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Figure S1. CellProfiler pipeline functionality and validity assessment of automated measurements. Related to Figure 1 and STAR meth-
ods. (A) Overview of the CellProfiler analysis steps and important settings. (B) Overview of the CellProfiler analysis step with an image example. 
(C) shows the detection of double nucleated cells by distance of two nuclei. The distance of 10 pixels was validated manually to be optimal to identi-
fy true multi-nucleated cardiomyocytes, while minimizing misidentification of nearby single nucleated cells. Unstimulated and hypertrophic cardio-
myocytes were used as ground truth. We show representative recognition on images of unstimulated (CTRL) and phenylephrine (PE) stimulated 
cardiomyocytes. (D) shows a comparison of cell segmentations performed by different algorithms available in CellProfiler. For our pipeline we 
chose the propagation algorithm. (E) Correlation between manual and automatically determined cell sizes (z-transformation, Spearman correlation, 
n=612 cells, p-value: likelihood ratio test between linear models). (F) Numbers of nuclear GFP positive cells as determined automatically (density 
thresholding) and manually by two raters. Metrics are calculated as in E. Images were cropped for better visualization.

B

A

C

D

Automated segmentation pipeline in CellProfiler
1) LoadImages: Desmin, DAPI, GFP
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Figure S2. Detailed overview of the R package cmoRe and the proposed workflow. Related to Figure 2 and STAR methods. The analysis 
workflow comprises four main parts: 1) Loading data matrices calculated by CellProfiler using a convenient file-folder structure, 2) Preprocessing 
includes quality control using median feature distribution over the plate (e.g. cell number or cell area). Secondary features are calculated using the 
cmoRe thresholding function. Specific secondary features  - cell cycle (cc), cellular to nuclear ratio for detection of non-attached cells (cn) and the 
celltype (ct) - are used to filter for vital and properly attached cardiomyocytes for downstream analyses. Custom secondary features, e.g. when 
custom reporters as the NFAT-GFP reporter are used can be calculated additionally on the curated data set. For data analysis cmoRe offers 3) a 
single cell level phenotyping with functions to quantify patterns for subpopulation identification. And 4) a population-level phenotyping aggregating 
single cell data per well. cmoRe functions to be used for the respective analysis step are indicated in italic font. In-depth documentation, a handbook 
of all package functions and an example are provided in Methods S1 and the package vignette online. 
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Supplementary Figure 3: Filters implemented in the cmoRe workflow validated against a 
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Figure S3. Filters implemented in the cmoRe workflow validated against a manually curated data set. Related to Figure 2 and STAR meth-
ods. (A) Scatter plots of the respective secondary features used for filtering via the cmoRe automated thresholding function. (B) Representative 
plots of nuclear integrated DNA intensity and cmoRe calculated thresholds for automated cell cycle analysis analogously to usage e.g. in flow 
cytometry (FACS). (C) Filter for non-attached cells: A representative non-attached cell is shown which is characterized by a very small cellular to 
nuclear ratio and excluded by the filter. In contrast, we show a very small, but properly attached cell which is correctly retained by the filter. (D) Left: 
Filter for non-cardiomyocytes: Non-cardiomyocytes are characterized by their low intense nucleus. A representative retained NRCM cell, as well 
as an excluded non-NRCM nucleus (dotted line) is shown. Right: The feature was chosen based on its high sensitivity and specificity in separating 
NRCMs and non-NRCMs as depicted on the right (receiver operating characteristic (ROC); data: manually annotated dataset, black: ROC curve, 
red: Youden index). (E) Fraction of cells excluded with the respective filter step and fraction of overall excluded cells.



Figure S4. Selection of the intracluster variability threshold, stimulus specific feature changes and differences in cell sizes and nuclear 
NFAT positive cell fraction. Related to Figure 2,3, and STAR methods. (A) Intracluster variability for increasing number of clusters for all 
substances. (B) Second derivative of loess fit predictions trained on data from A. The cluster number corresponding to the value which surpasses 
its predecessor value for more than a fraction of the observed range for the respective substance is retained for multiple fractions (see C, thresh-
olds). (C) Intracluster variability per identified threshold and median value of all thresholds (black horizontal line). (D) Heatmap of canonical 
hypertrophic stimulus specific feature alterations. Red indicates a dose-dependent increase, blue indicates a dose-dependent decrease. (E) Cell 
size for all stimuli and concentrations (z-values). (F) Nuclear GFP (NFAT) positive fraction of cells (z-score) for all stimuli and concentrations. For 
control condition the median and median absolute deviation is depicted in dark grey in E and F.
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Supplementary Figure 5: Benchmarking of cmoRe against CellProfiler raw data imple
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Figure S5. Benchmarking of cmoRe against CellProfiler raw data implemented with naïve linear models. Related to Figure 2. (A) 
Cell size as reported by CellProfiler (left) and adjusted with linear mixed models as implemented in cmoRe (right). Red triangles: mean, 
preprocessed: filtered data (fibroblasts, dead cells). z-transformed values. (B) Pairwise differences in cell size (ctrl vs treatment/dose) for 
compared analysis methods. (C) Number of significant features for different analysis methods with FDR < 0.05. P-values were calculated 
with linear mixed effect models; *: p<0.05; **: p<0.01; ***: p<0.001



