OMTM, Volume 23

Supplemental information

Efficient and safe correction of hemophilia A by lentiviral

vector-transduced BOECs in an implantable device

Cristina Olgasi, Chiara Borsotti, Simone Merlin, Thorsten Bergmann, Patrick Bittorf, Adeolu Badi Adewoye, Nicholas Wragg, Kelcey Patterson, Andrea Calabria, Fabrizio Benedicenti, Alessia Cucci, Alessandra Borchiellini, Berardino Pollio, Eugenio Montini, Delfina M. Mazzuca, Martin Zierau, Alexandra Stolzing, Philip.M. Toleikis, Joris Braspenning, and Antonia Follenzi *Lentiviral vector generation.* Third generation self-inactivating LVs were produced as previously published.¹ Briefly, 293T cells were expanded and transiently transfected by the calcium phosphate precipitation method with four plasmids encoding for two core packaging constructs (pMDLg/pol and pRSV-Rev), the envelope construct (pMD.VSV.G), and the transfer vector construct (pVEC.hBDD-FVIII.LV or pVEC.GFP.LV). The cell supernatant was harvested, and LV particles were concentrated by ultracentrifugation. For GMP-grade production of LV, the KR2i TFF System® (Spectrum Lab) was used according to the manufacturer's protocol. The product is ISO 9001:2008 certified. The system consists of a digital peristaltic pump, man/machine interface with a graphical LCD display, digital pressure monitor, KR2i Easy-Load Pump head, Automatic Backpressure Valve, filter module stand, and a real-time data collection software. The Tangential Flow Filtration (TFF) System uses a constant turbulent flow along a porous membrane to eliminate impurities from the sample. The tangential flow along the membrane prevents the accumulation of material on the membrane surface, as opposed to the classical "dead-end filtration", and allows the maximum recovery with high purity of the product.

Analysis of lentiviral vector copy number. Genomic DNA from LV-VEC.hBDD-FVIII and LV-VEC.GFP transduced BOECs was isolated using ReliaPrep gDNA Tissue Miniprep System (Promega). Real-time qPCR was used to evaluate the integrated LV copy numbers per cell in the DNA. Primers used for the qPCR recognize the Wpre sequence: Forward TTGCTTCCCGTATGGCTTTC, Reverse AGCTGACAGGTGGTGGCAAT. Finally, TU/ml was calculated with the following formula: TU/ml = (LV copies/cell × No. of transduced cells) / LV volume (expressed in ml).

Evaluation of HIV-1 p24 in culture medium of transduced BOECs. The presence of HIV-1 p24 was evaluated in culture medium of transduced cells after several time points and passages. Samples were analyzed using Liaison® XL (Diasorin) in the Virology Laboratory of the Hospital (Ospedale Maggiore della Carità di Novara, Italy).

RNA isolation and RT-PCR. Total RNA was isolated by Isol-RNA Lysis Reagent (Invitrogen). One µg of RNA was treated with DNase I (Thermo Scientific), and cDNAs were obtained using the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific). All PCRs were performed with GoTaq® Flexi DNA Polymerase (Promega). Primers, annealing temperatures, and product sizes are listed below in Supplemental Table 1. PCR products were resolved in 2% agarose gels using 100 bp DNA ladder (Thermo Scientific).

In vitro tubulogenesis assay. Pure Matrigel (BD Bioscience) was added to each well of a 24-well tissue culture plate and allowed to solidify at 37°C for 1 h. A cell suspension containing 10^5 BOECs, resuspended in culture medium, was placed on top of the Matrigel. Plates were incubated at 37°C, 5% CO₂ and observed and imaged at 16 h to detect capillary-like structure formation using an inverted microscope Leica ICC50.

Flow cytometry analysis. BOECs were characterized by flow cytometric analysis using antibodies listed in Supplemental Table 2. For each sample, 1.5×10^5 live events were acquired either on the Attune NxT Acoustic Focusing Cytometer (ThermoFisher Scientific, Waltham, MA, USA) or on BD FACSCanto II. Data were analyzed by FCS Express 6 (DeNovo Software, Glendale, CA, USA) or using FlowJo Software V10.6 (FlowJo LLC).

*Histopathological staining and analysis of samples from Cell Pouch*TM. Sernova Cell PouchesTM with transplanted FVIII-BOECs were explanted from the mice, dissected into segments, fixed in 10% neutral buffered formalin, and paraffin-embedded. Sections (5-6 μ M-thick) were stained with hematoxylin and eosin (H&E) and Masson's Trichrome (Nucro-Technics, Scarborough, Ontario).

