α-Linolenic acid induces clearance of Tau seeds *via* Actin-remodeling in Microglia

Smita Eknath Desale^{1, 2} Subashchandrabose Chinnathambi^{1, 2, *}

¹Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India ²Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India

^{*}To whom correspondence should be addressed: **Prof. Subashchandrabose Chinnathambi**, Neurobiology group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008 Pune, India, Telephone: +91-20-25902232, Fax. +91-20-25902648. Email: **s.chinnathambi@ncl.res.in**

Author details

Smita Eknath Desale, email: se.desale@ncl.res.in

Subashchandrabose Chinnathambi, email: s.chinnathambi@ncl.res.in

Supplementary Figure-1

α-Linolenic acid enhance membrane ruffling in microglia

Supplementary figure 1. α -Linolenic acid enhances membrane ruffling in microglia. The image indicates different panel of fluorescence image, scale bar is 20 μ m. The enlarged images presented in figure 4 have been taken from marked cells with dotted lines.

Supplementary Figure- 2

a-Linolenic acid induces actin polymerization

Supplementary figure 2. α -Linolenic acid induces actin polymerization. The orthogonal images indicating XY plane that denotes intracellular colocalization areas of F-actin and Arp2/3 complex.