Figure S6. UMAP representation of single cell data of all canonical hypertrophic stimuli and random forest classification of aortic stenosis 
dataset. Related to Figure 3 and 5 and STAR methods. (A) UMAP of all canonical hypertrophic stimuli, with marginal distributions. (B) Cellular 
densities per stimulus color-coded on the UMAP plot. Identified substance specific subpopulations are circled for ISO, for INS circled with dotted line. 
(C) Accuracy of random forest classification of preTAVR (A), postTAVR (B) and healthy controls (K) per well: The table shows true vs. predicted class-
es. (D) Error for all permutations of random forest classification as shown in C, training and test set with fixed group sizes. Median number of misclas-
sified wells are 5. For A and B: Single cell data of n=1 experiment is shown. For C and D: Training set consisted of patients 1,2,3, K1,K2,K3,K4; test 
set consisted of patients 4,5, K5,K6 for C. In D all permutations were used. 
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Supplementary Figure 6: UMAP representation of single cell data of all canonical hypertrophic stimuli and random forest classifci-
ation of aortic stenosis dataset, related to Figure 3 and 5 and STAR methods. A: UMAP of all canonical hypertrophic stimuli, with mar-
ginal distributions. B: Cellular densities per stimulus color-coded on the UMAP plot. Identified substance specific subpopulations are circled 
for ISO, for INS circled with dotted line. C: Accuracy of random forest classification of preTAVR (A), postTAVR (B) and healthy controls (K) 
per well: The table shows true vs. predicted classes. D: Error for all permutations of randtom forest classification as shown in C, training and 
test set with fixed group sizes. Median number of misclassified wells are 5. Data information: A and B: Single cell data of n=1 experiment is 
shown. C and D: Training set consisted of patients 1,2,3, K1,K2,K3,K4; test set consisted of patients 4,5, K5,K6 for C. In D all permutations 
were used. 



 

Table S1. Characteristics of previously published papers on automated quantitative morphology analysis and C-MORE. Related to 

STAR methods. 

publication 
# of 

morphological 
features 

cardiological 
context 

NRCMs 
hiPSC-

CMs 

textural 
analysis 
included 

integrated 
cell 

replication/ 
cycle 

readout 

high 
throughput 

image 
screening 

functionality 

single cell 
level results 

(Ryall, 
Bezzerides et al., 

2014) 
5 yes yes no no no no no 

(Woo, 
Tkachenko et al., 

2019) 
4 yes no yes N.A. yes yes no 

(Jentzsch, 
Leierseder et al., 

2012) 
1 (cell size) yes yes no no no partially no 

(Bakal, Aach et 
al., 2007) 

145 no no no yes no no yes 

(Snijder, 
Vladimer et al., 

2017) 
>100 no no no yes yes yes no 

(Manzella, 
Schreck et al., 

2020) 
>2 no no no partially yes yes yes 

(Slack, Martinez 
et al., 2008) 

1536 no no no yes yes yes yes 

(Garvey, Spiller 
et al., 2016) 

min. 6 no no no no yes no 
yes 

 

(Sero, Sailem et 
al., 2015) 

77 no no no no no no no 

C-MORE min. 1338 yes yes yes yes yes yes yes 
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Table S2. Stimulus and inhibitor information. Related to Figure 3 and 4. 
 

hypertrophic stimulus 
low 

concentration 
medium 

concentration 
high 

concentration 
source identifier 

Adrenaline (Suprarenin/Epinephrin, 1mg/ml) 0,1 µM 1 µM 10 µM Sanofi 6053210 

Angiotensin II ((R)-(-)-Phenylephrine hydrochloride) 0,1 µM 1 µM 10 µM Sigma A9525 

Endothelin-1 (Endothelin 1 97% (HPLC), powder) 10 nM 0,1 µM 1µM sigma E7764 

Insulin (Insulin Insuman rapid 40 ie) 4*10-5 IE/ml 4*10-4 IE/ml 4*10-3 IE/ml Sanofi 1843315 

