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Supplementary Material S1: Probability of being Self-Consistent 

In this section, we present the equation for the probability of being self-consistent as a function of 
stimulus strength. We consider a perceptual task in which a stimulus has to be categorized as 
‘Positive’ (‘P’) or ‘Negative’ (‘N’). In our psychophysical experiments, there was a range of stimuli 
with five different levels of difficulty that we represent by the stimulus strength 𝜇!. 

Because of sensory noise, the observer only has access to some noisy sensory evidence 𝑠. We 
assume that on average the observer has an unbiased estimate of the sensory strength, so the 
mean of 𝑠 is 𝜇!. For simplicity, we further assume that the sensory noise is normally distributed, 
with common variance 𝜎!" for all stimuli, such that the probability of obtaining sensory evidence 𝑠 on 
one trial is  

 P(𝑠	|	𝜇!) = 𝜑(𝑠;	𝜇!, 𝜎!")  , (E1) 

where 𝜑(𝑥;	𝜇!, 𝜎!") is the probability distribution function of the normal distribution with mean 𝜇! and 
variance 𝜎!". In the framework of Signal Detection Theory (Green & Swets, 1966), a perceptual 
decision (Type 1 decision 𝐷) consists in comparing the sensory evidence against a sensory 
criterion 𝜃!, namely 

 /
𝐷 = 'P'   	if		𝑠 > 𝜃#	,

		
𝐷 = 'N'			otherwise

  . (E2) 

 

What is the probability that the observer’s perceptual decision is self-consistent? Here, self-
consistent refers to the perceptual decision that matches the most frequent decision for a particular 
stimulus 𝜇!. If we call M this most frequent decision, we have 

 𝑀(𝜇!) 	= 	 /
 'P'      	if		𝜇! > 𝜃!	,

 'N'      	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	
 (E3) 

 
 
We can now look at the probability that the observer’s perceptual decision is self-consistent for a 
given displayed stimulus 𝜇! 
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𝑃(self-consistent |	𝜇!) = 	∫ 𝑃(self-consistent |	𝜇!, 𝑠) P(𝑠	|	𝜇!)	𝑑𝑠
$∞
%∞ 																																

= ∫ 𝑃(𝐷 = 𝑀(𝜇!) |	𝜇!, 𝑠) P(𝑠	|	𝜇!)	𝑑𝑠
$∞
%∞ 																																																					

= 	<
∫ 𝑃(𝐷 = 'P' |	𝑠) P(𝑠	|	𝜇!)	𝑑𝑠
$∞
%∞        	if		𝜇! > 𝜃!	,

∫ 𝑃(𝐷 = 'N' |	𝑠) P(𝑠	|	𝜇!)	𝑑𝑠
$∞
%∞       	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

																																	

= 	<
∫ 𝜑(𝑠;	𝜇!, 𝜎!")	𝑑𝑠
$∞
&!

 = 𝛷((𝜇! − 𝜃!) 𝜎!⁄ )             	if		𝜇! > 𝜃!	,

∫ 𝜑(𝑠;	𝜇!, 𝜎!")	𝑑𝑠
&!
%∞  = 1−𝛷((𝜇! − 𝜃!) 𝜎!⁄ )       	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

									

(E4) 

 

where 𝛷 is the cumulative of the standard normal distribution. In short, we obtain 

 

 𝑃(self-consistent |	𝜇!) = 	𝛷(|	𝜇! − 𝜃!|	 	𝜎!⁄ )																																 (E5) 

 

If instead of self-consistency we were interested in correctness, then we would have to replace the 
condition (𝜇! > 𝜃!) by (𝜇! > 0) in Equation E3, so that	

 𝑃(correct |	𝜇!) = 	A
 𝛷((𝜇! − 𝜃!) 𝜎!⁄ )             	if		𝜇! > 0	,

 1−𝛷((𝜇! − 𝜃!) 𝜎!⁄ )       	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	
									 . (E6) 

 

 

Instead of focusing on the probability that the observer’s perceptual decision is self-consistent for a 
given displayed stimulus 𝜇!, we can also look at self-consistency on each single trial. The 
probability that the observer’s perceptual decision is self-consistent, given that she has access to 
sensory evidence 𝑠 is 

 

𝑃(self-consistent |	𝑠) = 	∑ 	(	𝑃(self-consistent |	𝜇!, 𝑠)		P(	𝜇!	|	𝑠	)	)'! 																													

