1	Online Supplementary data to:
2	
3	Loss of Immune Homeostasis in Patients with Idiopathic Pulmonary Arterial
4	Hypertension
5	
6	Peter Heukels et al
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	

32 online supplementary methods

33

34 Human flow cytometry procedures

Blood samples were collected in ethylenediaminetetraacetic acid (EDTA) tubes (BD Vacutainer K2E).
 Peripheral blood mononuclear cells (PBMCs) and plasma were obtained, processed and stored
 according to standard protocols.¹

38 PBMCs were stained for extra- and intracellular markers (online supplementary table 1). To 39 prevent non-specific labeling Fc-block (Anti-Mouse CD16/CD32 Fc-Block) was used. Fixable Viability 40 Dye eFluor 506 (eBiosciences) was applied as a live-dead marker. Flow cytometry procedures for B-cell staining have been described previously². Cells for the T-cell staining were first incubated in MACS 41 42 buffer (0.5% BSA + 2mM EDTA in PBS) with fluorescent antibodies against chemokine receptors for 60 43 minutes at 4°C. A second extracellular incubation step was performed for antibodies with Brilliant 44 Violet (BV) conjugates in Brilliant Stain-buffer (BD Biosciences, cat#563794). After fixation and 45 permeabilization, cells were incubated with a forkhead box P3 (FOXP3)-specific antibody in permeabilization buffer for 60 minutes at 4°C. Live cells (>200,000) were acquired and data were 46 47 analyzed by FACS Flow-Jo software.

48

49 mouse experiments and procedures

50

51 Genotyping and inducing pulmonary injury

52 CD19-hBtk³ on a mixed background (Fvb × 129/Sv × C57BL/GJ) were backcrossed on C57BL/GJ for > 10 53 generations. Genotyping was performed by polymerase chain reaction (PCR), as previously described.⁴ 54 Wild-type mice used for the experiments are non-transgenic littermates. Mice were bred and kept at 55 specified pathogen-free conditions in the Erasmus MC experimental animal facility. All experimental 56 protocols have been reviewed and approved by the Erasmus MC Committee of animal experiments. 57 To induce pulmonary injury, bleomycin-hydrochloride was administered intra tracheally in 8-10 week

- 58 old mice (0,04U/80 μl saline) or saline as a control as previously described.⁵ Mice were sacrificed 21
- 59 days and 70 days after bleomycin exposure.
- 60

61 Right ventricular systolic pressure (RVSP) and lung tissue elastance

62 Mice were anaesthetized with isoflurane and right ventricular pressures were recorded using right

63 heart catheterizations (mikro-tip catheter 1,4F, Millar instruments, model SPR-671) and analyzed with

- 64 WinDaq Data acquisition software. Lung tissue elastance was measured with a flexiVent FX system as
- 65 previously described.⁶ Data was analyzed with flexiWare 7 software.

66

67 Flow cytometric procedures

Preparations of single-cell suspensions of MLN using standard procedures. Monoclonal antibodies are listed in **online supplementary table 1**. For intracellular staining, cells were fixed in Cytofix/Cytoperm and permeabilized, and then stained in Perm/Wash buffer (BD Bioscience). All measurements were performed on a LSRII flow cytometer (BD Bioscience), and results were analyzed using FlowJo software.

72

73 Immunohistochemistry

74 Immunohistochemical analyses and staining were performed according to standard procedures.⁷ Used 75 antibodies are listed in online supplementary table 1. After staining, tissue sections were embedded 76 in Kaiser glycerol gelatin (Merck). Pulmonary vascular remodeling was studied by quantification of 77 intraacinar pulmonary vessels containing a-smooth muscle actin (α -SMA)-positive cells in their walls. 78 Vessels between and 15 and 50um external diameter and located in normal lung tissue were assessed. 79 To assess the presence of self-reactive antigens in serum of CD19-hBTK and control mice, serum was 80 stored and frozen until further use. Serum was subjected to cryo-sections of lungs of RAG^{-/-} mice 81 (lacking mature B and T lymphocytes). Detection Antibodies against IgG and IgM are listed in online

- 82 **supplementary table 1.** Micrographs were made using a DM LB light microscope (Leica), a DFC500
- 83 camera (Leica), and Imaging for Windows Version 1.0 software (Kodak).
- 84

85 The Fulton index

Hearts were excised and dissected to determine the ratio of right ventricular to left ventricular and
septal weight [RV/(LV + S)].

