
Appendices

A Expressing EVSI as a Function of Opportunity Losses Instead of

Benefits

EVSI is typically defined as? ? :

EVSI = EX max
d

Eθ[B(d, θ)|X]−max
d

Eθ[B(d, θ)], (A.1)

where θ is the parameters of interest, X is a proposed data collection, B(d, θ) is the benefit from the

strategy d and the parameter values θ. Thus, the EVSI is the difference between the highest benefit

given new data X and the highest expected benefit with current information. Because, X is not

known, the first term is averaged across all possible values of X.

In this paper, we modify the definition of EVSI given by Equation (A.1) and express EVSI as a

function of the opportunity loss from choosing a sub-optimal decision rather than the benefits.

The second term in Equation A.1 is simply the average benefit of the optimal strategy d∗, where d∗ =

arg maxd Eθ[B(d, θ)], therefore, we can express (A.1) as

EVSI = EX max
d

Eθ[B(d, θ)|X]− EθB(d∗, θ).

According to the law of conditional expectation, this is equivalent to

EVSIθI = EX max
d

Eθ[B(d, θ)|X]− EXEθ[B(d∗, θ)|X]

or

EVSIθI = EX
[
max
d

Eθ[B(d, θ)|X]− Eθ[B(d∗, θ)|X]

]
.

Because the second term inside the squared brackets is not dependent on d, we further simplify this

equation as

EVSI = EX max
d

Eθ [{B(d, θ)− B(d∗, θ)}|X] .

Since L(d, θ) = B(d, θ) − B(d∗, θ) is the expected opportunity loss from choosing the optimal

intervention d∗ among all possible decisions d ∈ D, the set of decisions, given the parameter values θ,

Equation (A.1) can be expressed as a function of the opportunity loss as

1

EVSIθI = EX max
d

Eθ[L(d, θ)|X]. (A.2)

Thus, EVSI computes the maximum expected expected loss given new data X. Again, because X is

unknown the average is taken over all the possible values of X .

2

B R Code to Calculate EVPPI and EVSI

The two files provided below are used to apply our Gaussian approximation for EVSI. The first file

(EVSI GA Appendix.R) details each of the steps that are summarized in Box 1 of the main text. This

file also provides the R code for computing EVSI for several scenarios using this approach for a single

parameter, multiple parameters, and balanced and unbalanced designs. The second file

(GA functions.R) provides the predict.ga function that calculates the conditional loss L̃id by

computing the preposterior for each of the basis functions of the GAM model. This code can also be

downloaded from https://github.com/feralaes/VOI-Gaussian-Approximation. The version used

of the package mgcv was 1.8-17.

B.1 File 1: EVSI GA Appendix.R

To calculate EVSI using our GA approach on the example PSA dataset, make sure that the two R files

and the psa demo GA.csv dataset are located in the same folder, which should be specified as your

working directory by typing: setwd("your working directory here")

Load PSA

psa <- read.csv("psa_demo_GA.csv")

head(psa)

Create following matrices from your PSA

Net monetary benefit (NMB) matrix

nmb <- psa[, 5:7]

head(nmb)

Matrix of model parameter inputs values theta

theta <- psa[, 1:4]

head(theta)

Number of simulations

n.sim <- nrow(nmb)

Number of strategies

n.strategies <- ncol(nmb)

3

https://github.com/feralaes/VOI-Gaussian-Approximation

Load required packages and functions

For column and row stats

library(matrixStats)

To fit spline models

library(mgcv) # mgcv version 1.8-17

Functions to calculate the conditional loss by computing the

preposterior of each of the basis functions of the GAM model

source("Rcode/Appendix_Final/GA_functions.R")

Find optimal strategy (d*) based on the highest expected NMB

d.star <- which.max(colMeans(nmb))

d.star

Define the Loss matrix

loss <- nmb - nmb[, d.star]

EVPI

evpi <- mean(rowMaxs(as.matrix(loss)))

evpi

#========================#

Single parameter

#========================#

Generate linear metamodel of one parameter for each opportunity loss

Selected parameter for EVPPI & EVSI

sel.param <- 3

lmm1 <- gam(as.formula(paste("loss[, 1] ~ s(", colnames(theta)[sel.param], ")")),

data = theta)

lmm2 <- gam(as.formula(paste("loss[, 2] ~ s(", colnames(theta)[sel.param], ")")),

data = theta)

