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This Supplementary Information is organized as follows. Supplementary Note 1 provides a proof that isotropic phonon is
topological. We show that the relevant topological charge π2(O(3)/O(1) × O(2)) is given by the tuple q=(nsk, e), where nsk

is the skyrmion number and e is the Euler number. We also show that e=2nsk. In Supplementary Note 2, the Euler number
of isotropic phonons (e=2) is explained in terms of the Chern numbers of eigenstates in the helicity sectors. In Supplementary
Notes 3 and 4, we discuss effective Hamiltonians describing the the topological acoustic triple points (TATP)s. In Supplementary
Note 3, we focus on the elastic continuum theory which describes the acoustic phonons, and in Supplementary Note 4, we discuss
the k.p theory at high-symmetry points. In Supplementary Note 5, we prove that under a PT symmetric perturbation that breaks
the triple degeneracy of a TATP, the TATP evolves into nodal lines with a linking structure. We also provide the parameters used
to obtain the linking structures shown in Figs. 4 and 5 in the main text. Supplementary Note 6 discusses nodal lines emanating
from the TATP. Especially, our convention for counting nodal lines, which is used to relate the Euler number and the number of
nodal lines, is precisely defined. In Supplementary Note 7, we provide details on the 3D Lieb lattice model. In Supplementary
Note 8, we study how boundary conditions affects the appearance of surface localized states. We compare the surface states with
the Dirichlet and free boundary conditions. In Supplementary Note 9, we discuss the phonon angular momentum accumulated
at the edges from the phonon angular momentum Hall effect, by separately considering the contributions from the bulk and the
surface localized modes.
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Supplementary Note 1. PROOF THAT ISOTROPIC
PHONON IS TOPOLOGICAL

In this Supplementary Note, we study the topological
charge q in detail. We also refer the readers to Refs. 1–3,
where similar results were also obtained. As in the main
text, we use the dynamical matrix of isotropic phonon as the
model Hamiltonian, whose matrix components are given by
[Dk]αβ = v2

T k
2δαβ + (v2

L − v2
T )kαkβ .

In general, when the system has both the time reversal sym-
metry T (T 2 = 1) and the inversion symmetry P (P2 = 1),
or the combined symmetry PT , the Hamiltonian can always
be chosen to be real by choosing the gauge in whichPT = K,
where K is the complex conjugation operator. Because there
is also a gap between the longitudinal and the transverse
modes away from k = 0, the Hamiltonian can be written as
εTk,Lεk,L− εTk,T1

εk,T1
− εTk,T2

εk,T2
after sending the energy of

the longitudinal mode (L) to 1 and the transverse modes (T1

and T2) to −1. Equivalently,

Hk = ETk

1 0 0
0 −1 0
0 0 −1

Ek, Ek =

 εk,L
εk,T1

εk,T2

 . (1)

Since Ek ∈ O(3) and the Hamiltonian is invariant under
Ek → FkEk with Fk ∈ O(1)×O(2), the topological charge
of the triple point at k = 0 can be characterized by the second
homotopy group of the classifying spaceO(3)/[O(1)×O(2)].

Because we choose a base point when computing the homo-
topy, we can assume that the classifying space B is connected
to the identity: B = SO(3)/S[O(1)×O(2)], where S[O(1)×
O(2)] is the subgroup of O(1)× O(2) with unit determinant.
The space SO(3)/S[O(1) × O(2)] can be viewed as a fiber
bundle with base space B = SO(3)/S[O(1) × O(2)], total
space E = SO(3), and fiber F = S[O(1) × O(2)]. It is use-
ful to note that F consists of two types of matrices, once we
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kx

ky
s0

Supplementary Figure 1. Evaluating the topological charge. a,
Illustration of D2, its boundary S1 (red line), and the base point s0
(blue dot). The orientation of the boundary is indicated with the red
arrows. b, D2 can be mapped to the sphere as shown. The points to
which S1 is mapped is indicated by the red line with the orientation
indicated by the red arrows.

choose a representation of F :1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 ,

−1 0 0
0 − cos θ − sin θ
0 − sin θ cos θ

 . (2)

