

µk,jWk

!
, �j ⇠ Normal(0,�2

�). (18)

We can estimate Wk by viewing this as an (unconstrained) Poisson-lognormal mixture model. Our70

procedure to calculate the MLE of W and �� (Ŵ and �̂�) is the same procedure used to fit RCTD,71

which is described later (See fitting model (22)). Because the bulk Poisson mean is large for most72

genes, the Poisson sampling is mostly negligible. Accordingly, with high probability:73

S̄j ⇡ e
�i

KX

k=1

µk,jWk =) �j | Ŵ ⇡ log(S̄j)� log

 
KX

k=1

µk,jŴk

!
⌘ �̂j , (19)

where we have defined S̄j = Sj/(IN̄). This is an approximation, given that there will be some deviation

of Ŵ from the true W . We call this a normalization, because the e↵ect of �̂j is to re-normalize the
cell type means as:

µ̄k,j = µk,je
�̂j (20)
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Sequential quadratic programming for MLE estimation of RCTD74

After estimating platform e↵ects, we use RCTD to independently fit each spot as a weighted sum75

of cell types. Note that since �j has been replaced with a fixed estimate �̂j , there are no shared76

parameters across di↵erent pixels i, except �". As such, we estimate �k,i independently for each pixel,77

given �". The parameter �" is estimated by maximum likelihood via stochastic gradient descent (see78

“Estimating �”). The parameter ↵i e↵ectively allows us to re-scale �i, so we define wk,i = �k,ie
↵i ,79

which will not be constrained to sum to 1. Next, define:80

�̄i,j(wi) = Ni

KX

k=1

wk,iµk,je
�̂j = Ni

KX

k=1

wk,iµ̄k,j (21)

We will refer to this as the predicted mean of gene j in pixel i. The final model is a Poisson-
lognormal mixture model:

Yi,j | �̄i,j ⇠ Poisson(e"i,j �̄i,j(wi)), "i,j ⇠ Normal(0,�2
") (22)

We estimate w
⇤
i � 0 as the solution that maximizes the log-likelihood L(wi):

maxL(wi) =
JX

j=1

logP (Yi,j | �̄i,j(wi)) subject to: w � 0 (23)

Since the log-likelihood is non-convex, we implement sequential quadratic programming to optimize81

quadratic approximations and iterate until convergence - typically less than 15 iterations. Since this82

is the same model as equation (18) in Platform E↵ect Normalization, we use the same optimization83

procedure for both models.84

Here, we provide the Sequential quadratic programming (SQP) optimization procedure to optimize
the log-likelihood of RCTD (equation (23)). From now on, we consider a fixed pixel i and suppress
the notation of i. We can directly compute P (Yj | �̄j) by integrating over the random e↵ect "j :

P (Yj | �̄j) =

Z 1

�1
p�(z)P (Yj | �j = �̄je

z)dz

=

Z 1

�1
p�(z)e

��̄je
z (ez�̄j)Yj

Yj !
dz

= QYj (�̄i)

(24)

Here, p� is the probability density function of ". From now on, for notational convenience, we will use
�j to denote �̄j . We have defined for ` 2 Z+ [ {0}:

Q`(�) ⌘
Z 1

�1
p�(z)e

��ez (e
z
�)`

`!
dz (25)

We will estimate w
⇤ � 0 as that which maximizes the log-likelihood L(w):

max
w

L(w) =
JX

j=1

logP (Yj | �j(w)) =
JX

j=1

logQYj (�j(w)) (26)

Our log likelihood is non-convex. To optimize it, we will apply Sequential Quadratic Programming,
an iterative procedure that will be repeated until convergence. Let w0 be the value of w at a given
iteration, and let the gradient of �L be b(w) and the Hessian of �L be A(w). Then, we can make the
following quadratic Taylor approximation to L:

�L(w) ⇡ �L(w0) + b(w0)
T (w � w0) +

1

2
(w � w0)

T
A(w0)(w � w0) (27)
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If we let d = w � w0, then we get the following optimization problem to minimize our approximation
of �L(w).

min
d

b(w0)
T
d+

1

2
d
T
A(w0)d

s.t. d+ w0 � 0
(28)

This is a constrained Quadratic Program (QP). There is one issue we must discuss. This QP will
not be well behaved if the Hessian A(w0) is not positive semi-definite, which can occur due to the
non-convexity of �L(w). As such, we employ an approximation which has been shown to be very
e↵ective in non-convex optimization [5]: we set A(w0) to be the positive semi-definite part of the
hessian H of �L(w0). Specifically, suppose we have an eigen-decomposition of H as:

H = V DV
T (29)

Here, D is diagonal matrix of eigenvalues. We obtain the positive semi-definite part of H by taking
D

+ = max(D, 0) and:
A = V D

+
V

T (30)

E↵ectively, taking the positive semi-definite part of the Hessian will preserve the gradient information85

and keep the convex part of the quadratic Taylor approximation.86

Given a solution of d⇤, we set
w0 + ↵ ⇤ d⇤ ! w0 (31)

Here, ↵ is the step size, which we have set to 0.3. We repeat this process until convergence. This gives87

us a solution w
⇤ minimizing �L(w). We define convergence as convergence of wn, the value of w after88

n SQP iterations. Specifically, we say that RCTD has converged once:89

kwn+1 � wnk1 =
X

k

|wn+1,k � wn,k| < ✏. (32)

By default, we use ✏ = 0.001. We tested RCTD (on a randomly chosen subset of 1, 000 cerebellum90