Isoproterenol ((-) Isoproterenol hydrochloride) 0,1 µM 1 µM 10 µM Sigma I6504 

Noradrenaline (Aterenol 1mg/ml) 0,1 µM 1 µM 10 µM Sanofi 3870227 

      

inhibitor 
low 

concentration 
medium 

concentration 
high 

concentration 
source identifier 

AKT (Tricibine Akt V Inhibitor) 0,156 µM 1,56 µM 15,6 µM Sigma 124038 

ERK (ERK/MEK Inhibitor) 0,1 µM 1 µM 10 µM Promega U0126 

FAK (PF 573228 FAK inhibitor) 10 µM 0,1 mM 1mM Tocris 3239 

GSK (BIO GSK3b inhibitor) 5 nM 50 nM 500 nM Tocris 3194 

PI3K (Ly294002, PI3K Inhibitor) 650 nM 6,5 µM 65 µM Millipore 440202 

 



Methods S1. Detailed description and manual for C-MORE functions. Related to Figure 

1,2,3 and STAR methods 

1. Calculation of intracluster variability  

Intra-cluster variability was computed using Euclidean distance and ward.D2 clustering 

method. Intra-cluster variability values for different numbers of clusters (2 to 100) were used 

to fit loess models. Second derivative of loess fit model predictions were evaluated to 

determine an intra-cluster variability cutoff. Starting from the highest number of clusters, the 

change between this value and its predecessor was calculated as fraction of the maximal 

observed difference per substance. The maximum intra-cluster variability detected in any of 

the substances for a given threshold was retained (0.1, 0.5, 1, 2, 5, 10 and 20%), the median 

of all values was 24.75. Thus a cutoff of 25 was used for analysis. 

2. Benchmarking of cmoRe against CellProfiler raw data implemented with naïve 

linear models  

To evaluate cmoRe performance, we tested differences in NRCM cell size data obtained 

with CellProfiler (CP) between non-treated and INS/PE treated cells by omitting single 

cmoRe (pre-)processing steps.  

Therefore, we tested for differences between control (non-treated, ctrl) and INS/PE treated 

cells (per dose level, i.e. ctrl vs INS high data, ctrl vs. PE intermediate) on well aggregated 

data.  

First, we assessed non-filtered data (no exclusion of dead cells and fibroblasts, 

Supplementary Figure 6A, left [CellProfiler, no preprocessing]) using linear models. For the 

comparison ctrl vs INS, we only found a significant difference (p< 0.05) between highest 

dose of INS and ctrl, and for all comparisons between PE and ctrl. Next, we used data from 

which dead cells and fibroblasts were filtered prior to aggregation per well (Supplementary 

Figure 6A, preprocessed). Again, only the comparison ctrl vs INS high was the only 

significant finding within the comparisons of ctrl and INS treated cells. T-values (p-values), 

corresponding to the respective tests, however, were larger (smaller) (Supplementary Figure 

6B). 

Next, we assessed the effect of using linear mixed models for analyses (labeled cmoRe), to 

adjust for variation between repetitions of experiments. All comparisons between ctrl and 

INS irrespective of dose level yielded significant results. For visualization, z-transformed 

residuals 𝑦𝑖 − 𝑦̂𝑖 (𝑦𝑖: measured data in well i, 𝑦̂𝑖: predicted data with the mixed model formula 

𝑦 ~ 1 + (1|𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡/𝑝𝑙𝑎𝑡𝑒) are shown.  

Finally, we tested the number of significant features from all CP features. cmoRe yielded the 

highest number of significant results (FDR < 0.05), much less features were obtained when 

using linear models instead of linear mixed models for analysis (CP, no preprocessing and 

CP, preprocessed). The latter, however, showed slightly higher numbers of features, 

highlighting the beneficial effect of filtering fibroblasts and dead cells in detecting differences 

in NRCM morphology induced by differential treatment.  

3. Manual for our R-package cmoRe 
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1 Introduction

The cmoRe R package contains a collection of functions for preprocessing and
analysis of morphological analysis obtained with CellProfiler (CP) on a single
cell basis.

Main functionality of the package spans:

• Preprocessing

– Quality control

– Filtering for vital cardiomyocytes

– Exclusion of non-cardiomyocytes (fibroblasts)

– Cell-cycle assignment

– Automatic threshold selection of multimodal distributions1

• Data analysis

– Feature selection

– Meta-feature calculation

– Visualization

Parts of the analysis steps (modell based testing of single features without
crossvalidation) are used in a more general form using the dataAnalysisMisc
package.

2 Cellprofiler data preparation

2.1 Cellprofiler output

Cellprofiler output files are stored in a standardized folder structure (Fig. 1).
Different experimental runs are stored in a folder (runn), with subfolders

for each measured 96-well plate (platem). Within each subfolder, cell profiler
output data (Cells.txt, Primarieswithoutboder.txt, Cytoplasm.txt) as well as
metadata information (Treatment.csv) file are stored. The latter contains in-
formation about treatments applied to each well, see. Tbl. 1.