Immunostaining. For immunofluorescence (IF) staining, BOECs were cultured on plastic and fixed in PFA 4%, for nuclear staining permeabilized in 0,5% PBS-Triton X100 and then incubated with blocking buffer (BB, 5% goat serum, 1% BSA, 0.1% Triton X-100 in PBS) at room temperature (RT). Mouse tissues were fixed in 4% PFA, equilibrated in sucrose, and embedded in cryostat embedding medium (Bio-Optica). Cryostat sections of 4- μ m thickness were blocked in BB, incubated with primary antibody at RT, and then incubated in the dark at RT with the secondary antibody. The Cell PouchTM with transplanted FVIII-BOECs was explanted from each animal, dissected into segments, and immediately cryopreserved in Tissue-Tek[®] O.C.T. compound (VWR) using an isopentane (2-methylbutane)/dry ice slurry (-70°C), and stored at -80°C. Prior to staining, cryostat sections (5-6 μ m) were air-dried and pre-treated by immersion in cold acetone (-20°C), followed by washes in tris-buffered saline (TBS). Sections were blocked in TBS containing 10% goat serum and 1% BSA. A list of the antibodies used in these experiments is provided in Supplemental Table 3.

Histology analysis and preservation techniques of tissues. Following explanation, gross observations of Cell PouchesTM were made and images taken just prior to further histological processing. The 1 Plug Cell PouchesTM were then dissected into 3 segments (a – c) (see Figure 1). Segments 'a' and 'c' were processed for fixation in 10% neutral buffered formalin (Sernova Histology SOP-H900). Cell PouchesTM were washed from 10% formalin in 1X phosphate buffered saline (PBS) to 70% ethanol and subsequently processed for paraffin embedding. Segment 'b' was flash frozen for cryopreservation at the time of dissection using an isopentane/dry ice slurry and embedded in optimal cutting temperature compound (O.C.T.) (Sernova Histology SOP-H936). Cryopreserved or paraffin-embedded segments were then serially sectioned with a cryostat or microtome, respectively.

Preparation of slides and high-resolution images with description of tissue stains. Prior to staining or immunohistochemistry (IHC) analysis, sections were deparaffinized and rehydrated. Sections were stained with H&E for either formalin-fixed paraffin embedded (FFPE) or cryopreserved tissues. Masson's trichrome staining was performed on FFPE (Nucro-Technics, Scarborough, Ontario). For IHC staining, cryopreserved O.C.T. embedded tissues were dried, pre-treated with fixation and permeabilization with cold acetone (-20 °C, 10 min) and stained to detect microvessel

formation with von Willebrand factor (vWF). For human cell detection, sections were stained with a human leukocyte antigen (HLA-ABC) antibody. High resolution images and full slide scanning of the sections were imaged with an EVOSTM FL Auto 2 Imaging System (InvitrogenTM, ThermoFisher Scientific) for both light microscopy (H&E and Masson's Trichrome) and fluorescent IHC (vWF/HLA).

Analysis methodology. The following histological assessment was conducted on the serial sections of formalinfixed paraffin embedded (FFPE) segments taken within the chambers of each of the Cell PouchesTM from the animals across the doses and explanation time points: 1) stromal development, including type, distribution, and maturity; 2) vascularity, including neovascularization, established vessels, and their respective relationship to the chamber area; 3) inflammation, including type and relative abundance; and 4) hemorrhage. Masson's trichrome stains were assessed for collagen deposition as a marker of stromal maturity. Histological variables were assessed in a semi-quantitative fashion: - absent; + mild; ++ moderate; and +++ marked.

A histological assessment was conducted of the serial sections of frozen embedded segments taken within the chambers of each of the Cell PouchesTM from the animals across the doses and explanation time points: 1) cell transplant survival; 2) interactions and development post-transplant; 3) interactions of the surrounding pre-vascularized tissue of the Cell PouchTM; and 4) blood vessel formation relative to transplant cells. Histological variables were assessed in a semi-quantitative fashion: - negative (no staining); +/- equivocal staining; + mild positivity; ++ moderate positivity; +++ marked positivity; n/a image not available.

