Cell Reports, Volume 37

Supplemental information

Sox6 expression distinguishes dorsally and ventrally

biased dopamine neurons in the substantia nigra

with distinctive properties and embryonic origins

Milagros Pereira Luppi, Maite Azcorra, Giuliana Caronia-Brown, Jean-Francois Poulin, Zachary Gaertner, Serafin Gatica, Oscar Andrés Moreno-Ramos, Navid Nouri, Marilyn Dubois, Yongchao C. Ma, Charu Ramakrishnan, Lief Fenno, Yoon Seok Kim, Karl Deisseroth, Francesca Cicchetti, Daniel A. Dombeck, and Rajeshwar Awatramani

Fig. S1 (Related to Figure 1): Vulnerability and markers of DA neurons in hSNc.

A) Quantification of TH+ neurons in control and PD brains ($p = 1.89 \times 10^{-5}$, n=14 controls, n=15 PD). B) Percentage of SOX6+ and ALDH1A1+, and CALBINDIN-D28k+ (CB+) and ALDH1A1+ DA neurons in control brains. C) Primary antibody negative controls. Error bars are SEM. Scale bar: 200 µm.

Figure S2 (Related to Figure 2): Sox6+ and Sox6- neurons distribution across the rostrocaudal axis.

A) Example of methodology used for obtaining dorso-ventral histograms in Fig. 2D,E and Fig. S2C. Coordinates are obtained for SNc Th+GFP+ and Th+mCherry+ cells. A line of best fit is obtained for all cells, which is used to set the center of the SNc. Cell coordinates are then rotated along this line (A'), and a histogram of cells is obtained, perpendicular to the center line (A''). For Fig 2E, S2C, cell counts are then normalized (A'''). B) Average number of GFP+ (green) and mCherry+ (red) neurons per SNc section level; GFP+ cells are more abundant than mCherry+ cells at all SNc section levels (n=5). C) Spatial distribution of GFP+ and mCherry+ neurons per SNc section level. mCherry+ neurons are biased dorsally at all rostro-caudal levels (n=5). D) In the RRF of Sox6-FSF-Cre, Th-2A-Flpo, RC-Frepe brains, GFP+ and mCherry+ cells are evenly distributed. E) Average numbers of GFP+ (green bars) and mCherry+ (red bars) cells in the RRF (n=5). Error bars (B, E) and shaded area (C) are SEM. Scale bar = 200 μm. RRF: retrorubral field.

Fig. S3 (Related to Figure 3): Genes enriched in the *Sox6*- and *Sox6*+ population by in situ hybridization and GSEA, respectively.

A) RNAscope in situ hybridization of genes differentially expressed in mCherry+ neurons combined with immunofluorescence of TH and mCherry. *Vglut2* is expressed in mCherry+,TH+ (arrowheads) and mCherry+,TH- neurons (triangles), although we observed a basal nuclear expression in most cells (asterisk, fewer than 10 dots). In the SNpl and dorsal SNc (dSNc), *Fxyd6* and *Ngb* are expressed in mCherry+,TH+ neurons (arrowheads) and in mCherry+,TH- (triangles), but not in mCherry-TH+ neurons (asterisk). *Sst* was observed only in mCherry+,TH- neurons above the SNc. Scale bar is 50 μ m. B) GSEA Plots of significantly enriched gene sets in the *Sox6*+ population (q-value < 0.05). Plots are shown in increasing order of q. E.S.: Enrichment Score.

Fig. S4 (Related to Figure 3): DropViz plots of differentially expressed genes in Sox6+ and Sox6- SNc neurons, and VTA.

DropViz visualization of genes of interest within the preset "Substantia Nigra Neuron_Th #4" population. The reference panel on the top left indicates our proposed ventral SNc (vSNc) and dSNc/VTA clusters. vSNc clusters (4-5, 4-6, 4-8, 4-9) show expression of *Sox6*, *Aldh1a1*, *Kcns3*, *Satb1*, *Serpine2* and *Atp2a3*. dSNc/VTA clusters (4-1, 4-2, 4-3, 4-4) express *Slc17a6* (Vlgut2), *Fxyd6* and *Calb1* but only 4-1 shows *Otx2* and *Lpl*, VTA markers. Thus, 4-1 appears to represent the ventromedial VTA. Cluster 4-3 is *Calb1*+ and *Sox6*+, thus, it could represent parabrachial VTA since the latter includes *Sox6*+ neurons. 4-2 is *Calb1*+, *Vglut2*+, *Fxyd6*+, *Sox6*-, and thus likely represents the SNpl neurons. We were unable to disambiguate cluster 4-7.