Slide-seq pixels) with a smaller value of ✏ = 10�6, and we observed that this does not lead to a91

substantially di↵erent value of w. More precisely, the average L1 norm of the di↵erence between92

the two solutions has mean 0.0022 and maximum 0.0047 (Supplementary Figure 25). We note that,93

although the quadratic approximation is only locally accurate, because the log-likelihood function is94

re-approximated at each step, w⇤ is guaranteed to optimize the function within a local neighborhood,95

that is, to be a local optimum. Furthermore, the parameter ↵ encourages the algorithm to keep w close96

to the region where the local quadratic approximation is accurate. If ↵ is too large, then convergence97

issues will be reached, but with ↵ = 0.3, we observed convergence of 100% of pixels in the Slide-seq98

cerebellum dataset.99

In general, we do not have a guarantee that RCTD converges to the global minimum, since our100

likelihood function is nonconvex and could potentially have multiple local minima. While we cannot101

mathematically prove that RCTD obtains the global optimum, we obtained the following empirical102

evidence that RCTD does not get stuck in local minima. In particular, we have initialized the opti-103

mization at several randomly chosen initial values, and each one converged to the same local minima.104

On 50 randomly chosen pixels, we ran RCTD with 50 randomly chosen initial values, and RCTD al-105

ways converged to the same solution, with maximum L1 norm error 4.0 ⇤ 10�6 (Supplementary Figure106

25). The default initial condition is w0,k = 1/K for each cell type.107

Returning to the computational aspects of implementing SQP, and recalling that �j(w) = Nw
T
µ̄j ,

we will derive an expression for the gradient and hessian of �L(w):

b(w) = �rL(w) = �
JX

j=1

r logQYj (�j(w))

= �
JX

j=1

Q
0
Yj
(�j(w))

QYj (�j(w))
Nµ̄j

(33)
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Next, the Hessian:

A(w) = Hess(�L(w)) = �
JX

j=1

r(
Q

0
Yj
(�j(w))

QYj (�j(w))
) ·Nµ̄j

= �
JX

j=1

(
Q

00
Yj
(�j(w))

QYj (�j(w))
� (

Q
0
Yi
(�j(w))

QYj (�j(w))
)2) · (Nµ̄j)(Nµ̄j)

T

(34)

Consequently, computation of the gradient and Hessian will depend on computing the first and second
derivatives of Q`(�). Notice that:

Q
0
`(�) ⌘

Z 1

�1
p�(z)

@

@�
(e��ie

z (ez�i)`

`!
)dz

=

Z 1

�1
p�(z)e

��ie
z (ez�i)`

`!
(�ez + `

�
)dz

=
1

�
(�(`+ 1)Q`+1(�) + `Q`(�))

(35)

As such, we are able to express the derivatives of Q` in terms of Q` and Q`+1! Likewise, we can
compute:

Q
00
` (�) =

1

�
(�(`+ 1)Q0

`+1(�) + `Q
0
`(�))�

1

�2
(�(`+ 1)Q`+1(�) + `Q`(�))

=
1

�2
((`+ 1)(`+ 2)Q`+2(�)� 2`(`+ 1)Q`+1(�) + `(`� 1)Q`(�))

(36)

Therefore, we have reduced the problems of computing the gradient and Hessian to the problem of108

computing Q`(�) for all ` and �. For each `, we create a grid of potential � values and compute Q`(�).109

We store these results in a matrix, and for new � values, we linearly interpolate to approximate Q`(�).110

Estimating �111

Finally, we address the issue of choosing � (for both �� and �") with the following procedure:112

1. Initially set � = 1.113

2. Estimate the weights w for 500 pixels.114

3. Compute the MLE �
⇤ of � for these 500 samples given these values for w.115

We note two di↵erences in the estimation of �� for the Platform E↵ect Normalization: there is only 1
bulk sample, so this is used, rather than 500 pixel, and more iterations over ↵n are used below. The
MLE for � is found using stochastic gradient descent. We select � to maximize the likelihood across
all spots (with I samples):

L(�, w) =
IX

i=1

JX

j=1

logP (Yi,j | �i,j) =
IX

i=1

JX

j=1

logQYi,j (�i,j) =
X

i,j

logQYi,j (�i,j) (37)

We alternatively maximizing L with respect to each of � and w, as described above. This is guaranteed116

to converge to a local minimum. In practice, the choice of � does not a↵ect the maximum likelihood117

weights w too much, so we typically see convergence of � in a couple iterations. The stochastic gradient118

descent algorithm proceeds as follows:119

1. Set � = �0 initial value.120

2. Set ↵n = .0001
n , and repeat the following for 1  n  Niter:121
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3. For each 1  i  I, 1  j  J , update:

�  � + ↵n
@

@�
logQYi,j (�i,j) (38)

The choice of ↵n is to guarantee convergence to the global minimum since
P1

n ↵n =1, but
P1

n ↵
2
n <

1. Traces of � throughout this procedure imply convergence (Supplementary Figure 27). A typical
choice for Niter is 10. One remaining detail for this procedure is the calculation of @

@� logQYi,j (�i,j):

@

@�
logQYi,j (�i,j) =

1

QYi,j (�i,j)

@

@�
QYi,j (�i,j)

=
1

QYi,j (�i,j)

Z 1

�1

@p�(z)

@�
e
��i,je

z (ez�i,j)Yi,j

(Yi,j)!
dz

(39)

Finally, we must calculate @p�(z)
@� . We define:

p�(z) =

(
Cp
2⇡�

e
� z2

2�2 , |z|  3�
Ca

�(z/��c)2 , |z| > 3�
(40)