Therefore, F has two connected components F+ and F−,
characterized by the sign of the determinant ofO(1), or equiv-
alently the sign of the determinant of O(2), which is ±1,
which corresponds to F±. We are interested in computing
πn(B, b0), where b0 ∈ B is the base point. To do this, we can
examine the exact sequence for fibration [4]:

· · · → πn(F, x0) −→ πn(E, x0)
p∗−→ πn(B, b0)

−→ πn−1(F, x0)→ · · · → π0(E, x0), (3)

where p is a projection map p : E → B and x0 ∈ F =
p−1(b0). Because we fix the base point when computing the
homotopy group, we can take F to be the component con-
nected to the identity, i.e. F+, which is topologically equiv-
alent to the group SO(2) (or equivalently, a circle). We
find it useful to note that the above sequence is actually a
consequence of the following exact sequence for pairs be-
cause the projection map p induces the isomorphism p∗ :
πn(E,F, x0)→ πn(B, b0) for n ≥ 1:

· · · → πn(F, x0)
i∗−→ πn(E, x0)

j∗−→ πn(E,F, x0)

∂−→ πn−1(F, x0)→ · · · → π0(E, x0) (4)

Here, the map i∗ and j∗ are induced by the inclusions i :
(F, x0) ↪→ (E, x0) and j : (X,x0, x0) ↪→ (X,F, x0). The
map ∂ is induced by restricting the map (Dn, Sn−1, s0) →
(E,A, x0) to Sn−1, where Dn is the n-dimensional disk,
Sn−1 is the (n − 1)-dimensional sphere, and s0 is a point
in Sn−1.

The part of the above sequence that we need is:

· · ·π2(E, x0)
j∗−→π2(E,F, x0)

∂−→π1(F, x0)
i∗−→ π1(E, x0) · · · (5)

Using the homotopy data [5] for SO(n), this sequence be-
comes

· · · 0 j∗−→ π2(E,F, x0)
∂−→ Z i∗−→ Z2 · · · (6)

Thus, π2(E,F, x0) = 2Z, and ∂ is an injective map of
π2(E,F, x0) into the kernel of i∗. Thus, nontrivial ele-
ments of π2(E,F, x0) can be characterized by maps r :
(D2, S1, s0) → (E,F, x0) such that S1 is mapped to F =
SO(2) ∼= S1 with two windings.

Using this, we can prove that the acoustic phonon modes
are topologically nontrivial. The unit normalized phonon po-
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larization vectors are

εk,L =
1

k
(kx, ky, kz) (7)

εk,T1
=

1

k̃
(−ky, kx, 0) (8)

εk,T2
=

1

k̃k
(−kxkz,−kykz, k2

x + k2
y). (9)

The goal is to compute the topological charge π2(B, b0) ∼=
π2(E,F, x0) defined on a sphere S2 with origin at k = 0 in
the momentum space. First, we note that

Ek =

 εk,L
εk,T1

εk,T2

 ∈ SO(3). (10)

Since D2 can be identified with the sphere in the momentum
space as illustrated in Supplementary Figure 1a, Ek can be
viewed as a map fromD2 to SO(3)/S[O(1)×O(2)] which is
well-defined everywhere on D2. (When we view Ek as a map
from the sphere to E, singularities arise at the N and S poles.)

Now, let us consider the following rotation matrix

Rk(t) =

 cos t(θ − π
2 ) 0 sin t(θ − π

2 )
0 1 0

− sin t(θ − π
2 ) 0 cos t(θ − π

2 )

 (11)

where k = k(sin θ cosφ, sin θ sinφ, cos θ). Notice thatRk(t)
is nothing but the rotation about the y axis by the angle
t(θ − π

2 ). When t = 0, we see that it is the identity map,
while for t 6= 0, it is a continuous function of θ on S2. There-
fore, Ek(t) = EkRk(t) defines a continuous deformation of
an element in π2(B, b0). Here, we note that the energy gap
between the longitudinal and the transverse modes is always
preserved under this transformation. Also, because the defor-
mation is identity at θ = π/2, the base point is preserved un-
der this deformation if we choose x0 to be the identity matrix
in SO(3), to which s0 is mapped under Ek, see Supplemen-
tary Figure 1. Now, Ek(1) = EkRk(1) is an element of the
component connected to the identity in F as we trace along S1