4

lmm3 <- gam(as.formula(paste("loss[, 3] ~ s(", colnames(theta)[sel.param], ")")),

data = theta)

Compute EVPPI on one parameter

Compute estimated losses

loss.hat <- cbind(lmm1$fitted, lmm2$fitted, lmm3$fitted)

Apply EVPPI equation

evppi <- mean(rowMaxs(loss.hat))

evppi

Compute EVSI on one parameter

Initial sample size

n0 <- 10

Additional sample size

n <- 100

Compute expected conditional loss for each strategy

Ltilde1 <- predict.ga(lmm1, n = n, n0 = n0)

Ltilde2 <- predict.ga(lmm2, n = n, n0 = n0)

Ltilde3 <- predict.ga(lmm3, n = n, n0 = n0)

Combine losses into one matrix

loss.tilde <- cbind(Ltilde1, Ltilde2, Ltilde3)

Apply EVSI equation

evsi <- mean(rowMaxs(loss.tilde))

evsi

#======================#

Two parameters

5

#======================#

Generate linear metamodel of two parameters for each opportunity loss

Select parameters for EVPPI & EVSI

sel.param1 <- 1

sel.param2 <- 3

sel.params <- c(sel.param1, sel.param2)

Estimate linear metamodel of two parameters

lmm1 <- gam(as.formula(paste("loss[, 1] ~ s(",

paste(colnames(theta[, sel.params]), collapse= ") + s("),

") + ti(",

paste(colnames(theta[, sel.params]), collapse= ", "),

")")), data = theta)

lmm2 <- gam(as.formula(paste("loss[, 2] ~ s(",

paste(colnames(theta[, sel.params]), collapse= ") + s("),

") + ti(",

paste(colnames(theta[, sel.params]), collapse= ", "),

")")), data = theta)

lmm3 <- gam(as.formula(paste("loss[, 3] ~ s(",

paste(colnames(theta[, sel.params]), collapse= ") + s("),

") + ti(",

paste(colnames(theta[, sel.params]), collapse= ", "),

")")), data = theta)

Compute EVPPI on two parameters

Compute estimated losses

loss.hat <- cbind(lmm1$fitted, lmm2$fitted, lmm3$fitted)

Apply EVPPI equation

evppi <- mean(rowMaxs(loss.hat))

evppi

6

Compute EVSI on two parameters Case 1: Same n0 and n

Initial sample size of each parameter

n0 <- c(10, 10)

Additional sample size

n <- c(100, 100)

Compute expected conditional loss for each strategy

Ltilde1 <- predict.ga(lmm1, n = n, n0 = n0)

Ltilde2 <- predict.ga(lmm2, n = n, n0 = n0)

Ltilde3 <- predict.ga(lmm3, n = n, n0 = n0)

Combine losses into one matrix

loss.tilde <- cbind(Ltilde1, Ltilde2, Ltilde3)

Apply EVSI equation

evsi <- mean(rowMaxs(loss.tilde))

evsi

Compute EVSI on two parameters Case 2: Different n0, same n

Initial sample size of each parameter

n0 <- c(10, 50)

Additional sample size

n <- c(100, 100)

Compute expected conditional loss for each strategy

Ltilde1 <- predict.ga(lmm1, n = n, n0 = n0)

Ltilde2 <- predict.ga(lmm2, n = n, n0 = n0)

Ltilde3 <- predict.ga(lmm3, n = n, n0 = n0)

Combine losses into one matrix

loss.tilde <- cbind(Ltilde1, Ltilde2, Ltilde3)

Apply EVSI equation

7

evsi <- mean(rowMaxs(loss.tilde))

evsi

Compute EVSI on two parameters Case 3: Different n0 and n

Initial sample size of each parameter

n0 <- c(10, 50)

Additional sample size

n <- c(100, 1000)

Compute expected conditional loss for each strategy

Ltilde1 <- predict.ga(lmm1, n = n, n0 = n0)

Ltilde2 <- predict.ga(lmm2, n = n, n0 = n0)

Ltilde3 <- predict.ga(lmm3, n = n, n0 = n0)

Combine losses into one matrix

loss.tilde <- cbind(Ltilde1, Ltilde2, Ltilde3)

Apply EVSI equation

evsi <- mean(rowMaxs(loss.tilde))

evsi

8

B.2 File 2: GA functions.R

predict.ga <- function(object, n, n0, verbose = T){

Function to compute the preposterior for each of the

basis functions of the GAM model.