3 The R package cmoRe

The following sections give a short overview of the functionality implemented in
the cmoRe package. Not all parameters are outlined in detail, please refer to the
package vignette (vignette(package="cmoRe")) and documentation (?fun) for
further information.

1Currently only implemented as dichotomization, see below.
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basedir/

run1/

plate1/

Cells.txt

Primarieswithoutborder.txt

Cytoplasm.txt

Treatment.csv

plate2/

...

plate3/

...

run2/

plate1/

...

plate2/

...

plate3/

...

Figure 1: Required structure of CellProfiler output data and metadata files.

Well Treatment Konzentration
A1 ctrl 1
...

...
...

H12 PE 3

Table 1: Representative information of a Treatment.csv file containing the
metadata for each plate layout.
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Suffix CP file
.cell Cells.txt
.nucl Primarieswithoutborder.txt
.cyto Cytoplasm.txt

Table 2: Suffixes of features for CellProfiler output files.

3.1 The imgExp class

For a given analysis, an imgExp class is instantiated (obj). Its constructur
expects a list constaining paths to the different experimental runs with the
corresponding plates in subfolders and a user specified unique ID (uid) (Fig. 1
and Lst. 1).

1 # Where i s the CP data s to r ed ?
data <− l i s t ( )

3 data [ [ 1 ] ] <− paste0 ( ” run1/” , c ( ” p l a t e1 /” , ” p l a t e2 /” , ” p l a t e3 /” ) )
data [ [ 1 ] ] <− paste0 ( ” run2/” , c ( ” p l a t e1 /” , ” p l a t e2 /” , ” p l a t e3 /” ) )

5

# I n s t a n t i a t e imgExp c l a s s
7 obj <− new( ”imgExp” , data , ”UID1” )

Listing 1: Instantiating an imgExp object.

3.2 Data loading

getData(obj) checks completeness, loads and stores data in the @data slot of
obj.

Measurements from different files are merged by Metadata Well, ImageNumber
and ObjectNumber (parameter mrg in loadData()) per experimental run and
plate. Suffixes are added to feature names to denote their origin (Tbl. 2). File-
names are specified by the fn parameter (CP output files) and treatF (metadata
file, Treatment.csv) in loadData().

3.3 QC plots

Initial quality control plots can be obtained with the qcPlots(obj) function to
visualize the number of CP recognized cells per well or the distribution of any
selected calculated feature per plate, e.g. median cell size (Lst. 2, Fig. 2).

1 # Creates a pdf f i l e in f o l d e r
qcPlot s ( obj , f o l d e r=”/tmp/” , var=”AreaShape Area . c e l l ” , fun=median )

Listing 2: Representative QC plot for the distributionof median cell size.

3.4 Filtering of single cells

To retain mostly vital, adherent cardiomocytes with a minimum number of cells
per well for subsequent analyses, different filtering steps are implemented.
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Figure 2: QC plots for numbers of cells, cell size per well (median) and plate
treatment layouts.

3.4.1 Detected numbers per well

obj <− c h e c k F i l t e r ( obj , f i l t e r =100)

Listing 3: Remove wells with <100 cells per well.

Wells/treatments with only very few identified cells (e.g. for highly cytotoxic
substances and too high concentrations) can be removed with the checkFilter()
function. The filter parameter removes all treatment-experimental run-plate
combinations containing less than the specified number of cells. Defaults to
NULL and prints the respective numbers in this case without filtering (Lst. 3).

Furthermore, rows (corresponding to single cells) with unspecified treat-
ments (is.na(obj@data$TREATMENT) == TRUE) are removed.

3.4.2 Morphology based

1 # Calcu la te c u t o f f s
obj <− c a l c ( obj )

3 # Alt e rna t i v e : c a l c u l a t e only c e l l c y c l e c u t o f f s
#obj <− c a l c ( obj , fun=”cc ”)

5

# Apply c u t o f f s and f i l t e r data
7 obj <− f i l t e r ( obj )

Listing 4: Identification of thresholds and assignment per cell.

An alternative, fast method with allows to calculate cutoffs without the need
to previously load alldata into RAM, is available with the following lines:
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1 # c r e a t e new ob j e c t f o r demonstrat ion purposes
obj0 <− new( ”imageExp” , ” uid2 ” , data )

3

# c a l c u l a t e c u t o f f s
5 c u t o f f s <− c a l c C u t o f f s ( obj0 , fun=”nc” )

7 # load data
obj0 <− getData ( obj0 )

9

#and use the p r e c a l c u l a t e d c u t o f f s
11 obj0 <− addCutof fs ( obj0 , c u t o f f s )

Listing 5: Fast identification of thresholds (full CP data) and separated
assignment per cell.