Fig. S5 (Related to Figure 4): Sox6+ and Sox6- projection patterns are similar when only SNc neurons are labelled, and when an alternative viral strategy is used.

A) Genetic strategy used to simultaneously label Sox6+ and Sox6- neurons and their projections in adult brains, as in Fig. 4. B) Representation of labeled cells in the midbrain corresponding to panel A. Each dot represents 1 labeled cell. Few cells in VTA and less medial SNc cells are labeled, compared to Fig. 4. C) Projections across the rostro-caudal axis of the striatum from Th+Sox6+ dSNc neurons (eYFP, top), from Th+Sox6- vSNc neurons (mCherry, middle), and merged images (bottom), from cells shown in Fig. 5SB. Scale bar 500 μm. D) Genetic strategy used to simultaneously label Sox6+ and Sox6- neurons and their projections in adult brains. The viral strategy is opposite to Fig. 4 and Fig. S5A-C, with Sox6+Th+ cells labeled by mCherry and Sox6-Th+ cells labeled by eYFP. E)Representation of labeled cells in the midbrain corresponding to panel D. Each dot represents 1 labeled cell. F) Projections across the rostro-caudal axis of the striatum from Th+Sox6+ dSNc neurons (mCherry, top), from Th+Sox6- vSNc neurons (eYFP, middle), and merged images (bottom), from cells shown in Fig. 5SE. Scale bar 500 μm.

Figure S6 (Related to Figure 5): Sox6 cumulative fate map characterization

A) When Sox6-FSF-Cre is crossed to CAG-Flpe, the frt-flanked stop cassette is deleted to obtain a Sox6-Cre line. B) Possible sequence of recombination events in Sox6-Cre, Th-2A-Flpo, RC-Frepe brains (all heterozygous). Left: Cell-labeling outcome if Cre expression precedes Flpo. 1. Cre expression alone does not induce fluorescence. 2. Upon subsequent Flpo expression, cells will express GFP. Middle: Cell-labeling outcome if Flpo expression precedes Cre. 1. Flpo expression induces mCherry. 2. Subsequent Cre expression in mCherry+ cells induces expression of GFP. In this scenario, cells express mCherry+ and GFP+ until mCherry is degraded and then cell expresses only GFP. Right: example of mCherry, GFP double-positive cells in E16.5 Sox6-Cre, Th-2A-Flpo, RC-Frepe brains (arrowheads, n=3). C-D) Comparison of OTX2 expression in Sox6-Cre vs Sox6-FSF-Cre with Th-2A-Flpo, RC-Frepe. Few GFP+OTX2+ are observed in the VTA of Sox6-FSF-Cre brains (D), some GFP+ cells have detectable OTX2 signal in Sox6-Cre brains (C, asterisks). In both fate maps, mCherry+ cells in the VTA express roubst OTX2 (triangles); mCherry+ in the dorsal SNc and SNpl have weak/residual OTX2 signal (arrowheads). In the SNc, GFP+ cells have weak/residual OTX2 signal (asterisk) (n=3, each). E) Sox6-Cre, Th-2A-Flpo, RC-Frepe at E14.5. Rostral-ly, there are few faint OTX2+ cells colocalizing mainly with mCherry (arrowheads). In caudal sections, there are visibly more and higher signal OTX2+ cells that co-express mCherry (arrowheads) (n=2). Scale bars: C, D: 200 μ m (low magnification) and 25 μ m (crops), B, E: 50 μ m. VTA: ventral tegmental area, SNpl: substantia nigra pars lateralis, SNc: substantia nigra pars compacta.