Inputs:

- object: gam object

- n: scalar or vector of new sample size to compute evsi on

- n0: scalar or vector of effective prior sample size

- verbose: Prints the variance reduction factor for each parameter

Name of parameters

names.data <- colnames(object$model)

Create dataframe with parameter values

data <- data.frame(object$model[,-1])

Name columns of dataframe

colnames(data) <- names.data[-1]

Number of parameters

n.params <- ncol(data)

Sanity checks

if(!(length(n)==1 | length(n)==n.params)){

stop("Variable ’n’ should be either a scalar or a vector

the same size as the number of parameters")

}

if(!(length(n0)==1 | length(n0)==n.params)){

stop("Variable ’n0’ should be either a scalar or a vector

the same size as the number of parameters")

}

Make n & n0 consistent with the number of parameters

9

if(length(n) == 1){

n <- rep(n, n.params)

}

if(length(n0) == 1){

n0 <- rep(n0, n.params)

}

Compute variance reduction factor

v.ga <- sqrt(n/(n+n0))

if (verbose){

print(paste("Variance reduction factor =", round(v.ga, 3)))

}

Number of smoothers

n.smooth <- length(object$smooth)

Number of total basis functions

n.colX <- length(object$coefficients)

Number of observations

n.rowX <- nrow(object$model)

Initialize matrix for preposterior of total basis functions

X <- matrix(NA, n.rowX, n.colX)

X[, 1] <- 1

for (k in 1:n.smooth) { # k <- 1

klab <- substr(object$smooth[[k]]$label, 1, 1)

if (klab == "s"){

Xfrag <- Predict.smooth.ga(object$smooth[[k]], data, v.ga[k])

} else {

Xfrag <- Predict.matrix.tensor.smooth.ga(object$smooth[[k]], data, v.ga)

}

10

X[, object$smooth[[k]]$first.para:object$smooth[[k]]$last.para] <- Xfrag

}

Coefficients of GAM model

Beta <- coef(object)

Compute conditional Loss

Ltilde <- X %*% Beta

return(Ltilde)

}

Predict.smooth.ga <- function (object, data, v.ga = 1) {

Function to compute the preposterior for each of the

basis functions of a smooth for one parameter

Produce basis functions for one parameter

X <- PredictMat(object, data) # mgcv version 1.8-17

Number of observations

n.obs <- nrow(X)

Apply variance reduction to compute the preposterior

for each of the basis functions

Vector of ones

ones <- matrix(1, n.obs, 1)

Compute phi on each of the basis function

X.ga <- v.ga*X + (1-v.ga)*(ones %*% colMeans(X))

return(X.ga)

}

11

Predict.matrix.tensor.smooth.ga <- function (object,

data,

v.ga = rep(1, ncol(data))){

Function to compute the preposterior for each of the

basis functions for one or more parameters and calculates

the tensor product if more than one parameter is selected

(Heavily based on function Predict.matrix.tensor.smooth from

mgcv package)

m <- length(object$margin)

X <- list()

for (i in 1:m) { # i <- 1

term <- object$margin[[i]]$term

dat <- list()

for (j in 1:length(term)) { # j <- 1

dat[[term[j]]] <- data[[term[j]]]

}

X[[i]] <- if (!is.null(object$mc[i])) # before: object$mc[i]

PredictMat(object$margin[[i]], dat, n = length(dat[[1]])) # mgcv version 1.8-17

else Predict.matrix(object$margin[[i]], dat)

n.obs <- nrow(X[[i]])