Vital, adherent cadiomyocytes are selected by applying three filters on each
single cell.

• Differentiation between fibroblasts and cardiomyocytes (fibroblast filter,
fun="fb"), Fig. 3

• Selection of adherent cells and removal of debris (nuclear-to-cellular ration,
fun="nb"), Fig. 5

• Selection of vital cardiomyocytes (Assignment of cell-cycle, fun="cc"),
Fig. 4

The latter two filters rely on the analysis value distributions for identification
of cutoffs with given constraints. The general approach is shown in Sec. 3.5.

3.4.3 Fibroblast filter (fb)

• feature: Intensity MedianIntensity DNA.nucl

• transformation: identity

• method: identify minimum left of global maximum

• constraints

– xMinGlobMax := 0.2

– xMaxGlobMax := 0.6

8



Figure 3: Threshold identification for the differntiation between fibroblasts and
cardiomyocytes. Left: histogram with calculated cutoffs (see Sec. 3.5), corre-
sponding density (middle) and histogram with group assignments (right). Solid
(median), dashed (10%) and dotted (90%) quantiles. Bold lines: Constraints
on cutoff identification (xCut, xMinGlobMax).

3.4.4 Cell-cycle assignment (cc)

• feature: Intensity IntegratedIntensity DNA.nucl

• transformation: log

• method: identify global maximum (G1 peak), minimum left: cutoff
for dead cells, minimum right: G2 cells

• constraints

– xMinGlobMax := log(100)
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Figure 4: Threshold identification for cell cycle assignment. Left: density with
calculated cutoffs (see Sec. 3.5); solid (median), dashed (10%) and dotted (90%)
quantiles and histogram of cell-cycle assigned cells (right).

3.4.5 Debris/detached cells filtering (nc)

• feature: AreaShape Area.cell, AreaShape Area.nucl

• transformation: identity

• method: identify minimum left of global maximum within the in-
terval (xMinGlobMax, xCut)

• constraints

– bw := 0.1

– xCut := 15

– xMinGlobMax := 1.5

3.5 Threshold identification

The general approach for threshold selection is based on a density analysis of
the respective value distribution with given constraints (e.g. cutoff within a pre-
specified interval), transformations (log, identity) and a specific method (e.g.
identifying the minimum left of the global maximum)

To account for variability, cutoffs are calculated (and applied) for each exper-
imental run, plate and treatment separately. Robustness of cutoffs is assured by
repeatedly performing analyses on resampled data and aggregating the obtained
results. 10, 50 (median) and 90% quantiles are calculated. If no cutoffs could
be identified for a given combination, data is imputed based on the remaining
information.

An overview of utilized constraints is shown in Tbl. 3.
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Figure 5: Threshold identification for identification of attached, vital cardiomy-
ocytes. Upper row: histogram of ratio distribution. Middle: different band-
widths for density estimation (left: 0.1, right: auto). Bottom: Differently se-
lected cutoffs (left: median CImedian, right: 90% CIexcl quantile) of the left
minimum. Solid (median), dashed (10%) and dotted (90%) quantiles.

Parameter Description
bw Bandwith for R’s density function
xCut Cutoff to remove all values above xCut to focus on the

relevant data below this threshold,
xMinGlobMax Lower border of the interval in which the global maximum

is expected.
xMaxGlobMax Upper border of the interval in which the global maximum

is expected.

Table 3: Parameters and constraints for threshold identification.
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3.5.1 Cutoff identification

Cutoffs are identifyied by repeated (e.g. n=100) sampling from the available
data (with replacement, number of observations equals number of drawings).

First, the density of the resulting data is calculated with default parameters.
Obtaining the first and second derviative leads to identification of extremal
points from which all maxima and minima are retrieved and the global maximum
is selected.

If no value could be identified, NA is saved for this iteration, and a warn-
ing is printed. Quantiles (default: 10, 50 and 90%) of all relevant extremal
points (usually global maximum, left and right minimum) are calculated (while
removing NAs) and returned.

3.5.2 Imputation of missing data

If no cutoffs could be detected in the previous step, missing data is imputed by
calculating the median of all additional thresholds detected for the respective
analysis.

3.5.3 Assignment of single cells

In the faster cutoff calculations using calcCutoffs() and
addCutoffs(), only a simplified assignment method is currently
provided (CImedian, see below).

Two methods to assign single cells to their respective category are imple-
mented, CImedian (default) and CIexcl. The former assigns each cell based
on the 50% quantile (median) cutoff, the latter uses the boundaries of the cal-
culated interval and marks values within the intervals with NA.