Here, p� is a Normal Distribution, modified to be heavy tailed. The intuition here is that we want122

to allow for the (inevitable) possibility of outliers. Inverse square tails are almost as heavy tailed as123

possible for probability distributions. We choose c and a so that p� is continuously di↵erentiable at the124

boundary |z| = 3�. This results in c = 7/3 and a = 4
9e

�9/2
/
p
2⇡. C is a normalizing constant which125

is chosen to make p� integrate to 1. Note that these choices of constants hold for all �. It follows that:126

@p�(z)

@�
=
�1
�

p�(z) +

(
z2

�3 p�(z) |z|  3�
�2/�2

z/��cp�(z) |z| > 3�
(41)

Quantitative bound for deviation of sum of independent random variables127

Here, we provide a quantitative bound for equation (17). Recall:

Bk,j =
1

I

IX

i=1

Ni

N̄
�k,i exp(↵i + "i,j) (42)

Recall we have independently lognormally distributed e
"i,j . For each j, Bk,j is the sum of independent

random variables. If we assume Ni↵i is bounded and that we have many samples I, then Chebyshev’s
inequality implies that for any � > 0:

P (|Bk,j � E[Bk,j ]| > �)  Var(Bk,j)

�2

=
1

(IN̄�)2

IX

i=1

(Ni�k,ie
↵i)2Var(e"i,j )

 max1iI(Nie
↵i)2(e�

2
" (e�

2
" � 1))

I�2N̄2
,

(43)

where we have used the variance of a lognormal distribution. Therefore, with high probability, �k,j128

will not deviate far from its mean for large I.129
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Expected cell type-specific gene expression130

Once � has been estimated, we probabilistically assign reads to cell types. This is accomplished by
our model of sampling gene expression: for each pixel 1  i  I and for each read 1  n  Ni, we
select cell type 1  ✓n,i  K and gene 1  zn,i  J as:

P (✓n,i = k | �) = �k,i, P (zn,i = j | ✓n,i, �, ") = �i,✓n,i,j (44)

Here, we define:
log(�i,k,j) = ↵i + log(µ̂k,j) + �j + "i,j (45)

We can use Bayes’ Theorem to calculate the probability that each read n of gene i came from cell type
j in sample k. We assume that the reads are conditionally independent given �, �, ":

P (✓n,i = k | �, zn,i = j, �, ") / P (✓n,i = k, zn,i = j | �, �, ")
= P (✓n,i = k | �)P (zn,i = j | �, ✓n,i = k, �, ")

= �k,i�i,k,j

(46)

This implies that:

P (✓n,i = k | �, zn,i = j, �, ") =
�k,i�i,k,jPK

k0=1 �k0,i�i,k0,j

=
�k,iµ̂k,jPK

k0=1 �k0,iµ̂k0,j

(47)

This conditional probability does not depend on �, ", since the ratio (across k) of �i,k,j is fixed. This
implies (by tower law):

P (✓n,i = k | �, zn,i = j) = E�,"[P (✓n,i = k | �, zn,i = j, �, ")] =
�k,iµ̂k,jPK

k0=1 �k0,iµ̂k0,j

(48)

Therefore, we can use Equation (48) to calculate the probability that each UMI came from each131

cell type given �k,i. Intuitively, this probability is a competition between di↵erent cell types and is132

proportional to (1) the proportion of the cell type on a spot and (2) the probability of observing the133

gene in the cell type for a single UMI. Consequentially, conditional on the observed gene counts, we can134

calculate in pixel i the expectation of gene j originating from each cell type k, Yi,k,j , as proportional135

to the observed gene counts Yi,j :136

E[Yi,k,j | �, Yi,j ] = E[
IX

i=1

I[✓n,i = k, zn,i = j] | �, Yi,k] =
Yi,j�k,iµ̂k,jPK
k0=1 �k0,iµ̂k0,j

(49)

Cell type identification by model selection137

Although we show that RCTD’s default choice of � = 10 leads to high accuracy across several datasets,138

we o↵er the following guidance to the user in choosing a value of �. In general, the user may plot139

the results of RCTD using multiple values of � and observe the qualitative e↵ect on accuracy. In140

particular, if � = 10 yields accurate results, but predicts few pixels confidently, decreasing � may be141

considered. If � = 10 yields inaccurate results, the user can consider increasing �. Accuracy can be142

heuristically measured using prior spatial knowledge or comparison of cell type predictions to marker143

genes. Because it is in general di�cult to measure classification accuracy without ground truth cell144

type labels, we do not have a quantitative procedure for selecting the optimal � for achieving a target145

classification accuracy.146
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Modes of RCTD147

RCTD with doublet mode constrains each pixel to at most two cell types. RCTD can also be run148

without constraining the number of cell types per pixel. RCTD with doublet mode has been extended149

to multi mode, which predicts more than two cell types by proceed by greedy search: at each iteration,150

the next cell type is added that will best improve the model fit until diminishing returns are reached.151

Confidence is determined for each cell type by testing if there is an alternative cell type that will yield152

a similar model fit.153

To quantitatively define multi mode for cell types c1, c2, . . . , cp 2 {1, 2, . . . ,K}, let L(c1, c2, . . . , cp)
be the log-likelihood of the model fit with these cell types on a particular pixel. After selecting p cell
types (c1, c2, . . . , cp), in order to choose an additional cell type by greedy search, we select the next
cell type maximizing log-likelihood:

cp+1 ⌘ argmaxc (L(c1, c2, . . . , cp, c)) . (50)