} # end for ’i’

mxp <- length(object$XP)

if (mxp > 0)

for (i in 1:mxp) if (!is.null(object$XP[[i]]))

X[[i]] <- X[[i]] %*% object$XP[[i]]

Apply variance reduction to compute the preposterior

for each of the basis functions

Vector of ones

ones <- matrix(1, n.obs, 1)

12

Initialize and fill list with preposterior of basis functions

for each parameter

X.ga <- list()

for (i in 1:m) { # i <- 1

X.ga[[i]] <- v.ga[i]*X[[i]] + (1-v.ga[i])*(ones %*% colMeans(X[[i]]))

}

Compute tensor product

T.ga <- tensor.prod.model.matrix(X.ga) # mgcv version 1.8-17

return(T.ga)

}

13

C Indirect methods for calculating n0

Because the direct method is only possible for a limited set of prior-likelihood combinations, we

propose a couple of indirect methods that can be applied in many cases, including situations in which

the prior and data likelihoods are not conjugate. In Box 2 of the main text we provide a summary of

this approaches and here we provide a more detailed step-by-step approach in addition to the

associated R codes for a beta-binomial example.

The indirect method involves computing n0 by generating new data from the prior and the likelihood

function.

C.1 Detailed Algorithms for computing n0

C.1.1 Using a summary statistic S

This approach requires simulating data from the prior and then generate data from the likelihood. In

cases where the likelihood is non-Gaussian, a summary statistic is needed. However, calculating a

summary statistic may not always be trivial. For such cases, we propose an indirect MCMC approach

that does not require computing the summary statistic, which is detailed in the next subsection. The

steps to estimate n0 using the summary statistic approach are

1. Draw m random samples from the prior distribution of θI .

2. For each random sample θ
(i)
I , where i = {1, ...,m}, draw n samples of x from the distribution of

the data likelihood. n can be any positive integer, the larger the n, the more accurate n0 is.

3. Compute a summary statistic S(i) from the n samples for each θ
(i)
I prior value.

4. Estimate n0 using Equation (??):

n̂0 = n

(
Var(S)

Var(θI)
− 1

)
,

where all the variables are as previously described. In appendix C.2, we provide the R code to

compute n0 using a GA for Experiments 1 and 2 described in Table (1), and an additional

gamma-Poisson experiment.

14

C.1.2 Using MCMC

Computing n0 using Markov-chain Monte-Carlo (MCMC) does not require calculating a summary

statistic. However, in addition of generating new data from the likelihood function, it is necessary to

obtain the preposterior distribution as follows:

1. Draw m random samples from the prior distribution of θI . For each random sample θ
(i)
I , where

i = {1, ...,m}, draw n samples from the distribution of the data likelihood. n can be any positive

integer, the larger the n, the more accurate n0 is.

2. Take q samples from the posterior distribution of θ|x(i). Then, we calculated the posterior mean

for each value of θ
(i)
I , such that φ(i) = 1

q

∑q
k=1 θ

(k)|x(i).

3. From Equation (??), n0 can be estimated as

n̂0 = n

(
Var(θI)

VarX(φ)
− 1

)
, (C.1)

where all the variables are as previously described. In appendix C.2, we provide the R code to

compute n0 uisng MCMC for Experiments 1 and 3 described in Table (1).

C.2 R Code to estimate n0

Using a summary statistic S

Beta-binomial The R code below illustrates how to estimate n0 from a probability parameter that

follows a beta distribution p ∼ beta(a = 12, b = 8), and a binomial likelihood for the proposed

experimental data collection x ∼ binomial(p, n = 50), where n is the new sample size. First, draw m

samples of p from the prior. Second, for each simulated p(i) draw one x(i) value from the likelihood,

where i = 1, . . . ,m. Third, compute the summary statistic S(i) = x(i)

n . Finally, estimate n0 using

Equation (??). The predicted n0 from this example was 21.93 which was close to the true

n0 = a+ b = 20.

beta-binomial

1. Obtain samples of theta from the prior distribution in R

15

a <- 12 # alpha parameter for the beta prior distribution theta~beta(a,b)

b <- 8 # beta parameter for the beta distribution

nSample <- 1000 # Number of samples from the prior

Draw sample

theta <- rbeta(nSample, a, b)