3.6 Cell-cycle analysis

If we used calc() to compute cutoffs, we can use the following code.

1 # Plot c e l l c y c l e d i s t r i b u t i o n s per p l a t e
analyzeCC ( obj )

3

# Plot c e l l c y c l e d i s t r i b u t i o n s aggregated per treatment
5 analyzeCC ( obj , agg=T)

Listing 6: Obtain cell cycle information.

Alternatively, if we used calcCutoffs() and addCutoffs(), the relevant
fractions are calculated as follows (Lst. 7):

1 cc <− sumAgg( obj0 )

Listing 7: Calculation of cell cycle fractions.
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Figure 6: Cell cycle distribution for increasing concentrations for a given treat-
ment. Left: Numbers of cells, right: fractions of cells in the respecitve cellcycles
with different cutoffs used to separate populations.

Cell cycle classification is performed as described in Sec. 3.4.4. All cells,
which are included in the obj@data data.frame at the time of running the
calc(obj) function2 are evaluated. Aggregated visualization and values can be
obtained with the analyzeCC() function 3. The latter returns a data.frame
with the the total number/fraction of cells per as signed cell-cycle state (three
values each, estimate [median], lower and upper interval bounds) (Lst. 6),
sumAgg a data.frame with the fraction of dead, G1 and G2/S cells per well
(Fig. 6).

3.7 Additional features

1 # vars : vec to r o f f e a u t u r e s ( colnames in obj@data )
obj <− addCutoffVars ( obj , vars , fun=log , nBoot=100)

Listing 8: Automatic threshold identification for additional features.

The previously applied method to identify cutoffs can be applied to any
feature, with an arbitrary transformation (often log). The addCutoffVars()

function is used to detect cutoffs similarly to the cell cycle analysis.
Currently, only dichotomization based on the identification of the first mini-

mum right of the global maximum is implemented. For identification of the left
minimum multiply the respective data by -1. A function for transformation is
specified with the fun parameter (Lst. 8).

2and all cells present in the CellProfiler output files for calcCutoffs() and addCutoffs()
3only in combination with calc()
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Figure 7: Non- and z-transformed data.

3.8 Aggregation

# median aggregat ion
2 obj@dataAgg <− medianAgg ( obj )

Listing 9: Aggregation of single cell data per well

The medianAgg() function aggregates data by well (median, Lst. 9). Frac-
tions of binary features can be calculated and added to the aggregated data as
shown in Lst. 10.

#add f r a c t i o n s o f b inary f e a t u r e s
2 exp@dataAgg <− cbind ( exp@dataAgg , f ractAgg ( exp ) )

Listing 10: Calculation of dichotomized feature fractions.

3.9 Z-transformation

obj <− zTrans ( obj )

Listing 11: Z-transformation of data.

The zTrans() function performs an experimental-run wise z-transformation
of data from treatments present in all treatments and for aggregated data (Lst.
11). A minimum of two experimental runs is required (Fig. 7.
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Figure 8: Representative single-cell analysis results. Left: t-SNE of data treated
with three treatments. Right: difference maps with 2.5% and 97.5% quantiles
used for color code thresholding to highlight differences in population composi-
tion.

3.10 Removal of single cell data

1 obj <− removeRawData ( obj )

Listing 12: Remove single cell data.

If no further single cell data analysis is planned, data can be removed to
keep the object sizes with the calculated metadata and aggregated data small
(Lst. 12), Fig. 8.

4 Single cell data analysis

Single cell data can be accessed by the obj@data slot as data.frame and might
be used e.g. in a a variety of dimension reduction methods (t-SNE, umap).

5 Well-aggregated data analysis

Analysis of well-aggregated data by mixed model analysis, following feature
selection and phenotype visualization is depicted.

5.1 Dose dependent specific alterations

For the assessment of effects for varying dose treatments of NRCMs, a linear
mixed effect model was utilized. Three doses were assessed together with non-
treated data and a linear relationship was assumed (Tbl. 4, Lst. 13).
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Dose Comment
0 control
1 low concentration
2 intermediate concentration
3 high concentration

Table 4: Recoding of concentrations for equidistant assumptions to test for
differences.

Dose was evaluated as fixed effect, treatment nested under plate (plate) and
experimental run (expRun) were included as random effects (see Lst. 13) using
the lme4 package.

The effect of dose as independent variable on each morphological feature
was assessed by likelihood ratio tests of the null and full (differing in dose as
covariate) model.