Because we expect many pixels to contain few cell types, we then used a penalized approach similar
to AIC [6] to decide the model Mp containing the best number of cell types p. Mp is defined as the
model that cell types c1, c2, . . . , cp are present on the pixel. We select p as maximizing,

AIC(Mp) ⌘ L(Mp)� V p = L(c1, c2, . . . , cp)� V p,

with p the number of parameters (cell types) and V a penalty weight. In the results presented here,154

we selected V = 25 based on simulation studies.155

After selecting cell types, final cell type weights are estimated. To predict, for each Slide-seq pixel,156

the number of cell types present (Supplementary Figure 5), we ran RCTD on multi mode on the157

cerebellum Slide-seq dataset.158

Di↵ering cell types between spatial data and reference159

To measure RCTD’s performance on pixels containing cell types other than those appearing in the160

reference, we focused on cross-platform prediction of single cells. We executed this by using the same161

12 cell types in the scRNA-seq dataset, but we removed several cell types from the reference training162

data. Recall that for the cerebellum dataset, cell classes are defined as {MLI1, MLI2}, {Polydenrocytes,163

Oligodendrocytes}, {Bergmann, Astrocytes}, and {Fibroblast, Endothelial}. First, we removed one164

cell type from each class: MLI2, Polydendrocytes, Bergmann, and Fibroblast. We observed that RCTD165

most often classified each missing cell type as the present cell type within the class (Supplementary166

Figure 11). Next, we tested RCTD by removing two cell types from each class, and measuring RCTD’s167

performance on predicting those cell types. This was done for each of {MLI1, MLI2}, {Polydenrocytes,168

Oligodendrocytes}, {Bergmann, Astrocytes}, and {Fibroblast, Endothelial}.169

Supplementary Table 1: Estimated Parameters170

Target Dataset �� �"

snRNA-seq Cerebellum 0 0.77
scRNA-seq Cerebellum 1.28 0.88
Slide-seq Cerebellum from snRNA-seq 0.94 0.95
Slide-seq Hippocampus 0.51 0.80
Visium Hippocampus 0.70 0.45
Slide-seq Cerebellum from scRNA-seq 0.61 0.76
Slide-seq Somatosensory Cortex (from Smart-seq2) 1.36 0.52

171
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Supplementary Experimental Methods 
Animal Handling  

All procedures involving animals at the Broad Institute were conducted in accordance with the US 
National Institutes of Health Guide for the Care and Use of Laboratory Animals under protocol number 
0120-09-16.                      

Transcardial Perfusion 

C57BL/6J mice were anesthetized by administration of isoflurane in a gas chamber flowing 3% isoflurane 
for 1 minute. Anesthesia was confirmed by checking for a negative tail pinch response. Animals were 
moved to a dissection tray and anesthesia was prolonged via a nose cone flowing 3% isoflurane for the 
duration of the procedure. Transcardial perfusions were performed with ice cold pH 7.4 HEPES buffer 
containing 110 mM NaCl, 10 mM HEPES, 25 mM glucose, 75 mM sucrose, 7.5 mM MgCl2, and 2.5 mM 
KCl to remove blood from brain and other organs sampled. The appropriate organs were removed and 
frozen for 3 minutes in liquid nitrogen vapor and moved to -80C for long term storage. 

Tissue Handling 

Fresh frozen tissue was warmed to -20 C in a cryostat (Leica CM3050S) for 20 minutes prior to handling. 
Tissue was then mounted onto a cutting block with OCT and sliced at a 5° cutting angle at 10 μm 
thickness. Pucks were then placed on the cutting stage and tissue was maneuvered onto the pucks. The 
tissue was then melted onto the puck by moving the puck off the stage and placing a finger on the 
bottom side of the glass. The puck was then removed from the cryostat and placed into a 1.5 mL 
eppendorf tube. The sample library was then prepared as below. The remaining tissue was re-deposited 
at -80 C and stored for processing at a later date. 
 
Puck preparation and sequencing 
 
Pucks were prepared as described recently using barcoded beads synthesized in-house on an Akta 
Oligopilot 10 according to the updated Slide-seqV2 protocol [2]. Pucks were sequenced using a 
monobase-encoding sequencing-by-ligation approach also described in the updated protocol. We used 
slide-seq tools for alignment and processing of Slide-seq data.  
 
Pucks were generated using one of two separate bead batches with the oligo sequences listed below: 
 
Batch 1: 

5'-
TTT_PC_GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTJJJJJJJJTCTTCAGCGTTCCCGAGAJ
JJJJJJTCNNNNNNNNT25 

Batch 2: 



5'-
TTT_PC_GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTJJJJJJJJTCTTCAGCGTTCCCGAGAJ
JJJJJNNNNNNNVVT30 

 

“PC” designates a photocleavable linker; “J” represents bases generated by split-pool barcoding, such 
that every oligo on a given bead has the same J bases; “N” represents bases generated by mixing, so 
every oligo on a given bead has different N bases; and “TX” represents a sequence of X thymidines. “V” 
represents bases which may contain A, C, G but not T. 

 
Slide-seqV2 library preparation 
 
RNA Hybridization: 
Pucks in 1.5 mL tubes were immersed in 200 μL of hybridization buffer (6x SSC with 2 U/μL Lucigen 
NxGen RNAse inhibitor) for 15 minutes at room temperature to allow for binding of the RNA to the 
oligos on the beads. 
 
