Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.

Supplement to: Regensburger A. P.*, Wagner A. L.* et al. "Multispectral Optoacoustic Tomography for non-invasive disease phenotyping in pediatric spinal muscular atrophy patients"

Supplementary Table 1 - Physical examination assignment

< 2 years	≥ 2 years and no ability to sit	≥ 2 years and ability to sit in wheelchair	≥ 2 years and ability to sit	≥ 3 years and ability to walk
HINE	HINE	HINE		
Section 2	Section 2	Section 2		
CHOP Intend	CHOP Intend	CHOP Intend		
		(HFMSE)	HFMSE	HFMSE
	_	RULM	RULM	RULM
	_	'		6MWT

Supplementary Table 1 - Physical examination assignment

HINE= The Hammersmith Infant Neurological Examination, Section 2 (measures motor milestones, range 0-26; lower score represents a lower development of motor milestones), ^{1, 2} CHOP-Intend= The Childrens's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (measures motor skills, range 0-64, lower score represents a lower repertoire of motor skills), ^{3, 4} HFMSE= Hammersmith functional motor scale-expended (measures motor function, range 0-66, lower score represents lower motor function), ⁵⁻⁷ RULM= Revised upper Limb Module (measures upper limb function, range 0-37, lower score represents lower upper limb motor function), ⁸ 6-MWT=6-minute-walk-test (measures walking distance in meter within six minutes; range: 0-theoretically infinite; lower distance represents a higher degree of muscle function loss). ⁹ All subjects were tested by three well-trained physiotherapists (J.T., P.P., M. M.-A.) with respect to their age and physical function prior to ultrasound and MSOT imaging.

Supplementary Table 2 – Duration of examinations

Duration of examinations				
	HV (n = 10)	SMA (n = 10)		
Duration of physical examination-min.	32.5±6.0	40.3±10.1		
Duration of Ultrasound-min.	10.7±2.8	15.1±4.5		
Duration of MSOT-min.*	32.3±6.8	40.9±4.4		

Supplementary Table 2 – Duration of examinations

Min.= minutes, HV=healthy volunteers, SMA = SMA patients, mean \pm SD are labeled Plus-minus values. Data are shown as mean \pm SD. n = 20 biologically independent subjects (n = 10 HV/n = 10 SMA). * door to door time including explanations and breaks, if necessary.

Supplementary Table 3 - Physical examination of SMA patients and healthy volunteers

Physical examination of HV and SMA patients				
	HV (n = 0)	SMA (n = 3)		
HINE - score	-	4.3±1.16		
	HV (n = 0)	SMA (n = 2)		
CHOP-Intend - score	-	25.0±5.7		
	HV (n = 10)	SMA (n = 9)		
HFMSE – score	65.6±1.0	25.7±21.8		
RULM -score	36.8±0.4	24.0±10.5		
	HV (n = 10)	SMA (n = 2)		
6-MWT – meter	538.0±94.2	264.5±14.9		

Supplementary Table 3 – Physical examination of SMA patients and healthy volunteers HV=healthy volunteers, SMA=SMA patients, mean ±SD are labeled Plus-minus values. Data are shown as mean±SD. n = 20 biologically independent subjects (n = 10 HV/n = 10 SMA). Physical tests were not uniformly completed. Incomplete tests were excluded for analysis. HINE= The Hammersmith Infant Neurological Examination, Section 2 (measures motor milestones, range 0-26; lower score represents a lower development of motor milestones),^{1, 2} CHOP-Intend= The Childrens's Hospital of Philadelphia Infant of Neuromuscular Disorders (measures motor skills, range 0-64, lower score represents a lower repertoire of motor skills) ^{3, 4}, HFMSE= Hammersmith functional motor scale-expended (measures motor function, range 0-66, lower score represents lower motor function) ⁵⁻⁷, RULM= Revised upper Limb Module (measures upper limb function, range 0-37, lower score represents lower upper limb motor function) ⁸, 6-MWT=6-minute-walk-test (measures walking distance within six minutes; range: 0-theoretically infinite; lower distance represents a higher degree of muscle function loss) ⁹.