For histological assessment the slides and high-resolution images were sent to a certified pathologist for analysis. The assessment was conducted in a blinded-fashion, with no knowledge of the animal time points. The assessment was unblinded for writing the final report. Pathological definitions were as follows: Fibroblastic stroma – mesenchymal tissue consisting of fibroblastic cells and the extracellular matrix, including variable collagen produced by these cells; Collagen – usually a fibrillar protein within the extracellular matrix of connective tissue that provides mechanical strength to the tissues; Neovascularization – tiny, immature capillary-like vessels arising during new blood vessel formation and growth.

Name of donor	Donor	Mutation	ml of peripheral blood samples	No. of BOECs colonies
pHA1	Severe HA	c.6273G>A exon 21	25	30
pA	Severe HA	intron 22 inversion	22	60
pC	Severe HA	unknown	25	40
pD	Severe HA	intron 22 inversion	26	30

Α

Figure S 1. (**A**) List of hemophilic patients from whom BOECs were isolated. (B) Average number of colonies calculated on 10⁶ PBMCs cultured. Statistical analysis was performed using t-test, non-parametric, p-value 0.098. (C) Representative histograms for GFP evaluation by FACS analysis in healthy and HA BOECs transduced with an MOI of 20.

Figure S2. (**A**) qPCR analysis of integrated LV copy number/cell. (**B**) aPTT assay on supernatant of transduced and non-transduced healthy and HA BOECs (**C**) Antigen assay on supernatant of transduced and non-transduced healthy and HA BOECs. Data are expressed as mean \pm SD and are representative of four independent experiments. (**D**) HIV-1 p24 analysis on medium of non-transduced and transduced and healthy and HA BOECs at different MOIs.

Animal ID	Inflammation	Fibroblastic	Collagen	Neovascularization	Established	Hemorrhage
		stroma	deposition		vessels	
Cell Lot HA1,	4 weeks, 10×10 ⁶ (I	Dose 1)	Γ		I	
396-LEP	-	+++	+	++	*	-
398-REP		+++	++	++	++	-
Cell Lot HA1,	4 weeks, 5×10^6 (De	ose 2)	r		1	
397-LEP	-	+	+	+	*	-
397-BEP	-	+++	+++	++	++	-
Cell Lot HA1,	4 weeks, 2×10^6 (De	ose 3)			1	
398-BEP	-	+++	+	++	*	-
Cell Lot HA1,	8 weeks, 10×10 ⁶ (I	Dose 1)			1	
405-NEP	-	+++	+++	++	++	-
Cell Lot HA1,	8 weeks, 5×10^6 (De	ose 2)				
414-NEP	-	+++	+	++	+	-
415-BEP	-	+++	+++	++	+	-
Cell Lot HA1,	8 weeks, 2×10^6 (De	ose 3)				
402-LEP	-	+++	++	++	++	-
405-REP	-	++	+	++	+	-
413-LEP	=	++	+++	++	*	-
Cell Lot HA1,	12 weeks, 10×10^{6} ((Dose 1)				
399-NEP	-	+++	++	++	+	-
413-BEP	-	+++	+++	++	++	-
Cell Lot HA1,	12 weeks, 5×10 ⁶ (I	Dose 2)				
406-REP	-	+++	++	++	*	-
406-NEP	-	+++	++	++	+	-
411-BEP	-	+++	+++	+	++	-
Cell Lot HA1,	12 weeks, 2×10 ⁶ (I	Dose 3)				
396-REP	-	+++	+++	+	+	+
398-NEP	-	+++	++	++	+	-
399-BEP	-	+++	++	++	+	-
Cell Lot HAA,	4 weeks, 10×10^{6} (1	Dose 1)				
520-RREP	-	+++	++	++	++	-
Cell Lot HAA,	4 weeks, 5×10^6 (D	ose 2)				
523-LEP	-	+++	++	++	+	-
Cell Lot HAA,	8 weeks, 10×10^6 (1	Dose 1)				
520-NEP	-	+++	+++	++	+	-
524-LEP	-	+++	+++	++	++	-
Cell Lot HAA,	8 weeks, 5×10 ⁶ (D	ose 2)				
523-REP	-	+++	++	++	++	-
Cell Lot HAA,	12 weeks, 10×10 ⁶	(Dose 1)				
522-RREP	-	+++	++	++	++	-
524-BEP	-	+++	++	++	++	-
Controls (no c	ell transplant)		•		·	
4 weeks						
525-REP	-	++	++	++	+	-
8 weeks			•			·
521-RREP	-	+++	++	++	++	-
525-RREP	-	+++	+	++	++	-
12 weeks						
403-NEP	-	+++	+	++	+	-
521-BEP	-	+++	++	++	++	-
525-BEP	_	+++	++	++	++	-

Table S1. Histological features of NSG-HA Cell Pouches[™] transplanted with FVIII-BOECs (H&E and Trichrome).