First Strand Synthesis 
Subsequently, first strand synthesis was performed by incubating the pucks in RT solution for 30 minutes 
at room temperature followed by 1.5 hours at 52 °C. 
  
RT solution: 
115 μL H2O 
40 μL Maxima 5x RT Buffer (Thermofisher, EP0751) 
20 μL 10 mM dNTPs (NEB N0477L) 
5 μL RNase Inhibitor (Lucigen 30281) 
10 μL 50 μM Template Switch Oligo (Qiagen #339414YCO0076714) 
10 μL Maxima H- RTase (Thermofisher, EP0751) 
                                                                                  
Tissue Digestion: 
200 μL of 2x tissue digestion buffer was then added directly to the RT solution and the mixture was 
incubated at 37 °C for 30 minutes. 
 
2x tissue digestion buffer: 
200 mM Tris-Cl pH 8 
400 mM NaCl 
4% SDS 
10 mM EDTA 
32 U/mL Proteinase K (NEB P8107S) 
  
Second Strand Synthesis: 
The solution was then pipetted up and down vigorously to remove beads from the surface, and the glass 
substrate was removed from the tube using forceps and discarded. 200 μL of Wash Buffer was then 
added to the 400 μL of tissue clearing and RT solution mix and the tube was then centrifuged for 2 
minutes at 3000 RCF. The supernatant was then removed from the bead pellet, the beads were 
resuspended in 200 μL of Wash Buffer, and were centrifuged again. This was repeated a total of three 



times. The supernatant was then removed from the pellet. The beads were then resuspended in 200 μL 
of ExoI mix and incubated at 37 °C for 50 minutes. 
 
Wash Buffer: 
10 mM Tris pH 8.0 
1 mM EDTA 
0.01% Tween-20 
 
ExoI mix: 
170 μL H20 
20 μL ExoI buffer 
10 μL ExoI (NEB M0568) 
 
After ExoI treatment the beads were centrifuged for 2 minutes at 3000 RCF. The supernatant was then 
removed from the bead pellet, the beads were resuspended in 200 μL of Wash Buffer, and were 
centrifuged again. This was repeated a total of three times. The supernatant was then removed from the 
pellet. The pellet was then resuspended in 200 μL of 0.1 N NaOH and incubated for 5 minutes at room 
temperature. To quench the reaction, 200 μL of Wash Buffer was added and beads were centrifuged for 
2 minutes at 3000 RCF. The supernatant was then removed from the bead pellet, the beads were 
resuspended in 200 μL of Wash Buffer, and were centrifuged again. This was repeated a total of three 
times. Second Strand Synthesis was then performed on the beads by incubating the pellet in 200 μL of 
Second Strand Mix at 37 °C for 1 hour. 
 
Second Strand Synthesis mix: 
133 μL H2O 
40 μL Maxima 5x RT Buffer 
20 μL 10 mM dNTPs 
2 μL 1 mM dN-SMRT oligo 
5 μL Klenow Enzyme (NEB M0210) 
  
After Second Strand Synthesis, 200 μL of Wash Buffer was added and the beads were centrifuged for 2 
minutes at 3000 RCF. The supernatant was then removed from the bead pellet, the beads were 
resuspended in 200 μL of Wash Buffer, and were centrifuged again. This was repeated a total of three 
times. 
  
Library Amplification: 
200 μL of water was then added to the bead pellet and the beads were centrifuged for 2 minutes at 
3000 RCF. The supernatant was then removed from the bead pellet and the beads were resuspended in 
50 μL of library PCR mix and moved into a 200 μL PCR strip tube. PCR was then performed as outlined 
below: 
 
Library PCR mix: 
22 μL H2O 
25 μL of Terra Direct PCR mix Buffer (Takara Biosciences 639270) 
1 μL of Terra Polymerase (Takara Biosciences 639270) 
1 μL of 100 μM Truseq PCR primer (IDT) 
1 μL of 100 μM SMART PCR primer (IDT) 
          



PCR program: 
95 °C 3 minutes 
 
4 cycles of: 
98 °C 20 seconds 
65 °C 45 seconds 
72 °C 3 minutes 
 
9 cycles of: 
98 °C 20 seconds 
67 °C 20 seconds 
72 °C 3 minutes 
 
Then: 
72 °C 5 minutes 
Hold at 4 °C 

                                                              
PCR cleanup and Nextera Tagmentation: 

Samples were cleaned with Ampure XP (Beckman Coulter A63880) beads in accordance with 
manufacturer’s instructions at a 0.6x bead/sample ratio (30 μL of beads to 50 μL of sample) and 
resuspended in 50 μL of water. The cleanup procedure was repeated, this time resuspending in a final 
volume of 10 μL. 1 μL of the library was quantified on an Agilent Bioanalyzer High sensitivity DNA chip 
(Agilent 5067-4626). Then, 600 pg of cDNA was taken from the PCR product and prepared into Illumina 
sequencing libraries through tagmentation using the Nextera XT kit (Illumina FC-131-1096). 
Tagmentation was performed according to manufacturer's instructions and the library was amplified 
with primers Truseq5 and N700 series barcoded index primers. The PCR program was as follows: 

PCR program: 
72 °C for 3 minutes 
95 °C for 30 seconds 
 
12 cycles of: 
95 °C for 10 seconds 
55 °C for 30 seconds 
72 °C for 30 seconds 

 
72 °C for 5 minutes 
Hold at 4 °C 

                                                          
Samples were cleaned with Ampure XP (Beckman Coulter A63880) beads in accordance with 
manufacturer’s instructions at a 0.6x bead/sample ratio (30 μL of beads to 50 μL of sample) and 
resuspended in 10 μL of water. 1 μL of the library was quantified on an Agilent Bioanalyzer High 
sensitivity DNA chip (Agilent 5067-4626). Finally, the library concentration was normalized to 4 nM for 
sequencing. Samples were sequenced on the Illumina NovaSeq S2 flowcell 100 cycle kit with 12 samples 
per run (6 samples per lane) with the read structure 44 bases Read 1, 8 bases i7 index read, 50 bases 
Read 2. Each puck received approximately 200-400 million reads, corresponding to 3,000-5,000 reads 
per bead.  