(the boundary of D2), so that Ek(1) ∈ π2(E,F, x0). There-
fore, the topological charge π2(B, x0) ∼= π2(E,F, x0) can be
computed by counting the winding number in F of the map
Ek(1) when k is restricted to S1 (the boundary of D2): Near
the N pole, we have

Ek(1) =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 , (12)

and near the S pole, we have

Ek(1) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (13)

while Ek(1) is constant along the line connecting the north
and the south poles. Since the north pole is traversed coun-

terclockwise while the south pole is traversed clockwise, we
see that S1 winds twice in F ∼= S1, i.e. the charge is
2 ∈ π1(F, x0). As we explain below, this topological charge
is nothing but the Euler number [6, 7] e of the transverse
modes. Let us also observe that the longitudinal mode has
nonzero skyrmion number nsk.

To make the connection to the Euler number e, let us be-
gin by noting that the space B = SO(3)/S[O(1) × O(2)]
can be thought of unoriented planes embedded in R3. Be-
cause all vector bundles over S2 can be oriented [8], we can
choose a map from S2 to B to lie in B+ = SO(3)/F+ =
SO(3)/[SO(1) × SO(2)], which is nothing but the space of
oriented planes. Alternatively, we can also choose the map to
lie in B− = SO(3)/F−, which will be discuss later. Since
oriented planes are determined by an ordered pair of orthonor-
mal vectors, the fiber bundle can be identified with the sphere
bundle (fiber bundle with fiber S1). It is well known that such
bundles are characterized by the Euler number. The Euler
number can be computed by choosing a section, which can
always be done over S2 − {x1, ..., xk} for finite non-negative
integer k (sphere minus finite number of points xi), and count-
ing the winding number around the points at which the section
is not well-defined [9]. This is essentially what we have done
during the computation of π2(B, x0). Another simple way
to see that the transverse modes must be characterized by the
Euler number is that the transverse modes form a basis for the
tangent space to the sphere S2.

Because we choose an ordered basis for the planes, nor-
mal vector to the oriented plane is fixed by the oriented plane
through the cross product of the ordered basis (and vice versa).
The normal vector to the oriented plane is nothing but the line
bundle, and because the line bundle on S2 is always trivial [8],
we can choose a global section. Because such a section is a
map from S2 (sphere in the momentum space) to S2 (normal-
ized longitudinal mode), its topological nature can be charac-
terized by π2(S2) = Z. Since the skyrmion number of the
longitudinal mode is 1, we see that π2(B+, x0) is equivalent
to twice the skyrmion number nsk of the vector characterizing
the oriented plane (that is, the longitudinal mode), and it is
also equivalent to the Euler number e formed by the oriented
planes: π2(B+, x0) = 2nsk = e.

Although we have restricted the discussion above to
π2(B+, x0), the Hamiltonian is in reality characterized by
π2(B, x0). The difference here is that the orientation of the in-
dividual O(1) and O(2) sectors are not determined, and only
the orientation of the O(1) × O(2) can be fixed. Because
we can always choose to orient the vector bundle, we con-
clude this section by carrying out a similar discussion for the
topological charge π2(B−, x0). This can easily be done by
performing the transformation Ek → EkRz(π), where

Rz(π) =

−1 0 0
0 −1 0
0 0 1

 (14)

is the rotation about the z axis by π. Then, the previous dis-
cussion on π2(B+, x0) applies without change except that F+

is now replaced by F−. Since Rz(π) reverses the orientation
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of the longitudinal mode and the transverse modes, the trans-
formation reverses the signs of e and nsk. Therefore, we see
that by fixing an orientation for the vector bundles, we have
π2(B, x0) = ±2nsk = ±e (The sign is + if we confine to
B+, while it is − if we confine to B−). Therefore, the topo-
logical charge can be characterized by q = (nsk, e), where nsk

is computed for the longitudinal mode, and e is computed for
the transverse modes.

To conclude, because we can choose orientation for the
fiber bundle in this case, the topological charge can be charac-
terized by the Euler number, which is equivalent to twice the
skyrmion number. Also, although the sign of nsk and e are not
determinate in the sense that we can choose the fiber to lie in
B+ or B−, there is no ambiguity in π2(B, x0).