Fig. S7 (Related to Figure 6): PRISM efficiency and validation of results with a genetically induced fate map

A) Allen Atlas coronal sections of embryonic brains showing Slc17a6 (Vglut2) in nascent post-mitotic neurons (arrowheads) and lack thereof in the ventricular zone (asterisk). B) No β Gal+ cells are observed in Vglut2-Cre, Nestin-LSL-Flpo (NSF), RC-LacZ adult brains, proving that PRISM does not label post-mitotic neurons (n=3). C) Immunolabeling for TH (green) and β Gal (red) on EIIa-Cre, Nes-LSL-Flpo, RC-LacZ brains show β Gal+ cells widely expressed in the SNc and VTA (n=3). D) Maximum recombination potential of PRISM determined in Nestin-Flpo (obtained by germline deletion of loxP-flanked STOP cassette), RC-LacZ brains (n=3). E) Sox6-Cre, Ai9 and Sox6-Cre, Nestin-LSL-Flpo, Ai65F embryonic floor plate at E12.5. Sox6+ progenitors (tdTomato+) are mainly medially located. F) Spatial distribution of Sox6+ cells in the embryonic floor plate (left) and percentage of LMX1A+ cells that express tdTomato+ in Sox6 vs PRISM fate maps (right). All tdTomato+ counted were also LMX1A+ (n=3). G) Quantification of TH+, β Gal+/TH+ when the d4GFP cassette is germline deleted in Nestin-LSL-Flpo with a Dre-deleter (n=3). H) Genetically induced fate map breeding strategy. I) In TAM injected E9.5 \rightarrow E11.5 harvested brains, tdTomato+ progenitors (Sox6+) are located medially in the Lmx1a+ floor plate (n=3). J) TAM injected E9.5 \rightarrow P0 harvested brains stained for TH and tdTomato (n=6). K) Average number of tdTomato+,TH+ cells in the SNc and VTA of Sox6-CreERT2, Ai9 P0 brains (TAM at E9.5). tdTomato+ cells (derived from Sox6+ progenitors) are observed in the SNc and VTA. Scale bars: B, C: 100 μm, all other scale bars 50 μm. Error bars (D, G, K) and shaded areas (F) are SEM. NSF: Nestin-LSL-Flpo, SNc: substantia nigra pars compacta, VTA: ventral tegmental area.

Control Cases						PD Cases						
Case	Age (yrs)	Sex	Cause of death	Post-mortem delay (hs)	Case	Age (yrs)	Sex	Cause of death	Post-mortem delay (hs)	Braak stage	Disease duration (yrs)	
1	60	F	Ovarian cancer	13	15	67	Μ	PD, MSA	53	VI	8	
2	61	F	Ovarian cancer	15	16	70	F	Ischemic heart disease, PD	34	VI	15	
3	67	F	Metastatic ovarian cancer	32	17	72	F	Renal cancer	17	VI	10	
4	70	F	Sepsis, Stage IV peritoneal cancer, ischemic heart disease	45	18	72	М	Unknown	46	VI	26	
5	73	F	Chronic obstructive pulmonary disease	30	19	74	М	Unknown	52	VI	14	
6	74	F	Unknown	29	20	75	М	Bronchial pneumonia	26	VI	11	
7	78	F	Myeloid leukeamia	33	21	76	F	Unknown	19	VI	24	
8	83	F	Hyperglycemia	49	22	79	F	Congestive cardiac failure, PD	41	VI	10	
9	84	М	Bladder cancer, pneumonia	23	23	79	Μ	Aspiration pneumonia secondary to advanced PD	8	V	13	
10	84	Μ	Cardiac asthenia amyloid	34	24	82	F	PD, senile dementia	40	VI	14	
11	85	М	Unknown	12	25	82	М	Ischemic and degenerative heart disease, carcinoma liver	30	VI	11	
12	89	F	Unknown	22	26	83	F	Unknown	17	VI	19	
13	90	М	Respiratory failure secondary to bronchial cancer	12	27	86	F	End stage PD	48	VI	8	
14	91	F	Unknown	19	28	88	F	Ischemic heart disease	24	VI	21	
					29	92	F	Unknown	63	VI	19	

Supplementary Table I (related to Figure 1): Human control and Parkinson's disease cases in this study.

Age in years, sex, cause of death/additional diagnosis, post-mortem time elapsed before tissue samples were collected (PMD), Braak stage of PD, and disease duration in years of 14 control and 15 PD patients.