Supplementary Figures174
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Supplementary Figure 1: Predicted spatial localization of cell types by unsupervised clustering in
Slide-seq cerebellum.

a) Barplot of counts for predicted pixels assigned to each cell type. Calls obtained unsupervised
clustering. Note that there are two granule clusters, and only 1 cluster for both MLI1 and MLI2.

b) Predicted spatial locations of each cell type by unsupervised clustering.

All scale bars 250 microns.
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Supplementary Figure 2: Expression of Granule Markers within Unsupervised Clustering Classifica-
tions
Boxplot of granule marker expression within pixels classified as granule by unsupervised clustering.
Pixels were split into pixels within and outside the granule layer.
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Supplementary Figure 3: Comparison of NMFreg and RCTD.

a) Barplot of counts for confidently predicted pixels assigned to each cell type. Calls obtained by
RCTD (top left) or NMFreg (other three panels). NMFreg confidence was determined either
by default (top right), or by a constant proportion cuto↵ of 0.25 (bottom left) or 0.35 (bottom
right).

b) Confidently predicted spatial localization of cell types by RCTD and NMFreg for granule, molec-
ular layer interneurons 2 (MLI2), and Bergmann. Left: expression (counts per 500) (represented
by color) of marker genes. Middle: predicted spatial locations of a cell type by RCTD, with
color representing predicted cell type proportion. Column 2: predicted spatial locations of a cell
type by NMFreg, with color representing predicted cell type proportion. NMFreg underpredicted
granule cells in the granular layer and instead incorrectly overpredicted MLI2 in this layer [8].
NMFreg confidence was determined either by default (column 3), or by a constant proportion
cuto↵ of 0.25 (column 4) or 0.35 (column 5).

All scale bars 250 microns.

18



Predicted Number of Cell Types per Pixel

0

2500

5000

7500

1 2 3 4
Predicted Number of Cell Types per Pixel

N
um

be
r o

f P
ixe

ls

Performance of DWLS

0.00 0.25 0.50 0.75 1.00
Classification Proportion

Astrocytes
Bergmann

Endothelial
Fibroblast

Golgi
Granule

MLI1
MLI2

Oligodendrocytes
Polydendrocytes

Purkinje
UBCs

Candelabrum
Choroid
Globular

Lugaro

Astr
oc

yte
s

Berg
man

n

End
oth

elia
l

Fibr
ob

las
t
Golg

i

Gran
ule MLI1 MLI2

Oligo
de

nd
roc

yte
s

Poly
de

nd
roc

yte
s

Purk
inje

UBCs

True Cell Type

Pr
ed

ic
te

d 
C

el
l T

yp
e

Astrocytes
Bergmann

Endothelial
Fibroblast

Golgi
Granule

MLI1
MLI2

Oligodendrocytes
Polydendrocytes

Purkinje
UBCs

Choroid
Ependymal

Lugaro

Astr
oc

yte
s

Berg
man

n

End
oth

elia
l

Fibr
ob

las
t
Golg

i

Gran
ule MLI1 MLI2

Oligo
de

nd
roc

yte
s

Poly
de

nd
roc

yte
s

Purk
inje

UBCs

True Cell Type

Pr
ed

ic
te

d 
C

el
l T

yp
e

7

b)a)

19



Supplementary Figure 4: Performance of DWLS on cell type classification.
All panels: confusion matrix of DWLS cell type predictions, as compared to ground truth labels.

a) DWLS was trained and tested on the single-nucleus cerebellum reference.

b) DWLS was trained on single-nucleus and tested on single-cell.
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Supplementary Figure 5: Number of cell types per Slide-seq cerebellum pixel.

Histogram of number of cell types per spatial transcriptomic pixel, estimated by RCTD with multi
mode.

a) Slide-seq cerebellum. In total, 1.1% of pixels were predicted to contain more than two cell types,
consistent with previous estimates of Slide-seq data [9].

b) Slide-seq hippocampus. In total, 3.6% of pixels were predicted to contain more than two cell
types.

c) Slide-seq somatosensory cortex. In total, 5.8% of pixels were predicted to contain more than two
cell types.

d) Visium hippocampus. In total, 99.3% of pixels were predicted to contain more than two cell
types.
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Supplementary Figure 6: Robust Cell Type Decomposition (RCTD) accurately decomposes mixtures
of cells.