88

89 Hydroxy proline assay

90 Whole left lung homogenates were analyzed by quantitative hydroxyproline assay. The left lung

- 91 homogenate was hydrolyzed in 6M HCl at 95°C for 20 hours. Hydroxyproline was oxidized with
- 92 chloramine t, and visualized with Erlich's reagent (4-DMAB, isopropanol and perchloric acid)
- 93 measured at a microplate reader at 560nm.
- 94

95 HEp-2

- 96 To assess the presence of self-reactive antigens in serum of CD19-hBTK and control mice, serum was
- stored and frozen until further use. Serum samples (1/50 diluted) were incubated for 1 hour on
- 98 Kallestad human epithelial cell (HEp-2) slides (Bio-Rad Laboratories). As detection antibodies Ig
- 99 F(ab')2 fragments were applied to the HEp2 slides (online supplementary table 1). The fluorescence

100	intensity of HEp2 slides was evaluated using a LSM 311 META confocal fluorescence microscope					
101	(Zeiss) and LSM Image Browser Version 4.2.0.12 software (Zeiss)					
102						
102						
103	α-SMA	area to total artery area				
104	Percen	tage $lpha$ -SMA area to total artery area was evaluated using NanoZoomer 2.0-HT slide scanner				
105	(Hamar	natsu) and NDP.view 2.7.25 (Hamamatsu). Photos were analysed using Adobe Photoshop				
106	2021 in	an automated and thus independent manner.				
107						
108	Total fi	hrosis score				
109	A nath	plogist (blinded for treatment) scored the Ashcroft scale (grade $1-8)^8$ and the percentage of				
110	lung in	volvement (grade 1-5: 1 = 0-10% to 6 = 75-100% of total lung involvement). The Total Eibrosis				
111	score (res) is the product of Ashcroft scale and lung involvement and was previously described. ⁹				
112	50010 (
113 114 115	1.	Heukels P, van Hulst JAC, van Nimwegen M, Boorsma CE, Melgert BN, van den Toorn LM, <i>et al.</i> Fibrocytes are increased in lung and peripheral blood of patients with idiopathic pulmonary fibrosis. <i>Respir Res</i> 2018, 19 (1): 90.				
116 117 118 119	2.	Corneth OBJ, Verstappen GMP, Paulissen SMJ, de Bruijn MJW, Rip J, Lukkes M, <i>et al.</i> Enhanced Bruton's Tyrosine Kinase Activity in Peripheral Blood B Lymphocytes From Patients With Autoimmune Disease. <i>Arthritis Rheumatol</i> 2017, 69 (6): 1313-1324.				
120 121 122 123	3.	Maas A, Dingjan GM, Grosveld F, Hendriks RW. Early arrest in B cell development in transgenic mice that express the E41K Bruton's tyrosine kinase mutant under the control of the CD19 promoter region. <i>J Immunol</i> 1999, 162 (11): 6526-6533.				
124 125 126 127	4.	Middendorp S, Dingjan GM, Maas A, Dahlenborg K, Hendriks RW. Function of Bruton's tyrosine kinase during B cell development is partially independent of its catalytic activity. <i>J Immunol</i> 2003, 171 (11): 5988-5996.				
128 129 130	5.	Kim SN, Lee J, Yang HS, Cho JW, Kwon S, Kim YB, <i>et al.</i> Dose-response Effects of Bleomycin on Inflammation and Pulmonary Fibrosis in Mice. <i>Toxicol Res</i> 2010, 26 (3): 217-222.				
131 132 133 134	6.	McGovern TK, Robichaud A, Fereydoonzad L, Schuessler TF, Martin JG. Evaluation of respiratory system mechanics in mice using the forced oscillation technique. <i>J Vis Exp</i> 2013(75): e50172.				
135						

136 137 138	7.	GeurtsvanKessel CH, Willart MA, Bergen IM, van Rijt LS, Muskens F, Elewaut D, <i>et al.</i> Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. <i>J Exp Med</i> 2009, 206 (11): 2339-2349.
139 140 141	8.	Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. <i>J Clin Pathol</i> 1988, 41 (4): 467-470.
142 143 144 145 146	9.	Borensztajn K, Bresser P, van der Loos C, Bot I, van den Blink B, den Bakker MA, <i>et al.</i> Protease-activated receptor-2 induces myofibroblast differentiation and tissue factor up- regulation during bleomycin-induced lung injury: potential role in pulmonary fibrosis. <i>Am J</i> <i>Pathol</i> 2010, 177 (6): 2753-2764.
147		
148		
149		
150		
151		
152		
153		
154		
155		
156		
157		
158		
159		
160		
161		
162		
163		
164		

165 **online Supplementary Table 1** Overview of extra- and intracellular antibodies use for human and

166 mouse experiments.