Supplementary Note 2. EULER NUMBER AS CHERN
NUMBERS OF HELICITY SECTORS

As explained in the main text, we can explain the Euler
number for the isotropic phonon Hamiltonian by computing
the Chern numbers in the helicity sectors. One way to do
this is to introduce a Zeeman coupling along the z direction,
V = Lzh, where the Lρ are the usual angular momentum
matrices:

Lx =

0 0 0
0 0 −i
0 i 0

 , (15)

Ly =

 0 0 i
0 0 0
−i 0 0

 , (16)

Lz =

0 −i 0
i 0 0
0 0 0

 . (17)

Using the degenerate perturbation theory for the transverse
modes, the zeroth order eigenstates are εk,L, 1√

2
(εk,T1

+

iεk,T2), 1√
2
(εk,T1 − iεk,T2). These states are also eigenstates

of the helicity operator k̂ · L with eigenvalues given respec-
tively by 0, 1, and −1. Note that the Zeeman coupling lifts
the degeneracy of the transverse modes, since the lowest cor-
rections to the energy of the transverse modes with helicity 1

and −1 are given by E(0)
T + h and E(0)

T − h, where E(0)
T is

the energy of the transverse modes without the perturbation.
It is straightforward to show that the Berry curvature for each
of the helicity sectors with helicity eigenvalues 0, 1, and −1

are 0,− k̂
k2 , and k̂

k2 , respectively. Thus, the Chern numbers for
each of the sectors are 0, −2, and 2, respectively. Therefore,
the Wilson loop spectrum for the ±1 helicity sectors should
show a winding structure just like the state with e = 2. Since
this remains true in the limit h → 0, we see that the Wilson
loop spectrum in the main text can be explained using Chern
numbers of the helicity sectors.
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Supplementary Note 3. ELASTIC CONTINUUM
HAMILTONIAN

In this Supplementary Note, we review the theory of elastic
continuum [10, 11].

Convention

We first set down the conventions used in this work for
the theory of elasticity. First, the stress tensor σij and the
strain tensor uij are related by elastic modulus tensor λijkl
(i, j, k, l = x, y, z):

σij = λijklukl. (18)

Here, the strain and the stress tensors are symmetric,

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, σij = σji (19)

where ui is the displacement along the ith direction, and xi =
(x)i = (x, y, z)i. The elastic modulus tensor satisfy

λ(ij)(kl) = λ(kl)(ij) = λ(ji)(kl) = λ(ij)(lk). (20)

Here, we denote the subindices with the parentheses to em-
phasize the symmetry properties of the elastic modulus tensor.
It follows that the elastic modulus tensor λijkl has a maximum
of 21 independent components. The elastic energy density is
given by

U [u] =
1

2
λijkluijukl. (21)

The Lagrangian density L[u̇,u] of the deformed system is ex-
pressed as

L[u̇,u] =
1

2
ρu̇2

i − U [u], (22)

where u̇ = ∂tu. Thus, the dynamics of elastic system is de-
scribed by

ρüi =
∂

∂xj
σij , (23)

which can be obtained from the Lagrangian density by using
the variational principle. Its Fourier transformation is

ω2
kui(k) =

[
ρ−1λiljmklkm

]
uj(k) ≡ D(k)ijuj(k), (24)

where D(k) is called the dynamical matrix. For notational
simplicity, we absorb the mass density ρ into the elastic modu-
lus tensor, so thatD(k)ij = λiljmklkm. Let us note that in the
main text, we used the notations Ek = ω2

k and Hk = D(k).

We can simplify Eq. (18) with the help of the Voigt nota-
tion:

σ1 = σxx, σ4 = σyz, ε1 = uxx ε4 = 2uyz, (25)
σ2 = σyy, σ5 = σzx, ε2 = uyy ε5 = 2uzx, (26)
σ3 = σzz, σ6 = σxy, ε3 = uzz ε6 = 2uxy. (27)

Now, Eq. (18) becomes σI = CIJεJ (I, J = 1, . . . , 6). In
terms of λijkl, the elastic tensor CIJ is expressed as

CIJ =


λxxxx λxxyy λxxzz λxxyz λxxxz λxxxy

λyyyy λyyzz λyyyz λxzyy λxyyy
λzzzz λyzzz λxzzz λxyzz

λyzyz λxzyz λxyyz
λxzxz λxyxz

λxyxy


IJ

.