All: RCTD was trained on the single-nucleus RNA-seq cerebellum dataset and tested on a the same
dataset.

a) Confusion matrix for RCTD on within-reference cell type assignment for single cells.

b) Rate of doublet classification of simulated mixtures of single cells, with 95% confidence intervals.
The x-axis represents the proportion of UMIs sourced from the minority cell type, ranging from
0% (true singlet) to 50% (full doublet) (n between 5130 and 10260 simulations per condition).

c) Predicted Bergmann proportion as a function of true Bergmann proportion on simulated
Bergmann-Purkinje doublets. The red line is the identity line, and the blue line is the aver-
age and standard deviation (n = 30 simulations per condition) of prediction.

d) Metrics for performance of RCTD on simulated doublets (n = 390 simulations per cell type pair).
Column represents cell type 1, and color represents cell type 2. Top: RCTD assigns doublets to
two cell types. Identification rate is the percentage of confident calls correctly identifying cell
class 1.

e) Bottom: RMSE of predicted vs true cell type proportion (as in (c)).

All scale bars 250 microns.
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RCTD Cell Class Classification
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Supplementary Figure 7: Doublet classification of pixels with two transcriptionally similar cell types.
Rate of doublet classification by RCTD on simulated mixtures of single cells, with 95% confidence
intervals. The x-axis represents the true proportion of UMIs sampled from the minority cell type,
ranging from 0% (true singlet) to 50% (equal proportion doublet). RCTD was trained on the single-
nucleus RNA-seq cerebellum dataset and tested on a dataset of simulated mixtures of single cells
from a single-cell RNA-seq cerebellum dataset. We restricted the calculations to pixels containing two
cell types of the same cell type class, defined as {Astrocytes, Bergmann}, {Endothelial, Fibroblast},
{MLI1, MLI2}, and {Oligodendrocytes, Polydendrocytes}.
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Supplementary Figure 8: Performance of RCTD on Cell Types that do not appear in the Spatial Data

a) Barplot of confident cell type prediction. “Cell Types Absent” represent cell types appearing
in the reference but not the spatial data, whereas “Cell Types Present” represent cell types
appearing in the spatial data and reference.

b) The same as (a), but broken down by cell type not appearing in the spatial data. For comparison
“Average Present Type” is the average number of predictions of a cell type appearing in the
spatial data.

All analysis occurs on the simulated cerebellum doublets dataset (trained on snRNA-seq, tested on
scRNA-seq).
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RCTD Cell Class Classification
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Supplementary Figure 9: Misclassification errors of RCTD on true Bergmann-Granule doublet pixels.
All panels: RCTD was trained on single-nucleus cerebellum and tested on single-cell simulated dou-
blets. Analysis constrained to doublets containing a Bergmann cell and a granule cell.

a) Histogram of cell type predictions made by RCTD.

b) The most frequent misclassification in (a) was Fibroblast. The genes with the largest impact on
likelihood for these pixels, favoring Fibroblast over granule. “Likelihood Impact” is defined as
the di↵erence in the log-likelihood for the gene between the Fibroblast and granule models.
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Supplementary Figure 10: Performance of RCTD as a function of number of UMIs.
For simulated datasets, pixels were downsampled for each UMI condition.

a) Percentage of single-cells predicted confidently as a function of UMI. Performance measured on
cross-platform single-cell dataset (trained on single-nucleus, tested on single-cell). For “class-
removed”, the testing cell class was removed from the reference. Performance is averaged over
{Astrocytes, Bergmann, Endothelial, Fibroblast, MLI1, MLI2, Oligodendrocytes, Polydendro-
cytes}.

b) Percentage of pixels predicted confidently as a function of UMI in the cerebellum Slide-seq
dataset. Pixels are binned with binwidth 100 UMI. Percentage of cell types with � 1 confident
cell type and percentage of doublets with 2 confident cell types is shown.

c) Cell class prediction accuracy as a function of UMI per pixel. Performance measured on simu-
lated doublets dataset (trained on single-nucleus, tested on single-cell). Restricted to confident
predictions.

d) Percentage of pixels predicted confidently as a function of UMI. Performance measured on simu-
lated doublets dataset (trained on single-nucleus, tested on single-cell). Percentage of cell types
with � 1 confident cell type and percentage of doublets with 2 confident cell types is shown.
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Supplementary Figure 11: Performance of RCTD on Cell Types that do not appear in the Reference
All panels: confusion matrix for RCTD on cross-reference cell type assignment for single cells. Recall,
cell classes are defined as {Astrocytes, Bergmann}, {Endothelial, Fibroblast}, {MLI1, MLI2}, and
{Oligodendrocytes, Polydendrocytes}. RCTD is trained on the single-nucleus cerbellum dataset, with
cell types removed as follows:

a) Cell types removed (one from each class): {Bergmann, Fibroblast, MLI2, Polydendrocytes}.

b) Cell types removed (two from one class): {Astrocytes, Bergmann}.

c) Cell types removed (two from one class): {Endothelial, Fibroblast}.

d) Cell types removed (two from one class): {MLI1, MLI2}.

e) Cell types removed (two from one class): {Oligodendrocytes, Polydendrocytes}.
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Supplementary Figure 12: Performance of RCTD on simulated Visium dataset.
All panels: RCTD was trained on single-nucleus cerebellum and tested on single-cell. Simulated Visium
dataset consisted of pixels comprised of multiple cells totaling 10, 000 UMIs. Each pixel in the dataset
contained either three cell types (top row) or four cell types (bottom row). RCTD was run on multi
mode.

a) For each number of cell types, the proportion of pixels confidently predicting at least as many
cell types. Calculated over pixels predicted to contain at least as many cell types.

b) RCTD cell class prediction accuracy as a function of number of cell types confidently predicted per
pixel. We observed that RCTD with multi mode achieved high accuracy on cell class prediction.
Overall accuracy was 87.7% for the three cell type dataset and 91.0% for the four cell type
dataset.

c) Histogram of total cell types predicted per pixel.
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Supplementary Figure 13: RCTD predictions on simulated Visium dataset.
Scatterplot of true vs. predicted cell class proportions by RCTD. RCTD was trained on single-nucleus
cerebellum and tested on single-cell. Simulated Visium dataset consisted of pixels comprised of multiple
cells totaling 10, 000 UMIs. Each pixel in the dataset contained either three cell types (left column)
or four cell types (right column). RCTD was run without constraining cell types.
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Supplementary Figure 14: Predicted spatial localization of cell types by RCTD in Slide-seq cerebellum.