*present immediately adjacent to Cell PouchTM

Animal ID	HLA-ABC (red)	vWF (green)
Cell Lot HA1, 4 weeks	10×10^{6} (Dose 1)	
396-LEP	+	+
398-REP	+	+
Cell Lot HA1, 4 weeks	$,5 \times 10^{6} (\text{Dose } 2)$	
397-REP	+	+
397-LEP	n/a	n/a
414-LEP	+/-	+
Cell Lot HA1, 4 weeks	$, 2 \times 10^{6}$ (Dose 3)	
398-BEP		++
Cell Lot HA1, 8 weeks	$, 10 \times 10^{6} (\text{Dose 1})$	
405-NEP	++	-
Cell Lot HA1, 8 weeks	5×10^{6} (Dose 2)	
414-NEP	+	n/a
415-BEP	+/-	+
Cell Lot HA1, 8 weeks	2×10^{6} (Dose 3)	
402-LEP	+/-	+
405-REP	+/-	+
413-LEP	n/a	n/a
Cell Lot HA1, 12 week	s, 10×10^6 (Dose 1)	
399-NEP	-	n/a
413-BEP	+/-	+
Cell Lot HA1, 12 week	s, 5×10^6 (Dose 2)	
406-REP	+	+
406-NEP	+/-	++
411-BEP	+/-	+
Cell Lot HA1, 12 week	s. 2×10^{6} (Dose 3)	•
396-REP	+/-	+
398-NEP	+	+
399-BEP	+/-	+
Cell Lot HAA. 4 weeks	10×10^6 (Dose 1)	•
520-RREP	++	++
Cell Lot HAA, 4 weeks	$5,5 \times 10^{6}$ (Dose 2)	
520-REP	++	+
523-LEP	+++	+++
Cell Lot HAA. 8 weeks	10×10^6 (Dose 1)	•
520-NEP	++	+
524-LEP	+	+
Cell Lot HAA. 8 weeks	5.5×10^6 (Dose 2)	•
523-REP	-	+++
Cell Lot HAA, 12 week	$(10 \times 10^6 \text{ (Dose 1)})$	
522-RREP	++	++
524-BEP	+++	+
Controls		· ·
4 weeks		
525-REP	<u> </u>	++
8 weeks		
521-RREP	-	N/A
525-RREP	-	+
12 weeks		· · · · · · · · · · · · · · · · · · ·
403-NEP	-	+
521-BEP	-	+
525-BEP	-	· · · · · · · · · · · · · · · · · · ·

Table S2. Immunofluorescence of NSG-HA Mouse Cell Pouches[™] transplanted with FVIII-BOECs.

- negative (no staining); +/- equivocal staining; + mild positivity; ++ moderate positivity; +++ marked positivity; N/A image not available

Table S3. Summary of sequencing reads and IS retrieved by group. Non redundant IS (column N.IS) retrieved from Healthy or HA Donors and transduced with VEC-FVIII or VEC-GFP were grouped. IS shared between different time points of the same transduction are counted once.