= 	∑ 	(	𝑃(𝐷 = 𝑀(𝜇!) |	𝜇!, 𝑠)		P(	𝜇!	|	𝑠	)	)'! 																																													

																		= ∑ 	(	𝑃(𝐷 = 'P' |	𝑠)		P(	𝜇!	|	𝑠	)	)'!(&! + ∑ 	(	𝑃(𝐷 = 'N' |	𝑠)		P(	𝜇!	|	𝑠	)	)'!)&!

= A
∑ 	P(	𝜇!	|	𝑠	)	'!(&!        	if		𝑠 > 𝜃!	,

∑ 	P(	𝜇!	|	𝑠	)	'!)&!       	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	
																																																								

   (E7) 
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Using Bayes’ rule, we have 

 P(	𝜇!	|	𝑠	) = P(𝑠	|	𝜇!)	P(𝜇!)/	P(𝑠) = *+!;	'!,/!"0	P('!)
∑ 4*+!;	'!,/!"0	P('!)5	#!

	 , (E8) 

so that Equation E7 can be rewritten as 

 𝑃(self-consistent |	𝑠) =

⎩
⎪
⎨

⎪
⎧
∑ 4*+!;	'!,/!"0	P('!)5	#!$%!

∑ 4*+!;	'!,/!"0	P('!)5	#!
       	if		𝑠 > 𝜃!	,

∑ 4*+!;	'!,/!"0	P('!)5	#!&%!

∑ 4*+!;	'!,/!"0	P('!)5	#!
      	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

  . (E9) 

Figure 1 in the main text shows the probability of being self-consistent as a function of sensory 
evidence when there are five possible stimuli with varying strengths that can occur with equal 
probability.  

There is one common special case where Equation E7 is simplified. When a stimulus can have any 
strength, and when all of these strengths have an equal probability of occurrence, then this 
equation becomes 

 𝑃(self-consistent |	𝑠) 	= 	A
	𝛷((𝑠 − 𝜃!) 𝜎!⁄ )             	if		𝑠 > 𝜃!   

	1 − 𝛷((𝑠 − 𝜃!) 𝜎!⁄ )      	otherwise	
			, (E10) 

or in short 

 𝑃(self-consistent |	𝑠) 	= 	𝛷(|	(𝑠 − 𝜃!) 𝜎!⁄ 	|)			. (E11) 
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Supplementary Material S2: Methodological detail for Experiment 2 
 

 
Figure S1: Example of color stimulus used in Experiment 2. 
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Supplementary Material S3: Correlations of initial biases and adaptation amplitude in 
Experiment 1 
 

  
 

Figure S2: A: Normalized initial bias estimated from the RT curves plotted as a function of the initial 
bias estimated from the psychometric functions for each observer (circles) and task (blue for 
orientation and red for color) separately in Experiment 1. B: Initial bias estimated from the 
confidence curves plotted as a function of the initial bias estimated from the psychometric functions. 
C: Amplitude of perceptual adaptation estimated from the RT curves plotted as a function of the 
amplitude of adaptation estimated from the psychometric functions. D: Amplitude of perceptual 
adaptation estimated from the confidence curves plotted as a function of the amplitude of 
adaptation estimated from the psychometric functions. 
 

Metric Orientation Color 

t(15) p t(15) p 

PSE 7.99 <0.001 7.62 <0.001 

RT peak 9.30 <0.001 6.12 <0.001 

Confidence trough 9.15 <0.001 7.31 <0.001 
 
Table S1: T-tests on normalized adaptation parameters in the after-effect experiment. 
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 PF RT Conf 
PF 0 (1) 1.08 (0.29) 0.70 (0.49) 
RT 1.08 (0.29) 0 (1) 0.69 (0.40) 
Conf 0.70 (0.49) 0.69 (0.40) 0 (1) 

 
Table S2: Pairwise t-tests on normalized adaptation parameters for the orientation task in the after-
effect experiment (t(15) and p-value). 
 
 

 PF RT Conf 
PF 0 (1) 0.30 (0.77) 0.97 (0.34) 
RT 0.30 (0.77) 0 (1) 0.57 (0.57) 
Conf 0.97 (0.34) 0.57 (0.57) 0 (1) 

 
Table S3: Pairwise t-tests on normalized adaptation parameters for the color task in the after-effect 
experiment (t(15) and p-value). 
 
 

 PF RT Conf 
PF 1 0.82 0.82 
RT 0.82 1 0.77 
Conf 0.82 0.77 1 

 
Table S4: Correlation between initial bias estimated from psychometric functions, RT curves and 
confidence curves for Experiment 1. 
 