Predicted spatial locations of each cell type, with color representing predicted cell type proportion.
All scale bars are 250 microns. For this analysis, RCTD was trained on the single-nucleus reference.
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Supplementary Figure 15: Predicted spatial localization of cell types by RCTD in Slide-seq cerebellum,
trained on single-cell reference.

Predicted spatial locations of each cell type, with color representing predicted cell type proportion.
All scale bars are 250 microns. For this analysis, RCTD was trained on the single-cell reference.
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Supplementary Figure 16: Agreement of RCTD predictions across multiple training datasets.

Confusion matrix of cell type classifications on Slide-seq cerbellum, comparing RCTD predictions when
trained on the single-cell and single-nucleus cerebellum dataset. Overall, 95.7% of confident cell type
predictions are in agreement.
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Supplementary Figure 17: RCTD’s spatial map of cell type assignments in the somatosensory cortex.
Only cortical neuron cell types are shown. Scale bar 250 microns. We abbreviate intratelencephalic as
IT, pyramidal tract as PT, and corticothalamic as CT.
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Supplementary Figure 18: Predicted spatial localization of cell types by RCTD in Slide-seq somatosen-
sory cortex.

Predicted spatial locations of each cell type, with color representing predicted cell type proportion.
All scale bars are 250 microns. We abbreviate intratelencephalic as IT, pyramidal tract as PT, and
corticothalamic as CT.
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Supplementary Figure 19: Predicted spatial localization of cell types by RCTD in Slide-seq hippocam-
pus.

Predicted spatial locations of each cell type, with color representing predicted cell type proportion.
All scale bars are 250 microns.
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Supplementary Figure 20: Comparison of marker expression and predicted spatial localization of cell
types by RCTD in Slide-seq and Visium hippocampus

a) Slide-seq hippocampus. Left: expression (counts per 500) (represented by color) of marker
genes of each cell type. Right: predicted spatial locations of a cell type by RCTD, with color
representing predicted cell type proportion.

b) Visium hippocampus. Left: expression (counts per 500) (represented by color) of marker genes of
each cell type. Right: predicted spatial locations of a cell type by RCTD, with color representing
predicted cell type proportion.

All scale bars 250 microns.

52



0 1
Weight

Astrocyte CA1 CA3 Cajal_Retzius

Choroid Denate Endothelial_Stalk Endothelial_Tip

Entorihinal Ependymal Interneuron Microglia_Macrophages

Mural Neurogenesis Neuron.Slc17a6 Oligodendrocyte

Polydendrocyte

53



Supplementary Figure 21: Predicted spatial localization of cell types by RCTD in Visium hippocampus.

Predicted spatial locations of each cell type, with color representing predicted cell type proportion.
pixels were not constrained in the number of cell types present. All scale bars are 250 microns.
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Supplementary Figure 22: Comparison of spatial localization of cell types by RCTD in Slide-seq and
Visium hippocampus.

Predicted spatial locations of each cell type on Slide-seq (left) or Visium (right), with color representing
predicted cell type proportion. All scale bars are 250 microns.
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Supplementary Figure 23: In Situ Hybridization (ISH) of Gad1, an interneuron marker gene, from the
Allen Brain Atlas [10].

a) Scale bar 175 microns.

b) Scale bar 52 microns.
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Supplementary Figure 24: RCTD’s confident assignment of spatial clusters to 27 interneuron subtypes
(25/27 subtypes assigned) in the Slide-seq hippocampus. Split into four panels in order to clearly
display individual cell types. All scale bars 250 microns. Grey circles represent location of CA1, CA3,
and dentate gyrus excitatory neurons for reference.
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Supplementary Figure 25: Convergence Properties of RCTD.

a) Density plot (over 1, 000 randomly selected pixels) of L1 norm of di↵erence in weight vector
between RCTD with convergence parameter " = 10�3 and " = 10�6.

b) For several randomly chosen pixels, plot of granule proportion over several values of " (represented
in negative log10). As " becomes small, the estimated proportion does not change very much.

c) Density plot (over 50 randomly chosen initial values for each of 50 randomly selected pixels) of L1
norm of di↵erence in weight vector between RCTD initialized to a uniform random chosen initial
value and to the default initial value. We ran RCTD with convergence parameter " = 10�6.

All analysis occurs on the Slide-seq cerebellum.
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Supplementary Figure 26: Dendrogram of interneuron subtypes.

Dendrogram of 27 interneuron subtypes that appeared in the scRNA-seq hippocampus dataset, hier-
archically clustered with Ward clustering.
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Supplementary Figure 27: Trace plots showing convergence of �" hyperparameter during optimization
in RCTD.

a) Value of log-likelihood at each stochastic gradient descent (SGD) epoch optimizing �". Left:
Slide-seq cerebellum. Right: Slide-seq hippocampus.

b) Value of �" at each stochastic gradient descent (SGD) iteration optimizing �". Left: Slide-seq
cerebellum. Right: Slide-seq hippocampus.
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