Group	Donor	Transduction	Vector	MOI	Timepoint	Sample ID	N.IS
Healthy.GFP	D45	4	VEC-GFP	10+10	P5	BOEC-008	1,862
					P5	BOEC-001	
					P8	BOEC-002	
					P11	BOEC-003	
	D45	1	VEC-FVIII	20	P15	BOEC-004	
					70 days HA Beads	BOEC-010	
Healthy, FVIII					70 days HA Beads	BOEC-013	5.864
,		2		30	P11	BOEC-005	-,
		3	VEC-FVIII	50	P11	BOEC-006	
	D2	5	VEC-EVIII	20	P5	BOEC-014	
	02	5	VEC-FVIII	20	P8	BOEC-043A	
	D3	6	VEC-FVIII	20	P5	BOEC-043B	
					P8	BOEC-043C	
	nUA1	0	VEC CED	20	P5	BOEC-020	
	рнят	0	VEC-GFP	20	P0 D12	BOEC-021	
HA.GEP				20000	P5	BOEC-022 BOEC-032	106.554
in a drift	pА	10	VEC-GFP	20	P8	BOEC-033	100,000
		10		20	P5	BOEC-040	
	pc	12	VEC-GFP	20	P8	BOEC-041	
					P5	BOEC-016	
					P8	BOEC-017	
HA.FVIII					P10	BOEC-018	
	pHA1	HA1 7	VEC-FVIII		P15	BOEC-019	
					P11 D11	BOEC-024	
					P11	BOEC-025	
				20	P11	HA1-VEC-UNILO	
					91 days HA Beads	BOEC-044A	
					91 days HA Beads	BOEC-044B	
					91 days HA Beads	BOEC-044C	
					2 weeks Cell Pouch	397-LEP	
					2 weeks Cell Pouch	398-LEP	
					4 weeks Cell Pouch	398-BEP	
					4 weeks Cell Pouch	414-LEP	
					8 weeks Cell Pouch	402-LEP	
					8 weeks Cell Pouch	415-BEP	
					8 weeks Cell Pouch	405-NEP	
					12 weeks Cell Pouch	398-NEP	
					12 weeks Cell Pouch	406-REP	
					12 weeks Cell Pouch	399-NEP	
					P5	BOEC-027	
					P8 D10	BOEC-028	28,069
					P10	HA-A-n14	
			9 VEC-FVIII		P15	BOEC-030	
					P12	BOEC-031	
	pА	9		20	112 days HA Beads	BOEC-045A	
		5		20	112 days HA Beads	BOEC-045B	
					112 days HA Beads	BOEC-045C	
					4 weeks Cell Pouch	520-REP	
					4 weeks Cell Pouch	520-KKEP	
					8 weeks Cell Pouch	520-LEP 520-NEP	
					12 weeks Cell Pouch	522-RREP	
					P5	BOEC-035	
					P8	BOEC-036	
					P8	HA-C-p8	
					P10	BOEC-037	
					P11	BOEC-039	
	pC	11	VEC-FVIII	20	P14	HA-C-p14	
					P15 D19	HA-C-019	
					112 days HA Beads	BOEC-046A	
					112 days HA Beads	BOEC-046B	
					112 days HA Beads	BOEC-046C	
	рD	13	VEC-FVIII	20	P16	HA-D-p16	
	TOTAL						142,349

Table S4. Gene Ontology (GO) enrichment for Molecular Function and Biological Process. IS coordinates from IS retrieved from HA.VEC-FVIII, HA.VEC-GFP, Healthy.VEC-FVIII, and Healthy.VEC-GFP were analyzed by G.R.E.A.T. enrichment discovery algorithms. GO Biological Process, Molecular Function and Cellular Component databases highlighted significantly overrepresented gene classes. The gene classes found in at least two groups are highlighted in pink.