Crossvalidation (see Sec. 6) and the testing method are implemented in the
analyze() function.

treatment: substance, e.g. PE.
dose: assumed equidistant dose concentrations, dose ∈ {0, 1, 2, 3}
expRun: experimental runs, expRun ∈ {1, 2, 3, 4, 5}
plate: plate per experimental run, plate ∈ {1, 2}
val: measurement of a given morphological feature.

1 va l ˜ dose + ( 1 | expRun/ p l a t e / treatment )

Listing 13: Formula used to identify dose dependent differences.

5.2 Inhibitors

The same approach as outlined in Sec. 5.1 was used to calculate substance
specific differences (positive control).

5.2.1 Positive control vs inhibitor

Differences between positive controls and inhibitor data was calculated from
meta-features (see Sec. 9) as follows.

i: index of meta features, i ∈ N+

mctrl
i : median aggregated meta feature i value (positive control).

mtr
i : values of meta feature i for treatment tr

The differences d between meta features of treated and control data are
defined as follows:

dtr,ctrl
i := mtr

i −mctrl
i (1)
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d2 values are then evaluated using a linear mixed effects model to test for
differences between controls and inhibitor treated measurements separate for
each concentration while adjusting for the respective meta-features (Lst. 5.2.1).
Experimental run and well are included as random effects.

meta feature: meta-feature label (e.g {MF1,MF2,MF3} if three meta
features were selected / calculated).
treat: treatment factors to be evaluated for a significiant effect on differences
(e.g. {ins1, pe2}).

1 # f i x e d e f f e c t formula
dˆ2 ˜ meta f eature + t r e a t

3 # random e f f e c t formula
˜ 1 | expRun/ we l l

5.2.2 Negative control and inhibitor

In addition to the the testing for differences between positive control vs positive
control substance + inhibitor combinations, the similarity/ equivalence between
negative controls and postive control substance + inhibitor was evaluated as
follows: Per treatment and dose, a mixed model was fitted with (negative)
control data and data from treated cells (substance + inhibitor in a specific
dose) with a random effects experimentalRun and treatment (multiple wells
per treatment, Lst. 14) for each meta feature (SY N V AR n / V AL, Fig. 10).

lmer (VAL̃ −1+treatment +(1 | experimentalRun / treatment ) , data=data )

Listing 14: Model estimates for controls and substance + inhibitor treated data.

Model estimates for controls and substance+inhibitor treated cells were eval-
uted, using their 95% confidence intervals. Two qualitative metrics were used to
evaluate similarity between model estimates: the number of meta features which
show distinct estimate distributions (different) and the number of metafea-
tures for which the treatment estimates lay within the confidence interval of the
control estimate (estim in ref CI ), see Fig. 9. Representative data is shown in
Fig. 10.

5.3 TAVI

5.3.1 Concentration dependent regulation

For the TAVI/aortic stenosis experiment, multiple serum concentrations were
tested. As it was unknown which serum concentration might yield appropriate
results (and an appropriate concentration might differ between features), it was
tested for a significant interaction term between the two factors concentration
and treatment (Lst. 15).

treatment ∈ {control, aorticStenosis, postTAV I}
concentration ∈ {0.025, 0.5, 1.0, 2.0} val: measurement of a given morphologi-
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Figure 9: Qualitatively different metrics for the evaluation of similary between
negative controls and substance+inhibitor treated cells on meta-feature level.

Figure 10: Representative data showing the quantification of similarity between
negative controls and substanc + inhibitor treated cells for meta-features.
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State Category
0 healthy
1 heterozygous
2 homozygous

Table 5: Encoding of evaluated IPS types for an analysis analogeously to the
dose-dependent substance approach.

cal feature.

1 va l ˜ treatment ∗ concent ra t i on

Listing 15: Formula to test for differences in TAVI data.

For the evaluation, features showing a significant interaction term treatment :
concentration for the comparison ctrl : concentration vs aorticStenosis :
concentration were selected as being specific for aortic stenosis. Meta-features
with significant interaction effects aorticStenosis : concentration vs postTAV I :
concentration and inverted effect sized were considered reversible after TAVI.

5.3.2 Concentration independent regulation

Features not showing a significant interaction effect, and thus being regulated
independently of the tested concentration, were also included into the evaula-
tion. Analysis was performed as described in Sec. ??, but excluding all features
with a non-adjusted interaction p-value above 0.05 or 0.1.

5.3.3 Crossvalidation

Crossvalidation (see Sec. 6) and the testing method are implemented in the
analyzeTAVI() function.

5.4 IPS cells

For the analysis of (genetically altereted) IPS cells, equidistant differences were
assumed and differences were assessed with a linear mixed effect model using
the dataAnalysisMisc package (Tbl. 5, Lst. 16).