(28)

Note that CIJ is symmetric, and we explicitly wrote down
only its upper triangular part.

Symmetry properties

For the classification of the elastic continuum Hamiltonian in a 3D crystal, it suffices to consider the 32 crystallographic point
groups. To find the constraints due to one of the point groups G, let the matrix representation of an element G ∈ G be G̃. Then,
λijkl satisfies

λijkl = G̃imG̃jnG̃koG̃lpλmnop. (29)

By imposing the point group symmetries, it is known that there are 9 classes elastic tensors, see Ref. 10. Here, we will focus on
the trigonal and the cubic crystal systems.

Trigonal

The point groups 3 = C3, 3m = C3v , 3 = S6 = C3i, 32 = D3, and 3m = D3d belong to trigonal crystal system. There are
two classes of elastic tensor CIJ belonging to the trigonal crystal system, depending on the presence of either a twofold rotation
symmetry or a mirror symmetry.

(i) Trigonal I: The point groups 3 and 3 lack a twofold rotation symmetry or a mirror symmetry. Then, λijkl has 7 independent
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elements, which can be organized using the Voigt notation as follows:

CIJ =


C11 C12 C13 C14 C15

C11 C13 −C14 −C15

C33

C44 −C15

C44 C14
1
2 (C11 − C12)


IJ

. (30)

(ii) Trigonal II: The point groups 32, 3m, and 3m have either a twofold rotation symmetry or a mirror symmetry, which kills
C15. Then, λijkl has 6 independent elements, which can be organized using the Voigt notation as follows:

CIJ =


C11 C12 C13 C14

C11 C13 −C14

C33

C44

C44 C14
1
2 (C11 − C12)


IJ

. (31)

Cubic

The point groups 23 = T , m3 = Th, 43m = Td, 432 = O, and m3m = Oh belong to cubic crystal system. λijkl has 3
independent elements:

CIJ =


C11 C12 C12

C11 C12

C11

C44

C44

C44


IJ

. (32)

For cubic crystal system, we explicitly write down the dynamical matrix D(k),

D(k)ij =

C11k
2
x + C44(k2

y + k2
z) (C12 + C44)kxky (C12 + C44)kzkx

C11k
2
y + C44(k2

z + k2
x) (C12 + C44)kykz

C11k
2
z + C44(k2

x + k2
y)

 . (33)
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Supplementary Note 4. K.P HAMILTONIAN

In this Supplementary Note, we consider the k.p Hamilto-
nian in the presence of the Oh and the Th point groups. This
is done by expanding the Hamiltonian about the triple point
using the Gell-Mann matrices,

Hk =
∑
n

λnfn(k). (34)

Because of the PT symmetry, only λn with n = 1, 3, 4, 6, 8
are relevant (real symmetric). As before, we denote an el-
ement in a point group G by G, and we denote its ma-
trix representation by G̃. The constraint due to G is
G̃HkG̃

−1 = HGk. For notational convenience, we define
Λ = (λ1, λ3, λ4, λ6, λ8).

Oh group: T1u, T1g representations

We find that the T1g representation gives the same con-
straints, so we explicitly work out only the T1u representation.
The transformation properties of Λ are as follows:

M̃xΛM̃−1
x = (−λ1, λ3,−λ4, λ6, λ8),

M̃yΛM̃−1
y = (−λ1, λ3, λ4,−λ6, λ8),

M̃zΛM̃
−1
z = (λ1, λ3,−λ4,−λ6, λ8),

C̃4zΛC̃
−1
4z = (−λ1,−λ3, λ6,−λ4, λ8),

C̃4xΛC̃−1
4x = (λ4,

λ3+
√

3λ8

2 ,−λ1,−λ6,
3λ3−

√
3λ8

2
√

3
).

The symmetry constrained fn are:

f1 = akxky, f3 = b(k2
x − k2

y), f4 = akxkz,

f6 = akykz, f8 = b√
3
(k2
x + k2

y)− 2b√
3
k2
z . (35)

Let us note that this k.p Hamiltonian has the same form as the
cubic elastic continuum Hamiltonian in Eq. (33) once we sub-
tract away the trace, with a = C12 +C44 and b = C11

2 −
C44

2 .
It is also useful to note that the isotropic elastic continuum
Hamiltonian is obtained for a = 2b.