Compute variance of theta

var.theta <- var(theta)

2. Obtain experimental data from the data likelihood in R

S <- numeric(nSample) # Initialize summary statistic S vector

n <- 50 # Additional data collections

Generate data and compute summary statistic S

for (i in 1:nSample){

k <- rbinom(1, n, theta[i])

S[i] <- k/n

}

Compute variance of S

var.S <- var(S)

Estimate n0

n0.hat <- n*(var.S/var.theta-1)

n0.hat

Gamma-exponential The R code below illustrates how to estimate n0 from a rate λ that follows a

gamma distribution, λ ∼ gamma(a = 20, b = 0.1), and an exponential likelihood for the proposed

experimental data collection x ∼ Exp(λ). First, draw m samples of λ from the prior. Second, for each

simulated λ(i) we draw x
(i)
j values from the likelihood, where i = 1, . . . ,m and j = 1, . . . , n. Third,

compute the summary statistic S(i) = 1
1
n

∑n
j=1 x

(i)
j

. Finally, estimate n0 using Equation (??). The

predicted n0 from this example was 25 which was close to the true n0 = a = 20.

Gamma-exponential

1. Obtain samples of theta from the prior distribution in R

16

a <- 20 # alpha parameter for the gamma prior distribution theta~gamma(a,b)

b <- 0.1 # beta parameter for the gamma distribution

nSample <- 10000 # Number of samples from the prior

Draw sample

theta <- rgamma(nSample, shape = a, scale = b)

Compute variance of theta

var.theta <- var(theta)

2. Obtain experimental data from the data likelihood in R

S <- numeric(nSample) # Initialize summary statistic S vector

n <- 100 # Additional data collections

Generate data and compute summary statistic S

for (i in 1:nSample){

k <- rexp(n, theta[i])

S[i] <- 1/mean(k)

}

Compute variance of S

var.S <- var(S)

Estimate n0

n0.hat <- n*(var.S/var.theta-1)

n0.hat

Gamma-Poisson In addition to estimate n0 on Experiments 1 and 2 using the summary statistic

method, we also demonstrate the approach with a gamma-Poisson experiment. The R code below

illustrates how to estimate n0 from a rate λ that follows a gamma distribution,

λ ∼ gamma(a = 50, b = 0.01), and a Poisson likelihood for the proposed experimental data collection

x ∼ Poisson(λ). First, draw m samples of λ from the prior. Second, for each simulated λ(i) we draw

x
(i)
j values from the likelihood, where i = 1, . . . ,m and j = 1, . . . , n. Third, compute the summary

statistic S(i) = 1
n

∑n
j=1 x

(i)
j . Finally, estimate n0 using Equation (??). The predicted n0 from this

example was 104 which was close to the true n0 = 1/b = 100.

17

Gamma-Poisson

1. Obtain samples of theta from the prior distribution in R

a <- 50 # alpha parameter for the gamma prior distribution theta~gamma(a,b)

b <- 0.01 # beta parameter for the gamma distribution

nSample <- 10000 # Number of samples from the prior

Draw sample

theta <- rgamma(nSample, shape = a, scale = b)

Compute variance of theta

var.theta <- var(theta)

2. Obtain experimental data from the data likelihood in R

S <- numeric(nSample) # Initialize summary statistic S vector

n <- 50 # Additional data collections

Generate data and compute summary statistic S

for (i in 1:nSample){

k <- rpois(n, theta[i])

S[i] <- mean(k)

}

Compute variance of S

var.S <- var(S)

Estimate n0

n0.hat <- n*(var.S/var.theta-1)

n0.hat

C.2.1 Using MCMC

Below we provide two examples to compute n0 using MCMC. The first example involves a beta prior

and a binomial data likelihood, and the second example involves a normal prior and a Weibull data

likelihood.

