1 Online supplement

2	Chronic airflow obstruction and ambient	particulate air pollution
2	chi onic annow obstruction and ambient	particulate an pollation

- 3
- 4 André F.S. Amaral^{1*}, Peter Burney^{1*}, Jaymini Patel¹, Cosetta Minelli¹, Filip Mejza², David Mannino³,
- 5 Terence Seemungal⁴, Mahesh PA⁵, Li Cher Loh⁶, Christer Janson⁷, Sanjay Juvekar⁸, Meriam
- 6 Denguezli⁹, Imed Harrabi¹⁰, Emiel F.M. Wouters¹¹, Hamid Chersaki¹², Kevin Mortimer¹³, Rain Jögi¹⁴,
- 7 Eric Bateman¹⁵, Elaine Fuertes¹, Mohamed Al Ghobain¹⁶, Wan Tan¹⁷, Daniel Obaseki¹⁸, Asma El
- 8 Sony¹⁹, Michael Studnicka²⁰, Althea Aquart-Stewart²¹, Parvaiz Koul²², Hervé Lawin²³, Asaad Ahmed
- 9 Nafees²⁴, Olayemi Awopeju¹⁸, Gregory Erhabor¹⁸, Thorarinn Gislason^{25,26}, Tobias Welte²⁷, Amund
- 10 Gulsvik²⁸, Rune Nielsen^{28,29}, Louisa Gnatiuc³⁰, Ali Koçabas³¹, Guy Marks^{32,33}, Talant Sooronbaev³⁴,
- 11 Bertrand Hugo Mbatchou Ngahane³⁵, Cristina Bárbara³⁶, A Sonia Buist³⁷
- 12 *Co-first authors
- 13
- 14 1 National Heart and Lung Institute, Imperial College London, London, UK
- 15 2 Centre for Evidence Based Medicine, 2nd Department of Internal Medicine, Jagiellonian University
- 16 Medical College, Kraków, Poland
- 17 3 University of Kentucky, Lexington, KY, USA
- 18 4 Faculty of Medical Sciences, University of West Indies, St Augustine, Trinidad and Tobago
- 19 5 Department of Respiratory Medicine, JSS Medical College, Mysore, India
- 20 6 Department of Medicine, RCSI & UCD Malaysia Campus, Penang, Malaysia
- 21 7 Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University,
- 22 Uppsala, Sweden
- 23 8 Vadu Rural Health Program (VRHP), KEM Hospital Research Centre, Pune, India
- 24 9 Laboratoire de Physiologie et des Explorations Fonctionnelles, Faculté de Médecine de Sousse,
- 25 Université de Sousse, Sousse, Tunisia
- 26 10 Faculté de Médecine, Université de Sousse, Sousse, Tunisia

- 27 11 Maastricht University Medical Center, Maastricht, The Netherlands
- 28 12 Faculté de Médecine de Annaba, Service de Epidémiologie et Médecine Préventive, El Hadjar,
- 29 Algeria
- 30 13 Liverpool School of Tropical Medicine, Liverpool, UK
- 31 14 Lung Clinic, Tartu University Hospital, Tartu, Estonia
- 32 15 University of Cape Town Lung Institute, Cape Town, South Africa
- 33 16 Department of Medicine, King Saud bin Abdulaziz University for Health Sciences & King Abdullah
- 34 International Medical Research Centre, Riyadh, Saudi Arabia
- 35 17 Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
- 36 18 Obafemi Awolowo University, Ile-Ife, Nigeria
- 37 19 The Epidemiological Laboratory, Khartoum, Sudan
- 38 20 Department of Pneumology, Paracelsus Medical University, Salzburg, Austria
- 39 21 University of the West Indies, Kingston, Jamaica
- 40 22 Sher-i-Kashmir Institute of Medical Sciences, Srinagar, J&K, India
- 41 23 Occupational and Environmental Health, University of Abomey Calavi, Cotonou, Benin
- 42 24 Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
- 43 25 Department of Sleep, Landspítali The National University Hospital of Iceland, Reykjavik, Iceland
- 44 26 University of Iceland, Faculty of Medicine, Reykjavik, Iceland
- 45 27 Hannover Medical School, Hannover, Germany
- 46 28 Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
- 47 29 Department of Clinical Science, University of Bergen, Bergen, Norway
- 48 30 Nuffield Department of Population Health, Oxford University, Oxford, UK
- 49 31 Department of Chest Disease. Cukurova University School of Medicine. Adana, Turkey
- 50 32 Woolcock Institute of Medical Research, Sydney, NSW, Australia
- 51 33 South Western Sydney Clinical School, University of New South Wales, Sydney, Australia