Oh group: T2u, T2g representations

We first examine the T2u representation. Here, we take
the following matrix representation of the relevant group el-

ements:

M̃x =

−1 0 0
0 1 0
0 0 1

 , M̃y =

1 0 0
0 −1 0
0 0 1

 ,

M̃z =

1 0 0
0 1 0
0 0 −1

 , C̃4z =

0 −1 0
1 0 0
0 0 −1

 ,

C̃4x =

−1 0 0
0 0 1
0 −1 0

 . (36)

The transformation properties of Λ are as follows:

M̃xΛM̃−1
x = (−λ1, λ3,−λ4, λ6, λ8),

M̃yΛM̃−1
y = (−λ1, λ3, λ4,−λ6, λ8),

M̃zΛM̃
−1
z = (λ1, λ3,−λ4,−λ6, λ8),

C̃4zΛC̃
−1
4z = (−λ1,−λ3,−λ6, λ4, λ8),

C̃4xΛC̃−1
4x = (λ4,

λ3+
√

3λ8

2 ,−λ1,−λ6,
3λ3−

√
3λ8

2
√

3
).

The symmetry constrained fn are:

f1 = akxky, f3 = b(k2
x − k2

y), f4 = akxkz,

f6 = −akykz, f8 = b√
3
(k2
x + k2

y)− 2b√
3
k2
z (37)

Let us note that this Hamiltonian differs from that of T1u only
by the transformations a→ −a and kx → −kx.

We next examine the T2g representation. Here, we take
the following matrix representation of the relevant group el-
ements:

M̃x =

−1 0 0
0 1 0
0 0 −1

 , M̃y =

1 0 0
0 −1 0
0 0 −1

 ,

M̃z =

−1 0 0
0 −1 0
0 0 1

 , C̃4z =

0 −1 0
1 0 0
0 0 −1

 ,

C̃4x =

 0 0 1
0 −1 0
−1 0 0

 . (38)

The action on the Gell-Mann matrices is

M̃xΛM̃−1
x = (−λ1, λ3, λ4,−λ6, λ8),

M̃yΛM̃−1
y = (−λ1, λ3,−λ4, λ6, λ8),

M̃zΛM̃
−1
z = (λ1, λ3,−λ4,−λ6, λ8),

C̃4zΛC̃
−1
4z = (−λ1,−λ3,−λ6, λ4, λ8),

C̃4xΛC̃−1
4x = (λ6,

λ3−
√

3λ8

2 ,−λ4,−λ1,−
√

3λ3+λ8

2 ).
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The symmetry constrained fn are:

f1 = akxky, f3 = b(k2
x − k2

y), f4 = akykz,

f6 = akxkz, f8 = − b√
3
(k2
x + k2

y) + 2b√
3
k2
z . (39)

Let us note that this Hamiltonian differs from that of the T1u

representation only by the transformations kx ↔ ky and b →
−b.

Th group: Tu, Tg representations

Next, let us examine the Th group. Here, we note that al-
though T , Th, and Td groups all support representations with
three-fold degeneracy, only the Th group has inversion sym-
metry. Because the Tu and the Tg representations of the Th
group yield the same k.p Hamiltonian, we explicitly work out
only the Tu representation. We first consider the constraints
from T subgroup. The matrix representations of the relevant
symmetry elements are

C̃2x =

1 0 0
0 −1 0
0 0 −1

 , C̃2y =

−1 0 0
0 1 0
0 0 −1

 ,

C̃2z =

−1 0 0
0 −1 0
0 0 1

 , C̃3 =

0 0 1
1 0 0
0 1 0

 . (40)

The transformation properties of Λ are as follows:

C̃2xΛC̃−1
2x = (−λ1, λ3,−λ4, λ6, λ8),

C̃2yΛC̃−1
2y = (−λ1, λ3, λ4,−λ6, λ8),

C̃2zΛC̃
−1
2z = (λ1, λ3,−λ4,−λ6, λ8),

C̃3ΛC̃−1
3 = (λ6,

−λ3+
√

3λ8

2 , λ1, λ4,−
√

3λ3+λ8

2 ).