	HA-FVIII	7	HA-GFP		Healthy-FVIII		Healthy-GFP	
	DNA repair	123.92	DNA repair 300.0	0 DNA repair		11:12	cellular response to DNA damage stimulus	16.37
	nuclear division	60.43	Golgi vesicle transport	0 Golgi vesicle t	ransport	19.74	DNA repair	15.95
	RNA splicing, via transesterification reactions	60.17	mRNA transport	1 DNA replicati	ou	15.58	DNA metabolic process	15.85
	DNA-templated transcription, termination	55.84	DNA replication 219.1	2 RNA 3'-end pi	rocessing	15.55	chromosome organization	10.20
	regulation of defense response to virus	\$5.05	DNA-templated transcription, termination 213.7	2 mRNA splicing	g, via spliceosome	14.37	DNA replication	8.56
	ribonucleoprotein complex export from nucleus	54.65	termination of RNA polymerase II transcription 211.2	9 ER to Golgi ve	sicle-mediated transport	14.37	Golgi organization	4.87
	mRNA export from nucleus	53.65	ribonucleoprotein complex export from nucleu 210.3	8 RNA splicing.	via transesterification reactions	14.28	double-strand break repair via homologous recombinati	0 4.74
	ribonucleoprotein complex localization	51.97	mRNA export from nucleus 203.6	A RNA localizati	on	13.80	negative regulation of DNA metabolic process	4.12
	termination of RNA polymerase II transcription	51.74	RNA localization 202.3	7 mRNA 3'-end	processing	13.54	hyaluronan catabolic process	3.60
GO Rinheiral Process	mRNA transport	\$1.13	ribonucleoprotein complex localization 201.3	7 Golgi organizi	ation	12.75		
	DNA replication	50.97	nuclear export	I mRNA transp	tro	12.21		
	DNA-templated transcription, elongation	48.37	cytoskeleton-dependent intracellular transport 190.6	1 establishmen	t of RNA localization	11.45		
	spindle organization	47.80	RNA 3 ⁻ end processing 187.2	7 RNA transpor		10.99		
	nuclear export	47.23	mRNA 3'-end processing	4 nucleobase-co	ontaining compound transport	10.97		
	double-strand break repair	46.42	establishment of RNA localization 178.6	4 DNA biosynth	letic process	10.80		
	RNA localization	45.32	double-strand break repair	3 nuclear expor	*	10.29		
	transcription elongation from RNA polymerase II promoter	44.66	RNA transport 170.6	5 retrograde ve	sicle-mediated transport, Golgi to ER	191		
	mRNA 3'-end processing	44.20	transport along microtubule 170.0	0 DNA integrity	checkpoint	7.15		
	RNA 3'-end processing	43.29	mRNA catabolic process	7 regulation of	nucleobase-containing compound transpo	66'9		
	cytoskeleton-dependent intracellular transport	38.25	ER to Golgi vesicle-mediated transport 168.6	6 DNA-depende	ent DNA replication	6.96		
	spliceosomal complex	43.19	chromosomal region	0 spliceosomal	complex	12.88	ribonucleoprotein complex	13.38
	ribonucleoprotein granule	39.97	condensed chromosome	5 protein kinas	e complex	7.74	intracellular ribonucleoprotein complex	13.07
	mRNA cleavage and polyadenylation specificity factor comple	33.67	chromosome, centromeric region 194.7	2 mitotic spindl		6.89	protein kinase complex	5.85
	mitotic spindle	32.31	ribonucleoprotein granule 194.2	8 actomyosin		6.80	mitotic spindle pole	4.99
	catalytic step 2 spliceosome	31.21	spliceosomal complex	4 cyclin-depend	lent protein kinase holoenzyme complex	6.18	serine/threonine protein kinase complex	4.77
	mRNA cleavage factor complex	29.88	kinetochore 156.8	S serine/threor	ine protein kinase complex	5.82	actomyosin	4.74
	P-body	27.62	cytoplasmic ribonucleoprotein eranule	a cis-Golei netw	ork.	695	checkpoint clamp complex	4.18
	transcription eloneation factor complex	21.05	mitotic mindle	0 tetherine con	nolex	5.26		
	cutoblacmic stress granule	20.50	condensed chromosome, centromeric region 127.8	9 clathrin adap	tor complex	465		
	SWI/SME superfamily-type complex	20.27	arotein kinase comuler	6 nuclear realis	eme	3.49		
GO Cellular Component	AB-tuna mambrana cost adantor comular	18.46	coindle note 134 0	a realizame		242		
	Articles institutate toat eventur complex	10.41	series (threader and the series from a series	a minute the te		04.6		
	cis-doigi network	16.41	serine/threonine protein kinase complex	microtubule	Dua	7.10		
	City BINC 51	16.66						
	microtubule end	19.00	small nuclear ribonucleoprotein complex					
	vesicle coat	13.52	spliceosomal snRNP complex					
	mitochondrial nucleoid	11.34	Golgi-associated vesicle					
	exon-exon junction complex	10.00	exon-exon junction complex					
	Interation conclusion	61.6	AB-tune membrane cost adaptor complex					
	integrator complex	11.0	Ar-type memorane coat adaptor complex				and the other to the distance	404
	cadnerin binoing	38.73	caonerin binding	cadherin bind		20.74	cadherin binding	7876
				traumono and		0.40		
	UNA REIGASE ACTIVITY	30.11	protein transporter activity	nencase activ	nty militate biodiate	0/16	ATD deserves DNA half-see astaits	34.6
	and an analysis brown brown	10000	untervision film accession bindian	All advantage			ALT USPENDEN DIAM INTRASE ALITY	3 00
	ubiaultin bindine	27.16	ubiouitin bindine	1 DNA-directed	DNA polymerace activity	223		
	ATP-dependent helicate activity	23.92	DNA helicase activity	1 4 iron. 4 sulfu	r cluster bindine	4.41		
	translation factor activity. RNA binding	22.80	protein N-terminus binding	0				
	lysine N-methyltransferase activity	18.89	ATP-dependent helicase activity 94.6	4				
CO Malandar Contraction	damaged DNA binding	15.69	unfolded protein binding					
OU MOIECUIAL FUNCTION	histone deacetylase activity	15.66	polyubiquitin binding	•				
	protein deacetylase activity	15.31	translation initiation factor activity 86.0	6				
	tRNA binding	13.03	deoxyribonuclease activity 85.3	~				
	transforming growth factor beta binding	11.43	ATP-dependent DNA helicase activity 73.6	9				
	thioesterase binding	11.19	translation factor activity, RNA binding 72.8	•				
	type I transforming growth factor beta receptor binding	17.6	DNA polymerase activity					
	o o una nemase acumity suclia-devendant protein cerina/threaning kinsee preluitu	5 50	cystementype endopprouse activity					
	cvelin-denendent protein kinste setivity	8.23	hittone dearetvlate activity					
	RNA polymerase II carboxy-terminal domain kinase activity	5.52	protein deacetylase activity 51.7					