 

 PF RT Conf 
PF 1 0.84 0.93 
RT 0.84 1 0.82 
Conf 0.93 0.82 1 

 
Table S5: Correlation between adaptation amplitude estimated from psychometric functions, RT 
curves and confidence curves for Experiment 1. 
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Supplementary Material S4: Correlations of initial biases and adaptation amplitude in 
Experiment 2 
 
 

 
 

Figure S3: Same as Figure S2 but for Experiment 2. 

 
 

 

 
 
 
 
 
 
 
Table S6: T-tests on normalized adaptation parameters in the response bias experiment. 
 

  

Metric Orientation Color 

t(15) p t(15) p 

PSE 5.02 <0.001 0.87 0.40 

RT peak 5.12 <0.001 0.05 0.96 

Confidence trough 5.16 <0.001 0.53 0.60 
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 PF RT Conf 
PF 0 (1) 1.10 (0.28) 0.77 (0.45) 
RT 1.10 (0.28) 0 (1) 0.93 (0.36) 
Conf 0.77 (0.45) 0.93 (0.36) 0 (1) 

 
Table S7: Pairwise t-tests on normalized adaptation parameters in response bias experiment (t(15) 
and p-value). 
 
 

 PF RT Conf 
PF 0 (1) 0.28 (0.78) 0.00 (1.00) 
RT 0.28 (0.78) 0 (1) 0.20 (0.85) 
Conf 0.00 (1.00) 0.20 (0.85) 0 (1) 

 
Table S8: Pairwise t-tests on normalized adaptation parameters in response bias experiment (t(15) 
and p-value). 
 
 
 PF RT Conf 
PF 1 0.90 0.87 
RT 0.90 1 0.81 
Conf 0.87 0.81 1 
 
Table S9: Correlation between initial bias estimated from psychometric functions, RT curves and 
confidence curves for Experiment 2. 
 
 
 PF RT Conf 
PF 1 0.90 0.66 
RT 0.90 1 0.62 
Conf 0.66 0.62 1 
 
Table S10: Correlation between adaptation amplitude estimated from psychometric functions, RT 
curves and confidence curves for Experiment 2. 
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Supplementary Material S5: Model comparison analysis 
 

 
Figure S4: Mean difference in AIC scores between different models (1-7) and model 4 (common 

bias and adaptation). For both tasks and both experiments, the model that received the lowest AIC 
score assumed a common initial bias and adaptation parameter for all 3 metrics (perceptual reports, 
RTs and confidence judgments). 
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Supplementary Material S6: Relationship between confidence and performance 
 

 After-effect experiment Prior experiment 

Metric Orientation Color Orientation Color 

t(15) p t(15) p t(15) 

[t(14)] 

p t(15) p 

𝑙𝑜𝑔 $
𝜓!"#$%&'#(

𝜓#"()!"#$%&'#(
& 

3.95 0.001 6.19 <0.001 5.39 <0.001 9.21 <0.001 

𝑙𝑜𝑔 $
𝐴!"#$%&'#(

𝐴#"()!"#$%&'#(
& 

3.21 0.006 4.40 <0.001 1.71 

[2.86] 

0.11 

[0.01] 

4.23 <0.001 

 
Table S11: T-tests on normalized adaptation parameters in the response bias experiment. 
Numbers between brackets show results when one outlier was removed from the analysis. 
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Supplementary Material S7: Accumulator model 
 

  
Figure S5: Depiction of the sequential sampling model. Two accumulators (green and yellow lines) 
compete to reach a decision boundary first. When one accumulator reaches the decision boundary, 
the observer commits to a perceptual decision associated with this accumulator (here green). Over 
successive trials the accumulators produce a first-crossing probability density function as depicted 
on top (gray, equation E13). Confidence is implemented as a Balance of Evidence, that is the 
distance between the winning and the losing accumulator. Blue to red lines are the probability 
density functions of one of the accumulator (here the green one) at different times (equation E18). 
 

The accumulated signal is generated by a Wiener process with drift 𝜇 and variance 𝜎" 

 𝑑𝑥 = 	𝜇𝑑𝑡 + 𝜎𝑑𝑊 (E12) 

 

Therefore the probability for an accumulator to reach the decision bound 𝑧 at a time 𝑡 follows an 
inverse Gaussian distribution (2) with probability 𝑓 and cumulative 𝐹 density functions 

 
𝑓(𝑡|𝑧, 𝜇, 𝜎) =

𝑧
𝜎√2𝜋𝑡6

𝑒%
(7%'8)"
"/"8  

(E13) 

 
𝐹(𝑡|𝑧, 𝜇, 𝜎) = ΦR+

𝑧
𝜎√𝑡

S
𝜇𝑡
𝑧
− 1TU+𝑒

"'7
/" ΦR−

𝑧
𝜎√𝑡

S
𝜇𝑡
𝑧
+ 1TU		 

(E14) 

where Φ is the normal CDF. 