The constraint is

f1 = akxky, f3 = bk2
x + ck2

y + dk2
z ,

f4 = akxkz, f6 = akykz,

f8 = − 2√
3
[( b2 + c)k2

x + ( c2 + d)k2
y + (d2 + b)k2

z ]. (41)

The Th group additionally has the S6 symmetry. Its action is
(kx, ky, kz) → (−ky,−kz,−kx) in the momentum space, so
that its Tu representation is

S̃6 =

 0 −1 0
0 0 −1
−1 0 0

 .

The transformation property of Λ under S6

S̃6ΛS̃−1
6 = (λ4,−λ3+

√
3λ8

2 , λ6, λ1,
√

3λ3−λ8

2 ).

Its constraint on fn is

b+ c+ d = 0. (42)

Finally, we remark that although all of the cubic point group
symmetries constrain the elastic continuum Hamiltonian in
the same way, this is not true for the k.p Hamiltonian. Im-
portantly, we see that the constraint due to Oh and Th groups
are not the same, whereas they give the same constraint on the
elastic continuum Hamiltonian.
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Supplementary Note 5. LINKING STRUCTURE
PROTECTED BY q

In the main text, we claimed that when the triple point is
perturbed such that the triple degeneracy is lifted while keep-
ing the Hamiltonian components to be real, the resulting nodal
structure is constrained by q. To demonstrate this, we plotted
the nodal structure in Fig. 3b with the Hamiltonian of the form
in Eq. (33) using the parameters C11 = 1.0, C12 = 0.6, and
C44 = 0.4, so that q = (1, 2). As a comparison with the
case in which q is not defined, we plotted the nodal structure
in Fig. 3c using the same form of the Hamiltonian with the
parameters C11 = 1.0, C12 = 0.2, and C44 = 2.0. Both of
these Hamiltonians were given a constant perturbation

δH = 0.02×

 2 −2 5
−2 −4 3
5 3 −2

 (43)

to plot the nodal structures in Fig. 3d,e. We demonstrate also
that the nodal structure has trivial linking structure when q =
(0, 0) in the main text. For this, acoustic phonons in tellurium
(Te) crystal is studied and we add the perturbation δH to the
dynamical matrix. As shown in Fig. 5e, the nodal lines are
not linked to one another. The dynamical matrix is obtained
by using the elastic tensor from Materials Project [12]. Note
that the elastic tensorCIJ of Te has the form of Eq. (31). Note
that Figs. 3d,e and 5e display the region defined by −0.28 <
kx,y,z < 0.28.

The purpose of this Supplementary Note is to explain why
TATP with q = (1, 2) evolves into a nodal ring formed be-
tween the highest two bands (L and T2 modes) threaded by
two nodal lines formed between the lowest two bands (T2 and
T1 modes), as was seen in Fig. 3d. For simplicity, we first
assume that the TATP in the isotropic limit is perturbed by a
term such as

δH =

0 0 0
0 0 0
0 0 δ

 , (44)

which preserves the cylindrical symmetry about the z axis.

a 1 2

d 3
3 d T2 mode

L mode

T1 mode

b

Supplementary Figure 2. Linking structure. a, `1 and `2 are the
nodal lines formed between the T1 and the T2 modes. `3 is the nodal
ring formed between the L and the T2 modes is shown in black line.
d is the ring of discontinuities in the L mode on the torus. b, A cross
section of the torus in a.

As summarized in Supplementary Figure 2, let `1 and `2 (red
lines) denote the two nodal lines formed between the T1 and
T2 modes, and let `3 (black ring) denote the nodal ring formed
between the L and the T2 modes. Note that we are assuming
that Ek,L ≥ Ek,T2

≥ Ek,T1
. Although the lines `1 and `2 over-

lap in the momentum space due to the cylindrical symmetry,
we draw them separately for clarity.

The goal is to show that `1 and `2 should penetrate `3. First,
we note that `3 is protected by the π-Berry phase. Because of
the π-Berry phase, the L mode (εk,L) around the nodal ring
`3 shows winding structure as shown in Supplementary Fig-
ure 2b. Importantly, there is a discontinuity in εk,L due to
the π Berry phase [6], indicated by a blue dot and labeled as
d in Supplementary Figure 2b. Notice that this is compati-
ble with the skyrmion texture of εk,L on a sphere surrounding
`3. In fact, because of the skyrmion texture, εk,L on all 2D
slices of the torus have similar wavefunction texture. In par-
ticular, the wavefunction discontinuity indicated with a blue
dot in Supplementary Figure 2b forms a circle, as shown in
Supplementary Figure 2a as a blue line and labeled as d.