Supplementary Table 4 - B-mode ultrasound results of independent muscle regions

	Ultrasound Scoring	HV (N=10,	SMA (N=10,
		N=80 scans)	N=80 scans)
Echogenicity	hypo-echogenic	80 (100%)	7 (8.75%)
	echogenic	0	10 (12.5%)
	hyper-echogenic	0	63 (78.75%)
Muscle texture	coarse-granular	4 (5%)	10 (12.5%)
	medium-granular	45 (56.25%)	0
	fine-granular	31 (38.75%)	70 (87.75%)
Distribution pattern	Focal	0	0
	Inhomogeneous	80 (100%)	80 (100%)
	Homogeneous	0	0
Heckmatt scale	1	80 (100%)	13 (16.25%)
	2	0	16 (20%)
	3	0	34 (42.50%)
	4	0	17 (21.25%)
Pathological	No	80 (100%)	8 (10%)
	Yes	0	72 (90%)

Supplementary Table 4 - B-mode ultrasound results of independent muscle regions

HV=healthy volunteers, SMA=SMA patients. N=160 images (n = 80 HV/ n= 80 SMA) were evaluated for echo intensity, muscle texture, distribution pattern, Heckmatt scale, and pathological rating. The investigator (JJ) assessed echogenicity (hypoechogenic/echogenic/hyperechogenic), muscle texture (coarse-/medium-/fine-granular), distribution pattern (inhomo-/homo-geneous/focal) and Heckmatt scale (grade 1-4: 1 = normal muscle echo, 2 = increased muscle echo while bone echo is still distinct, 3 = increased muscle echo and reduced bone echo, 4 = very strong muscle echo and complete loss of bone echo) in parallel to the examination.^{10, 11} Furthermore, the muscle was

evaluated by the overall impression as healthy or pathological. Categorical variables are provided as numbers and percentages. n = 160 independent muscle regions (n = 80 HV/n = 80 SMA) in n = 20 biologically independent subjects (n = 10 HV/n = 10 SMA patients).

Supplementary Table 5 - Adverse events

	HV	SMA patients
	N=10	N=10
Reversible adverse events- no. (%)		
Coolness of Ultrasound-gel	1 (10%)	1 (10%)
Serious adverse events- no. (%)	0 (0%)	0 (0%)

Supplementary Table 5 – Adverse events

In each group one patient complained about the coolness of the ultrasound-gel. The gel was then removed. No serious adverse events occurred during the study.

References

- 1. Haataja L, Mercuri E, Regev R, et al. Optimality score for the neurologic examination of the infant at 12 and 18 months of age. J Pediatr 1999;135:153-161.
- 2. Bishop KM, Montes J, Finkel RS. Motor milestone assessment of infants with spinal muscular atrophy using the hammersmith infant neurological Exam-Part 2: Experience from a nusinersen clinical study. Muscle Nerve 2018;57:142-146.
- 3. Glanzman AM, Mazzone E, Main M, et al. The Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): test development and reliability. Neuromuscul Disord 2010;20:155-161.
- 4. Glanzman AM, McDermott MP, Montes J, et al. Validation of the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND). Pediatr Phys Ther 2011;23:322-326.
- 5. O'Hagen JM, Glanzman AM, McDermott MP, et al. An expanded version of the Hammersmith Functional Motor Scale for SMA II and III patients. Neuromuscul Disord 2007;17:693-697.
- 6. Glanzman AM, O'Hagen JM, McDermott MP, et al. Validation of the Expanded Hammersmith Functional Motor Scale in spinal muscular atrophy type II and III. J Child Neurol 2011;26:1499-1507.
- 7. Ramsey D, Scoto M, Mayhew A, et al. Revised Hammersmith Scale for spinal muscular atrophy: A SMA specific clinical outcome assessment tool. PLoS One 2017;12:e0172346.
- 8. Mazzone ES, Mayhew A, Montes J, et al. Revised upper limb module for spinal muscular atrophy: Development of a new module. Muscle Nerve 2017;55:869-874.
- 9. Montes J, McDermott MP, Martens WB, et al. Six-Minute Walk Test demonstrates motor fatigue in spinal muscular atrophy. Neurology 2010;74:833-838.
- 10. Heckmatt JZ, Leeman S, Dubowitz V. Ultrasound imaging in the diagnosis of muscle disease. J Pediatr 1982;101:656-660.
- 11. Pillen S, Arts IM, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve 2008;37:679-693.