1 #Pat ient : pa t i en t ID
r e s <− randEf fAna lys i s ( dat [ , , drop=F] , pheno [ , ] ,

3 frm0=as . formula (VAL˜1+(1 | Pat ient ) ) ,
frm=as . formula (VAL˜ s t a t e +(1 | Pat ient ) ) )

Listing 16: Testing for differences in the IPS dataset.

For visualization of phenotypic changes, batch adjusted data was used (see
Sec. 7).
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6 Crossvalidation

Crossvaldiation was performed as follows: measurements (aggregated per well)
were left out per treatment and experimental run to train a model, the left out
data was predicted with the latter.

vfull: predicted values from the model trained with all data.
i ∈ N+: numbers of models fitted with incomplete data.
vsub
i : predicted values of the left out data not used for model training.

R2
cv := 1−

∑
i

(vfull − vsub
i )2 · Var(vsub

i )

i
(2)

R2
cv =

{
R2

cv if R2
cv ≥ 0

0 otherwise

7 Data prediction

Model based feature selection utilized mixed effects model to estimate random
intercepts for specific factors as e.g. different batches. For visualization of meta-
feature calculation, non-adjusted data might be utilized or predicted data. The
latter was performed by fitting a mixed effects model for each feature with all
observed data, and using this model to predict values.

8 Feature selection

Features were selected with a given significance threshold after adjustment for
multiplicity of likelihood-ratio test p-values p∗ (Bonferroni, Benjamini-Hochberg),
R2

cv and effect size ∆ cutoffs.

9 Metafeature calculation

Similar features were aggregated to meta features mfi based on a hierarchical
cluster analysis and the selection of a maximal intracluster variability (Fig. 11).

For metafeature calculation, either directly measured, filtered and trans-
formed data (as descibed above) was used. Alternatively, for data with even
higher variability (TAVI, IPS cells) linear mixed models were fitted for data
of each feature, and predicted values were used for following analysis (cluster
selection, meta-feature calculation, visualization in radarplots, see Lst. 17 for
IPS analyses).

f i t <− lmer (VAL˜Mut num + ( 1 | Batch ) , data=data )
2 prd <− p r e d i c t ( f i t , newdata=data )
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Figure 11: Intra-cluster variability for increasing numbers of clusters (left) and
heatmap of selected features with a representative clustering.

Listing 17: Prediction of data per feature.

Using the findClusters() function, a range of potential clusters can be
evaluated. The latter returns a intra-cluster variability value as a function of
assumed clusters (Lst. 18):

v
Fj

i measurement i of feature set Fj corresponding to cluster j.
mad(x): median absolute deviance of x.
F : set of all selected features.
k: number of clusters with k := {i|i ∈ N+1 ≤ k ≤ |F |}.

For each number of clusters k to be tested (nClust parameter), the following
metric mk is calculated:

mk :=

∑k
j=1 mad(v

Fj

i )

k
(3)

Ward.D2 clustering (clustering method parameter) and Euclidean distance
are used for hierarchical cluster analysis to derive the respective number of
clusters (Fig. 11).

#c a l c u l a t e metr ic f o r 2 to 60 c l u s t e r s
2 c l u s t e r <− f i n d C l u s t e r s ( c lusterDat , nClust = c (2 ,60 ) )

Listing 18: Calculation of intracluster variability.

After selection of a desired intra-cluster varibility cutoff, such defined similar
features are aggregated to meta-features by median aggregation (Lst. 19).

## s e l e c t in t ra −c l u s t e r v a r i a b i l i t y c u t o f f
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Figure 12: Radarplots of representative data showing meta-features for increas-
ing substance concentrations.

2 c u t o f f <− 100

4 cm <− c l u s t e r [ order ( u n l i s t ( c l u s t e r [ , ”dispSum” ] ) ) , ]
# l i s t with f e a t u r e names and c l u s t e r ass ignment

6 map <− cm[ which (cm[ , ”dispSum” ] > c u t o f f ) , , drop=F ] [ 1 , , drop=F ] [ 1 , ”pm.
c l u s t ” ] [ [ 1 ] ]

8 # ca luca t e meta f e a t u r e s
synthMetr <− c a l cu l a t eS y n t he t i c Va r s ( c lusterDat , map)

Listing 19: Calculation of metafeatures for a specific intra-cluster variability
cutoff.

10 Phenotype visualization

Changes in meta-features can be visualized using radar plots (Lst. 20, Fig. 12).

1 drawRadarplots ( plotDat , vars=names ( synthMetr$anno ) [ order ( r e t
[ [ 1 ] ] [ [ 1 ] ] ) ] , l a b e l s = F, c t r l L e v e l=”Ko 1” , pTest=NULL, agg

=mean , c o l=col , main=”” )

Listing 20: Visualization of phenotype changes using radarplots.
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