The probability that the accumulator A wins the decision is thus given by the probability that the 
accumulator A reaches the boundary 𝑧 at time 𝑡 while the accumulator B has not yet reached it 

 
𝑝(𝑟𝑒𝑠𝑝 = 𝐴) = X 𝑓(𝑡|𝑧, 𝜇9, 𝜎)Y1 − 𝐹(𝑡|𝑧, 𝜇: , 𝜎)Z𝑑𝑡

$;

<
 

(E15) 

The mean response time is 
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𝑅𝑇]]]] = X 𝑡. 𝑓8=8(𝑡)𝑑𝑡

$∞

<
 

(E16) 

with 𝑓8=8(𝑡) the distribution of response times for both accumulators 

 𝑓8=8 = 𝑓(𝑡|𝑧, 𝜇9, 𝜎)Y1 − 𝐹(𝑡|𝑧, 𝜇: , 𝜎)Z + 𝑓(𝑡|𝑧, 𝜇: , 𝜎)Y1 − 𝐹(𝑡|𝑧, 𝜇9, 𝜎)Z 

 

(E17) 

The probability that an accumulator is at x at time t is 𝑝(𝑥, 𝑡) = 𝒩Y𝑥, 𝜇𝑡, 𝜎√𝑡Z, but that distribution 
includes paths where the accumulator passed the decision bound and went back under it at later 
times. Because of the statistical properties of the Wiener process, the probability of such a path is 
the same as the one of a mirror accumulator following a path symmetrical about the decision bound 
(but with opposite drift). Thus in the probability that the accumulator is at x is the sum of a Gaussian 
and an anti-Gaussian, and can be rewritten as (Redner, 2001) 

 
𝑝(𝑥, 𝑡, 𝜇) =

1
𝜎√2𝜋𝑡

𝑒%
(>%7%'8)"

"/"8 S1 − 𝑒%
">7
/"8T 

(E18) 

which can be used to derive the cumulative density function 

 
𝑝(𝑥 < 𝑋|𝑡) = X 𝑝(𝑥, 𝑡)𝑑𝑥

?

<
= X

1
√2𝜋𝜎"𝑡

𝑒%
(>%7%'8)"

"/"8 S1 − 𝑒%
">7
/"8T𝑑𝑥

?

<

= X
1

√2𝜋𝜎"𝑡
b𝑒%

(>%7%'8)"
"/"8 − 𝑒%

"7'
/" 𝑒%

(>$7%'8)"
"/"8 c𝑑𝑥

?

<
 

 

(E19) 

Substituting 𝑢" = (>%7%'8)"

"/"8
 and 𝑣" = (>$7%'8)"

"/"8
, we get 

 
𝑝(𝑥 < 𝑋|𝑡) =

1
√2𝜋𝜎"𝑡

fX 𝑒%@"𝑑𝑢
?%7%'8
"/"8

%7%'8
"/"8

− 𝑒%
"7'
/" X 𝑒%A"𝑑𝑣

?$7%'8
"/"8

$7%'8
"/"8

g

=
1

2√2𝜎"𝑡
2
√𝜋

fX 𝑒%@"𝑑𝑢
?%7%'8
"/"8

<
−X 𝑒%@"𝑑𝑢

%7%'8
"/"8

<

− 𝑒%
"7'
/" hX 𝑒%A"𝑑𝑣

?$7%'8
"/"8

<
−X 𝑒%A"𝑑𝑣

$7%'8
"/"8

<
ig

=
1

2√2𝜎"𝑡
j𝑒𝑟𝑓 S

𝑋 − 𝑧 − 𝜇𝑡
2𝜎"𝑡 T − 𝑒𝑟𝑓 S

−𝑧 − 𝜇𝑡
2𝜎"𝑡 T

− 𝑒%
"7'
/" b𝑒𝑟𝑓 S

X + z − µt
2σ"t T − 𝑒𝑟𝑓 S

+𝑧 − 𝜇𝑡
2𝜎"𝑡 Tcp 

(E20) 

 

Integrating the product of 𝑝(𝑥, 𝑡) and 𝑝(𝑥 < 𝑋|𝑡) for 2 different decisions across distance and time 
gives the probability that confidence is higher for the first decision. 
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