marker	conjugate	company	Cat#	intra/extracellular	dilution
HUMAN					
antibodies used for					
	FITC	BD	555786	extracellular	1.20
Rtk	DE	BD	611117	intracellular	1.20
	Rio	BD	555781	extracellular	1.3
	Dio DorCP_Cv5 5	BD	222780	extracellular	1:400
CD38		BD	560980	extracellular	1.400
		BD	561305	extracellular	1.10
	RV/421	BD	562512	extracellular	1.10
CD27	BV421 BV711	BD	563/01	extracellular	1.80
CD24 CD3	AE700	eBioscience	56-0038-42	extracellular	1:40
CYCR5	PerCP5 5	BD	562781	extracellular	1.40
CNCRS	APC of 780	eBioscience	47-0038-42	extracellular	1.20
CD4	AF700	eBioscience	F089/8-1631	extracellular	1.100
	RV650	BD	562062	extracellular	1.100
	BV030	BD	562790	ovtracellular	1.40
FDI FoxD2		oPioscionco	10 705 10	intracollular	1.20
		PD	562156	ovtracellular	1.20
		BD		extracellular	1.20
CCR4	ADC	BD	FAD1507F	extracellular	1.20
CVCDE		BD	500019	extracellular	1:5
CACRS	PerCP5.5	BD	562781	extracellular	1:20
HEn-2 antibodies					
Anti-Mouse	Cv2	lackson IP	115-166-003		
F(ab') IgG	CyS	Jackson	113-100-003		
MOUSE					
antibodies used for					
flow cytometry					
GL7	FITC	BD	553666	extracellular	1:2000
CD95	PE-TxR	BD	562499	extracellular	1:400
lgM	Pe-Cy7	eBioscience	25-5790-82	extracellular/	1:500
-				intracellular	
lgD	APC	eBioscience	17-5993-82	extracellular/	1:1280
				intracellular	
CD19	Af700	eBioscience	56-0193-82	extracellular	1:50
CD138	BV605	BD	563147	extracellular	1:400
CD3	PE-CF594	BD	562286	extracellular	1:100
CD4	Af700	eBioscience	56-0041-82	extracellular	1:200
MHCII	FITC	BD	553565	extracellular	1:200
PD-1	PE	BD	551892	extracellular	1:100
CD3	PE-CF594	BD	562286	extracellular	1:100
CD40L (CD154)	PerCP-eFl710	eBioscience	46-1541-82	extracellular	1:100
CXCR5	biotin	BD	551960	extracellular	1:50
ICOS	APC	eBioscience	17-9949-82	extracellular	1.1600

CD4	AF700	eBioscience	56-0041-82	extracellular	1:400
CD11c	APC-eFI750	eBioscience	47-0114-82	extracellular	1:200
CD11b	eFl450	eBioscience	48-0112-82	extracellular	1:200
PD-L1	BV711	BD	563369	extracellular	1:100
HEp-2 antibodies	0.2	la alva a u D	400 466 002		
Anti-Human	Cy3	Jackson IR	109-166-003		
F(ab) igg					
Immunohisto- chemistry Lung					
Anti-haSMA	PE	R&D	IC1420P		
Anti-PF	AP	Rockland	600-105-387		
Anti-B220	Unlabeled	Bioceros	000 100 00,		
Anti-Rat	AP	Sigma	48438 – 1MI		
Anti-hCD3	Unlabeled		A0452		
Anti-Rabbit	Biotin	Biogeney	HK326-LIR		
Anti-Goat	ΔΡ	Sigma	A4187 - 1MI		
Anti-løG	Riotin	S Biotech	1030-08		
Anti-IgO	Biotin	S. Biotech	1020-08		
Strentavidin		Biogeney			
Streptavium	AF	Diogenex			

180 Online Supplementary Figure 1. Similar fibrosis indices in WT and CD19-hBTK mice upon bleomycin

181 exposure.

182

(A) Mice were sacrificed 3 and 10 weeks after saline or bleomycin exposure and analyzed for fibrosis
 indices. (B) Representative hematoxylin/eosin (H&E) staining of cryo-sections of lung tissue of a WT or
 CD19-hBTK mouse 3 and 10 weeks after bleomycin exposure. Inflammatory exudate and obvious

186	damage to lung architecture (asterisk) and diffuse fibrous thickening of alveolar septa (arrow).
187	Resolution of fibrosis at 10 weeks. Magnification 40x. (C) Hydroxyproline content (μ g per left lung) in
188	WT or CD19-hBTK mice 3 and 10 weeks post bleomycin exposure (D) Tissue elastance assessed with a
189	flexiVent FX system in WT or CD19-hBTK mice 21 days and 70 days post saline or bleomycin exposure.
190	(E) Total fibrosis score. A pathologist (blinded for treatment) scored the Ashcroft scale (grade 1-8) and
191	the percentage of lung involvement (grade 1-5; 1 =0-10% to 6 = 75-100% of total lung involvement).
192	The total fibrosis score is the product of Ashcroft scale and lung involvement. The results (C-E) are
193	shown as median (IQR), p exact values were obtained following a Kruskal-Wallis test. Number of mice
194	used for each experiment are depicted below the graph.
195	
196	
197	
198	
199	
200	
201	
202	
203	
204	
205	
206	
207	
208	
209	
210	
211	