52	34 Department of Respiratory Medicine, National Center for Cardiology and Internal Medicine,
53	Bishkek, Kyrgyzstan
54	35 Douala General Hospital, Douala, Cameroon
55	36 Institute of Environmental Health, Lisbon Medical School, Lisbon University, Lisbon, Portugal
56	37 Oregon Health & Science University, Portland, OR, USA
57	
58	Corresponding author:
59	Andre F.S. Amaral
60	National Heart and Lung Institute, Imperial College London
61	London SW3 6LR, UK
62	a.amaral@imperial.ac.uk
63	
64	
65	Table of content
66	BOLD study details page 4
67	PM _{2.5} concentrations page 4
68	Statistical analysis page 5
69	References page 5
70	Table S1 page 7
71	Table S2
72	Table S3
73	Table S4 page 8

74 BOLD study details

75	The BOLD study has been described in detail elsewhere ¹ . Briefly, representative samples of the
76	general population over the age of 40 were drawn from a sample of sites taken from around the
77	world. These were drawn so as to represent most of the regions defined by the Global Burden of
78	Disease (the exceptions were Latin America which had a separate study, the high-income countries
79	of Asia, and Oceania) with a bias towards larger regions such as South Asia. All sites received
80	approval from their local ethics committee, and participants provided informed consent. Spirometry
81	was conducted before and after a bronchodilator (200 μg Salbutamol inhaled via a spacer) using a
82	forced manoeuvre and an EasyOne spirometer (ndd Medizintechnik AG, Zurich, Switzerland). All
83	spirometry data were reviewed for quality control during the study in either Salt Lake City or
84	London. CAO was defined as a post-bronchodilator ratio of the forced expiratory volume in the first
85	second (FEV ₁) to the forced vital capacity (FVC), less than the lower limit of normal, which was
86	determined using the equations for white Americans in the NHANES III study ² . Information from
87	participants on several risk factors, including whether they had ever smoked, was collected using a
88	standardised questionnaire.
89	
90	PM _{2.5} concentrations
91	The concentrations of annual mean PM _{2.5} were downloaded from a freely available resource on the

The concentrations of annual mean PM_{2.5} were downloaded from a freely available resource on the Atmospheric Composition Analysis Group website.³ Briefly, global ground-level PM_{2.5} concentrations were estimated by combining aerosol optical depth data from satellites with simulation-based data from a chemical transport model. These were then calibrated to ground-based observations of PM_{2.5} using a geographically weighted regression, which allows the estimation of local levels.⁴ We used data at a spatial resolution of 0.01° latitude by 0.01° longitude.

98

99

100 Statistical analysis

- 101 The unit of our ecological analysis was the site, and the analysis was performed separately for males
- 102 and females. The counts of the male and female cases of CAO in each site were regressed separately
- 103 in negative binomial models, with the local sample size as an offset. The analyses included the
- 104 prevalence of male, or female, smoking in the site as measured from the BOLD sample, the GNI and
- the level of PM_{2.5} (all composition) for the site. Both GNI and PM_{2.5} were log transformed as there is
- 106 evidence in each case of a non-linear relationship with chronic lung disease^{5,6}. We conducted a series
- 107 of sensitivity analyses in which we re-run the main analysis: 1) using PM_{2.5} (all composition)
- 108 estimates for a 10-km radius buffer; and 2) using dust and sea-salt removed PM_{2.5} instead of all
- 109 composition PM_{2.5}.
- 110

111 References

- Buist AS, Vollmer WM, Sullivan SD, et al. The Burden of Obstructive Lung Disease Initiative
 (BOLD): rationale and design. *Copd* 2005; **2**(2): 277-83.
- 114 2. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the
- 115 general U.S. population. American journal of respiratory and critical care medicine 1999; 159(1): 179-
- 116 87.
- 117 3. Atmospheric Composition Analysis Group. Surface PM2.5.
- 118 <u>http://fizz.phys.dal.ca/~atmos/martin/?page_id=140</u> (accessed 18 February 2020).
- 119 4. van Donkelaar A, Martin RV, Brauer M, et al. Global Estimates of Fine Particulate Matter
- 120 using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and
- 121 Monitors. *Environ Sci Technol* 2016; **50**(7): 3762-72.
- 122 5. Burney P, Jithoo A, Kato B, et al. Chronic obstructive pulmonary disease mortality and
- prevalence: the associations with smoking and poverty--a BOLD analysis. *Thorax* 2014; **69**(5): 465-73.

124 6. Burnett RT, Pope CA, Ezzati M, et al. An integrated risk function for estimating the global

- 125 burden of disease attributable to ambient fine particulate matter exposure. *Environmental health*
- 126 *perspectives* 2014; **122**(4): 397-403.

128	Table S1 . Sample size and prevalence of chronic airflow obstruction (CAO) in the population and in
129	never smokers by site and sex.