18

Beta-binomial The R code below illustrates how to estimate n0 from a probability parameter that

follows a beta distribution p ∼ beta(a = 12, b = 8), and a binomial likelihood for the proposed

experimental data collection x ∼ binomial(p, n = 50), where n is the new sample size. The code below

can be modified for various data collection exercises. The code first generates samples for x, then

passes these samples to JAGS to obtain the posterior distribution of p|x. Then it calculates the

posterior mean, and computes n0 per Equation (C.1). The predicted n0 from this example was 21.17

which was close to the true n0 = a+ b = 20.

library(R2jags)

library(matrixStats)

1. Obtain experimental data from the data likelihood in R

a <- 12 # alpha parameter for the beta prior distribution p~beta(a,b)

b <- 8 # beta parameter for the beta distribution

n <- 50 # additional data collections

nSample <- 2000

x <- matrix(0, nSample, 1) # initialize the new data matrix

p <- rbeta(nSample, a, b) # prior distribution of p

for (i in 1:nSample){ # For each prior value, conduct an experiment of size n

x[i] <- rbinom(1, n, p[i]) # likelihood: x|p

}

2. Obtain the posterior distribution & compute the posterior means

test.model <- function() {

for (i in 1:nSample){

p[i] ~ dbeta(a, b) #prior distribution of p

x[i,1] ~ dbin(p[i], n) # likelihood: x|p

}

}

linedata <- list(x = x, n = n, nSample = nSample, a = a, b = b)

test.sim <- try(jags(data = linedata, inits = NULL, model.file = test.model,

parameters.to.save = c("p"),

n.chains = 1, n.iter = 11000, n.burnin = 1000, n.thin = 1,

progress.bar = "text"))

19

post.p <- test.sim$BUGSoutput$sims.list$p #get the posterior distribution sample

prepost <- colMeans(post.p) #obtain the preposterior distribution from the posterior mean of p

var.prior <- var(p) #prior variance

var.prepost <- var(prepost) #preposterior variance

n0.hat <- n * (var.prior / var.prepost - 1) #predicted prior sample size

n0.hat #21.17 compared to a+b = 12+8 = 20.

Normal-Weibull First, draw m samples θ
(1)
I , ..., θ

(m)
I from the prior distribution of θI ∼ Normal(µ =

1, σ2 = 0.04). For each value of θ
(i)
I , i = {1, ...,m}, take j = {1, ..., n} samples from the data likelihood,

such that x(i,j) ∼ Weibull(v = 1, λ = 1/θ(i)). Obtain q samples from the posterior distribution of θ|x(i).

Then, calculate the posterior mean for each value of θ
(i)
I , such that φ(i) = 1

q

∑q
k=1 θ

(k)|x(i). Finally,

estimate n0 from Equation (C.1), which was approximately 25.

require(R2jags)

shape <- 1 # Weibull shape parameter

n <- 100 # additional data collections

m <- 1000 #number of prior samples

q <- 2000 #number of posterior samples

n.burnin <- 200 # number of burnin posterior values

x <- matrix(0, m, n) # initialize the new data matrix

theta <- rnorm(m, 1, 0.2) # prior distribution of theta

for (i in 1:m){ # For each prior value, conduct an experiment of size n

x[i,] <- rweibull(n, 1, theta[i]) # likelihood: x|p

}

2. Obtain the posterior distribution & compute the posterior means

test.model <- function() {

tau <- 1/pow(0.2,2)

for (i in 1:m){

theta[i] ~ dnorm(1, tau) #prior distribution of theta

lambda[i] <- 1/pow(theta[i], v)

for (j in 1:n)

20

{

x[i,j] ~ dweib(shape, lambda[i]) # likelihood: x|p

}

}

}

linedata <- list(x = x, n = n, m = m, shape = shape)

test.sim <- try(jags(data = linedata, inits = NULL, model.file = test.model,

parameters.to.save = c("theta"),

n.chains = 1, n.iter = q + n.burnin, n.burnin = n.burnin, n.thin = 1,

progress.bar = "text"))

post.p <- test.sim$BUGSoutput$sims.list$theta #get the posterior distribution sample

prepost <- colMeans(post.p) #obtain the preposterior distribution from the posterior mean of p

var.prior <- var(theta) #prior variance

var.prepost <- var(prepost) #preposterior variance

n0.hat <- n * (var.prior / var.prepost - 1) #predicted prior sample size

n0.hat #24.8

21

D Markov Model Description

The Markov Model simulated a hypothetical cohort of 30-year old patients with a genetic disorder

(syndrome X) who can be in one of three health states, well, disabled and dead (Figure D.1).