C

20-

15

10-

5

0

SMA of total artery area

SMA/vessel

WT saline

CD19-hBTK saline WT bleo CD19-hBTK bleo

10

SMA⁺ vessels

212 Online Supplementary Figure 2. α-SMA in WT or CD19-hBTK mice 10 weeks post bleomycin exposure.

В

10

8

6 of vess per lung

nber

213

A

WT Bleo

CD19-hBtk Bleo

215 (A) Representative hematoxylin/eosin and α -smooth muscle actin (α -SMA) staining of cryo-sections of 216 the indicated lung tissue. (B) Number of SMA-positive vessels per lung. Vessels between 15 and 50µm 217 external diameter and located in normal lung tissue were assessed. (C) Percentage α -SMA area to total 218 artery area of the assessed vessels. The results are shown as median (IQR), p exact values were 219 obtained following Kruskal-Wallis test. Dots represent individual mice.

- 220
- 221
- 222
- 223
- 224
- 225

226

227

- 228
- 229

230

232 Online supplementary figure 3

233

234 Representative gating strategy for identification of B-cell subsets and follicular T helper (Tfh)-cells in 235 mediastinal lymph nodes (MedLN) in mice, starting with live single cells. L/D, life-death marker; FCS, 236 the total CD19⁺B220⁺ B-cell population, forward scatter. From memory B-cells 237 (CD19⁺B220⁺CD80⁺PDL2⁺), germinal center (GC) B-cells (CD19⁺B220⁺IgD⁻CD95⁺), plasmablasts (CD19⁺CD138⁺) and plasma cells (CD19^{low}CD138⁺) were identified. From the CD3⁺CD4⁺ population, total 238 239 numbers of Tfh-cells (CD3⁺CD4⁺CXCR5⁺PD1⁺) were identified.

- 240
- 241
- 242
- 243
- 244
- 245
- 246

247 Online Supplementary Figure 4: B-cell subsets and BTK expression in ILD-PH

248

249

А

		gender (male)	age (years)	mPAP (mmHg) ^A	Immunomodulating therapies ^B	Anti fibrotics ^c
нс	(N=16)	10 (63%)	59 (54-64.5)	-	-	-
ILD-P	H (N=17) ^D	5 (29%)	63 (57.5-76)	35 (27-40)	5 (29%)	7 (41%)

250 (A) Table showing the characteristics of patients with interstitial lung disease-related PH (ILD-PH) and 251 healthy subject (HC). mPAP; mean pulmonary artery pressure. ^A In 6 patients only echocardiographic 252 measurements available, showing estimated RVSP> 35mmHg and signs of RV dysfunction and no signs 253 of left heart disease or left sided heart failure. ^B Four patients used prednisone >10mg/day and one patient was on azathioprine. ^C Nintedanib (n=3) or pirfenidone (n=4). ^D Ten patients with IPF, 3 patients 254 255 with non-specific interstitial pneumonia, 1 patient with respiratory bronchiolitis interstitial lung 256 disease, 1 patient with extrinsic allergic alveolitis, 1 patient with combined pulmonary fibrosis and 257 emphysema, and 1 patient with interstitial pneumonia with autoimmune features. Continuous 258 variables are presented as median and IQR in parentheses and categorical variable as count and 259 percentages in parentheses.

(B) Proportions of circulating total B-cells and B-cell subpopulations (naïve B-cells (CD19⁺IgD⁺CD27⁻),
 non-switched memory B-cells (CD19⁺IgD⁺CD27⁺), and class switched memory B-cells (CD19⁺CD27⁺IgD⁻
 IgM⁻), and plasmablasts (CD19⁺CD38^{hi}CD27⁺)) in HC and patients with ILD-PH. (C) Quantification of BTK
 protein expression levels, shown as gMFI values of intracellular flow cytometry analysis of total B cells

264	in HCs and ILD-PH patients receiving immunomodulatory or anti-fibrotic treatment (black dots) or no
265	treatment (red dots). p exact values were obtained by a Mann-Whitney U test or Kruskal-Wallis test
266	(>2 groups). Dots represent individual values in patients.
267	
268	
269	
270	
271	
272	
273	
274	
275	
276	
277	
278	
279	
280	
281	
282	
283	
284	
285	
286	
287	
288	
289	
290	
291	
292	
293	
294	
295	
296	
297	
298	

299 Online Supplementary Figure 5: No correlation of cTfh cells and BTK protein in total B-cells

300

CXCR5⁺ CD4⁺memory T-cells

301

No correlation of circulating follicular T helper (cTfh) cells (CD4⁺CD45RA⁻FoxP3^{low}CXCR5⁺) and BTK
 protein in total B cells in HC and patients with IPAH. Correlation coefficient was calculated using
 Spearman's rank method.

305

306