Table S5. Common Insertion site	e (CIS) analysis in 2 heal	lthy BOECs, and 4 HA BOECs.
---------------------------------	----------------------------	-----------------------------

Subject ID	Transduction	Vector	MOI	Gene Name	Chr.	Integration locus	N IS per Gene	average transcript length	integration frequency with tolerance	tdist fdr
dD3	6	VEC-FVIII	20	SPG7	16	89,585,048	5	39,358	0.036	0.078
			SZT2	1	43,952,080	13	64,363	0.079	0.006	
dD45 1		20	MROH1	8	145,269,797	10	89,530	0.053	0.054	
dD45		VEC-FVIII	20	TRAF2	9	139,825,912	6	40,103	0.043	0.114
				CPSF1	8	145,629,805	5	16,288	0.043	0.114
dD45		VEC CED	10+10	NPLOC4	17	79,591,992	10	36,856	0.073	0.005
0045	4	VEC-GFP	10+10	TRAF2	9	139,825,791	8	40,103	0.057	0.020
-	10	VEC CER	20	SZT2	1	43,955,802	117	64,363	0.712	0.510
рА	10 VEC-GFP	C-GFP 20	NPLOC4	17	79,602,479	106	36,856	0.775	0.510	
-			20	NPLOC4	17	79,600,522	7	36,856	0.051	0.067
рд	, ,	VEC-FVIII	20	PMPCA	9	139,315,510	5	13,189	0.044	0.108
pC 11	VEC-FVIII	20	SZT2	1	43,955,797	49	64,363	0.298	0.039	
			MROH1	8	145,299,016	46	89,530	0.243	0.097	
			NPLOC4	17	79,600,496	45	36,856	0.329	0.032	
			NSD1	5	176,707,259	10	166,759	0.037	0.100	
			ZGPAT	20	62,354,996	6	28,232	0.047	0.047	
pD	13	VEC-FVIII	1 20	NONO	x	70,517,315	5	17,977	0.042	0.074
				MAN1B1	9	139,997,714	4	22,261	0.033	0.139
				PTBP1	19	808,672	4	14,936	0.035	0.122
0441	7		20	PHRF1	11	599,765	8	35,777	0.059	0.077
puar	· ·	VEC-FVIII	20	ZNF251	8	145,983,504	8	34,677	0.059	0.077
				MROH1	8	145,292,887	121	89,530	0.638	0.337
0441	0	VEC GED	20	SZT2	1	43,954,990	112	64,363	0.681	0.337
pnar	°	VEC-GPP	20	NPLOC4	17	79,599,815	94	36,856	0.687	0.337
			ZNF251	8	145,987,938	77	34,677	0.572	0.361	