Syndrome X is mostly asymptomatic, but may cause a sudden flare-up that may necessitate

hospitalization. There are three alternatives available for preventing progression to permanent

disability: A, B and C, where C is standard care. If treatment fails, permanent disability occurs and

quality of life (QoL) decreases from 1.0 to 0.8. For ease of calculations, we assumed that patients face a

constant annual mortality rate of 0.044. In addition, syndrome X is assumed to be associated with a

0.5% increase in absolute mortality. Furthermore, if disabled, mortality rate is assumed to increase by

an additional 1%. The cycle length is one year. The willingness to pay threshold (WTP) for this

analysis is $50K/QALY and both benefits and costs are discounted by 5% annually. The model

parameters are summarized in Table D.1.

Four parameters in the model are uncertain and their corresponding sampling distributions are shown

in Figure D.2. Figure D.3 shows the nonlinear relation between the parameters of the Markov model

and the estimated benefits from an analysis where we varied each parameter while holding the rest of

the parameters fixed at their mean values. The parameters representing the mean number of visits for

intervention A and B have a linear relation with the NMB. However, the probability of failing A and B

have a nonlinear relation with their respective interventions. This is because Markov models are

typically linear in state payoffs, but non-linear in the state-transition probabilities. The n0 is 10 for all

parameters, which can be easily confirmed from the distribution characteristics of these parameters and

their corresponding data likelihoods in Table D.1.

22

Tables

Table D.1: Description of Markov model parameters in case study 2.

Parameter Distribution Mean Shape Scale

Number of hospital visits (intervention A) Gamma 1.0 10 0.1

Number of hospital visits (intervention B) Gamma 2.0 20 0.1

Number of hospital visits (intervention C) Constant 2.8

Annual probability of failing A Beta 0.2 2 8

Annual probability of failing B Beta 0.3 3 7

Annual probability of failing C Constant 0.2

QoL weight while disabled Constant 0.8

Annual mortality rate Constant 0.044

Absolute increase in annual mortality rate of well Constant 0.005

Absolute increase in annual mortality rate of disabled Constant 0.010

Annual cost of intervention A Constant $10,000

Annual cost of intervention B Constant $2,000

Annual cost of intervention C Constant $100

Annual cost of disabled Constant $5,000

Cost per hospital visit Constant $5,000

23

Table D.2: Number and percent of simulations being optimal, and expected net monetary benefit for

each intervention

Intervention Simulations being optimal (%) Benefit

A 2,847 (28.5) $445,179

B 4,586 (45.9) $449,543

C 2,567 (25.7) $445.305

Total 10,000

For value of information, we measure benefits in monetary terms.

24

Figures

Figure D.1. A simplified diagram of the Markov model. The ovals represent the Markov health states.

A patient can be in one of the three distinct states: well, disabled or dead. Only transitions in the

direction of the arrows are allowed.

Figure D.2. Probabilistic distributions of the uncertain model parameters. Distribution characteristics

are described in Table D.1.

Figure D.3. Examining the degree of linearity between the NMBs and the individual parameters. The

NMB is reevaluated after changing the value of each parameter and holding the rest of the parameters

at their mean values.

25

Figure D.1:

Well

DeadDisabled

26

Figure D.2:

Mean.No..Visits.A. Mean.No..Visits.B.

Prob..Failing.A Prob..Failing.B

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 1 2 3 4

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

27

Figure D.3:

Hawre
Typewritten Text
28

Hawre
Typewritten Text

	Appendices
	Expressing EVSI as a Function of Opportunity Losses Instead of Benefits
	R Code to Calculate EVPPI and EVSI
	File 1: EVSI_GA_Appendix.R
	File 2: GA_functions.R

	Indirect methods for calculating n0
	Detailed Algorithms for computing n0
	Using a summary statistic S
	Using MCMC

	R Code to estimate n0
	Using MCMC

	Markov Model Description