		Male	S		Females	
Site	N	CAO %	CAO % in	N	CAO %	CAO % in
			never			never
			smokers			smokers
Albania (Tirana)	467	12.8	2.3	472	4.2	3.8
Algeria (Annaba)	442	9.3	3.8	448	4.5	4.5
Australia (Sydney)	265	7.9	4.8	276	13.8	9.0
Austria (Salzburg)	685	12.8	7.8	573	19.4	12.9
Benin (Sèmè-Kpodji)	302	6.6	6.6	396	8.1	8.1
Cameroon (Limbe)	206	6.3	4.5	138	4.3	4.5
Canada (Vancouver)	344	12.8	6.8	483	12.0	7.1
China (Guangzhou)	236	9.9	2.3	237	6.3	4.5
England (London)	323	16.1	6.6	354	15.8	7.9
Estonia (Tartu)	309	8.7	1.8	305	5.2	5.3
Germany (Hannover)	349	10.0	3.2	334	7.8	5.4
Iceland (Reykjavik)	403	8.9	5.1	354	13.3	8.8
India (Kashmir)	416	17.3	4.1	344	15.4	13.5
India (Mumbai)	275	6.2	2.6	165	7.9	7.9
India (Mysore)	258	11.2	9.0	348	5.5	5.2
India (Pune)	502	5.8	5.0	343	6.7	6.7
Jamaica	243	10.3	3.4	335	7.5	6.6
Kyrgyzstan (Chui)	280	13.9	9.7	611	7.9	7.1
Kyrgyzstan (Naryn)	328	11.0	8.5	531	4.7	4.4
Malawi (Blantyre)	160	6.9	4.5	242	9.1	9.3
Malawi (Chikwawa)	222	18.0	12.3	212	9.4	8.0
Malaysia (Penang)	340	4.4	2.3	323	3.4	3.4
Morocco (Fes)	354	11.9	8.3	414	7.5	7.6
Netherlands (Maastricht)	300	19.0	3.8	290	17.2	10.4
Nigeria (Ile-Ife)	346	7.5	7.2	538	6.7	6.4
Norway (Bergen)	324	14.8	9.6	334	10.2	5.0
Pakistan (Karachi)	268	14.6	10.0	339	6.5	6.7
Philippines (Manila)	378	13.0	6.6	515	5.2	4.5
Philippines (Nampicuan-Talugtug)	356	16.3	8.5	366	12.3	9.4
Poland (Krakow)	266	15.0	3.6	260	12.3	13.7
Portugal (Lisbon)	331	13.9	9.4	380	9.5	8.1
Saudi Arabia (Riyadh)	375	3.5	2.6	325	2.8	2.8
South Africa (Uitsig-Ravensmead)	315	23.8	2.0	532	16.2	6.7
Sri Lanka	460	11.7	8.1	568	3.9	3.9
Sudan (Gezeira)	301	5.6	5.1	283	6.0	6.1
Sudan (Khartoum)	307	10.4	9.5	210	10.0	10.3
Sweden (Uppsala)	283	10.2	5.6	264	8.3	6.4
Trinidad & Tobago	437	6.6	4.2	660	6.7	6.4
Tunisia (Sousse)	309	8.4	8.1	352	2.0	1.6
Turkey (Adana)	389	19.8	6.8	417	9.1	8.3
USA (Lexington, KY)	206	13.6	2.3	302	16.2	5.8

130 N, sample size.

131

132 **Table S2**. Sensitivity analysis – as for table 3, with estimates of PM_{2.5} for a 10-km radius buffer.

	Males			Females		
Variable	Rate	95%CI	Р	Rate	95%CI	Р
	ratio			ratio		
Smoking	4.17	2.39-7.29	< 0.001	11.1	5.66-21.8	< 0.001
Log(GNI)	0.90	0.81-0.99	0.048	0.83	0.73-0.94	0.003
Log(PM _{2.5})	0.93	0.79-1.09	0.37	1.05	0.89-1.25	0.55

133 GNI, gross national income per capita; PM_{2.5}, particulate matter <2.5µm aerodynamic diameter.

134

135

Table S3. Sensitivity analysis – as for table 3, with estimates of PM_{2.5} with dust and sea-salt removed.

	Males			Females		
Variable	Rate	95%CI	Р	Rate	95%CI	Р
	ratio			ratio		
Smoking	4.38	2.51-7.62	< 0.001	10.4	5.52-19.6	< 0.001
Log(GNI)	0.92	0.83-1.02	0.1	0.83	0.73-0.94	0.003
Log(PM _{2.5})	1.04	0.92-1.18	0.48	1.03	0.92-1.16	0.59

137 GNI, gross national income per capita; PM_{2.5}, particulate matter <2.5µm aerodynamic diameter.

138

139

140 **Table S4.** Sensitivity analysis – as for table 3, with estimates of PM_{2.5} with dust and sea-salt removed

141 for a 10-km radius buffer.

	Males			Females		
Variable	Rate	95%CI	Р	Rate	95%CI	Р
	ratio			ratio		
Smoking	4.41	2.53-7.68	< 0.001	10.3	5.47-19.4	< 0.001
Log(GNI)	0.92	0.84-1.02	0.11	0.83	0.73-0.94	0.004
Log(PM _{2.5})	1.06	0.93-1.19	0.39	1.03	0.92-1.16	0.60

142 GNI, gross national income per capita; PM_{2.5}, particulate matter <2.5μm aerodynamic diameter.

143

144