Gene	Synthetic oligonucleotide	Expected band	
ACTR	F: 5'-GAGAAAATCTGGCACCACACC-3'	412 hr	
ACIB	R: 5'-CGACGTAGCACAGCTTCTC-3'	412 op	
KDB	F: 5'- TGCAAGGACCAAGGAGACTATGT -3'	450 hm	
KDR	R: 5'- TAGGATGATGACAAGAAGTAGCC -3'	439 bp	
TEV	F: 5'-AGACCAGCACGTTGATGTGA-3'	127 hp	
IEK	R: 5'-TGGGTTGCTTGACCCTATGT-3'	127 bp	
CD45	F: 5'-CAGCCCAAAGTGTGTGAGAA-3'	162 hp	
CDH5	R: 5'-TGTGATGTTGGCCGTGTTAT-3'	102 Up	
DECAMI	F: 5'-AGGTCAGCAGCATCGTGGTCAACAT-3'	460 hp	
PECAMI	R: 5'-GTGGGGTTGTCTTTGAATACCGCAG-3'	469 bp	
VIVE	F: 5'- TGGAGTACCCCTTCAGCGAG -3'	262 hm	
VWF	R: 5'- GTTGGCATTAGGGCCCACTC -3'	203 bp	
EQ A2 A2 domain	F: 5'- TGCCACAACTCAGACTTTCG-3'	194 hm	
F8 A2-A5 domain	R: 5'- GATGGCGTTTCAAGACTGGT -3'	184 bp	
15127	F: 5'- TCTGGCTCTGCCGTAGTTTT-3'	243 bp	
IF127	R: 5'- GAACTTGGTCAATCCGGAGA -3'	243 bp	
CDH11	F: 5'- TGGCAGCAAGTATCCAATGG-3'	200 hr	
CDHII	R: 5'- TTTGGTTACGTGGTAGGCAC-3'	200 бр	
NDCAM	F: 5'- TCCAGAAGGCAATGCAAGTA-3'	117 h	
NRCAM	R: 5'- AGCATTCCATCTTCCTTTGC -3'	117 бр	
COLANI	F: 5'- GGCCTATGAGTCCTGGGTAC -3'	14C hr	
COL4AI	R: 5'- TGGATTTCAGGGGATGCCAG -3'	140 bp	
ENC	F: 5'- CCACTGCACTTGGCCTACA -3'	107 h.	
ENG	R: 5'- GCCCACTCAAGGATCTGG -3'	107 бр	
CATA 2	F: 5'- GAACCGGCCCCTCATTAAG-3'	216 hr	
GATAS	R: 5'- CTTGCATATCTGACCTATTCTAGCGTG-3'	216 bp	
ITC 45	F: 5'- TGCAGTGTGAGGCTGTGTACA -3'	00 h -	
IIGAS	R: 5'- GTGGCCACCTGACGCTCT -3'	88 bp	
	F: 5'- CATATCAAGTTAATGGAGTC-3'	2(0.1	
EIS-I	R: 5'- TGTTTGATAGCAAAGTAGTC -3'	208 bp	
	F: 5'- GTGGAGTGAGCAACAGGTAT-3'	202.1	
EIS-2	R: 5'- CCAAAACCTAATGTATTGCTG -3'	282 bp	
	F: 5'- TCTGGCTCTGCCGTAGTTTT-3'	200.1	
wpre/ aiver	R: 5'- GGCTAAGATCTACAGCTGCCTTG-3'	200 bp	

 Table S6. Primers used in RT-PCR and Real Time.

Table S7. Antibodies used for FACS staining.

Antibody	Reactivity	Manufacturer	Format
CD45	Human	clone 32D12, Miltenyi Biotec	PE
Isotype mouse IgG1		ThermoFisher Scientific	PE
CD34	Human	clone 4H11[APG], Invitrogen	PE
Isotype mouse IgG1		ThermoFisher Scientific	PE
Anti -mouse	Mouse	Thermo Scientific	488
FVIII	Human	Clone GMA- 8015, Green Mountain	Not conjugated

KDR	Human	clone ES8-20E6, Miltenyi Biotec	PE
Isotype mouse IgG1		ThermoFisher Scientific	PE
Tie-2	Human	clone REA198, Miltenyi Biotec	PE
REA Control Antibody, human IgG1, REAfinity (REA293)		Miltenyi Biotec	PE
CD31	Human	clone MEM-05; Invitrogen	APC
Isotype mouse IgG1		ThermoFisher Scientific	APC
VE-cadherin	Human	clone REA199, Miltenyi Biotec	PE
REA Control Antibody, human IgG1, REAfinity (REA293)		Miltenyi Biotec	PE

 Table S8. Antibodies used for immunofluorescence staining.

Primary antibodies	Host Reactivity		Manufacturer	Dilution
			Clone GMA-8015,	
FVIII	Mouse	Human	Green Mountain	1:100
CD31	Mouse Human		BD Bioscience	1:100
			Novus Biologicals, clone	
HLA-ABC	Rat	Human	YTH862.2	1:150
von Willebrand Factor	Rabbit H, M, R		Millipore	1:100
GFP	Rabbit		Life Technologies	1:300
Secondary antibodies	Fle	uorophores	Manufacturer	Dilution
Goat anti-Rabbit	AlexaF	Fluor 488 or 546	Life Technologies	1:500/1:1000
Goat anti-Rat	Ale	exaFluor 594		1:500
Goat anti-Mouse	AlexaF	Fluor 488 or 546	Life Technologies	1:500

Supplemental References

 Follenzi, A., and Naldini, L. (2002). Generation of HIV- 1 derived lentiviral vectors. Methods Enzymol 346, 454–465.