Now, because `3 becomes a 2D Dirac point on the 2D slice
(grey cut in Supplementary Figure 2), the T2 mode (εk,T2

) has
the texture schematically shown in Supplementary Figure 2b.
Therefore, the T1 mode (εk,T1

), being orthogonal to both L1

and T2 modes, is tangential to the nodal ring `3. It follows
that just above the blue line, we have

εk,L = (0, 0, 1)

εk,T2
= 1

k̃
(−kx,−ky, 0)

εk,T1
= 1

k̃
(−ky, kx, 0). (45)

Because the first two components of T1 and T2 modes have
vorticity of 2, by which we mean that they are eigenstates of
the Hamiltonian of the form Hk ∝ 2kxkyσx + (k2

x − k2
y)σz ,

there must be two Dirac points at kz = 0, which corresponds
to the two nodal lines `1 and `2 threading the nodal ring `3.

This geometric proof can also be generalized to the case
in which the cylindrical symmetry is broken. We only give a
sketch of the proof since it does not give us further intuition.
We first consider a surface D whose boundary is `3. Then,
consider an arbitrarily small circular path c surrounding `3.
On this path, we choose gauge such that εk,L has discontinuity
at the point d at which the circular path c intersects the surface
D. Note that just above and below d, εk,L point in the oppo-
site directions due to the π Berry phase provided by `3. Also,
as we trace c, εk,L and εk,T2 must lie on the same plane: oth-
erwise, εk,T1 , which is orthogonal to εk,L and εk,T2 , will not
converge to a single vector as we shrink the radius of c to zero.
Now, let us consider εk,L just above d. As we trace `3, εk,L
traces a closed loop on a unit sphere. Now, consider a fixed
orthonormal frame (a fixed set of orthonormal vectors) Ffix:
(x̂fix, ŷfix, ẑfix). We can define a local frame (orthonormal
vectors as a function of k along the loop `3) Fk,loc: (x̂k,loc,
ŷk,loc, ẑk,loc) along `3 by transforming Ffix such that ẑk,loc

aligns with εk,L (e.g. rotate the fixed frame about the axis nor-
mal to εk,L and ẑfix to obtain Fk,loc). Then, the εk,T1

and the
εk,T2

modes expressed in the local frame must have vorticity
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2. (Note that expressing εk,T1
and εk,T2

in this local frame is
basically the same as deforming the εk,L modes along `3 just
above d to align with ẑfix in the fixed frame. Since εk,L mode
has skyrmion texture, εk,T1

and εk,T2
must have vorticity 2.)

We have thus shown that the skyrmion texture of the L
mode forces there to be Dirac points with total vorticity 2
in the ring `3. There are many other ways to show why this
should be true. For example, we can similarly prove the link-
ing structure by assuming that e = 2 for the T1 and T2 modes,
and showing that the L mode on the D-shaped closed path
(e.g. begin from south pole in Supplementary Figure 1, go
straight to the north pole, and back to the south pole along the
surface of the sphere) has π-Berry phase. Alternatively, one
can use the quaternion charge method as in Ref. 13, or use the
Dirac-string formulation in Ref. 7.
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Supplementary Note 6. NODAL LINES

Convention for counting nodal lines

Because of the Euler number e of the transverse modes de-
fined on a sphere S2 enclosing the triple point, there must be
2D Dirac points on S2 with total vorticity of −2e. Because
the low-energy Hamiltonian ∝ k2, these Dirac points form
a nodal line in the 3D momentum space. By the number of
nodal lines emanating from the triple point at k = 0, we mean
the number of Dirac points on the the sphere S2. Because two
nodal lines emanating from the triple point can be naturally
paired, when we refer to the number of nodal lines without
any qualifications, we mean the number of paired nodal lines
emanating from the triple point. Note that when the disper-
sion of the Dirac points on the sphere is quadratic, the number
of Dirac points is 2.

Because of the relation e = −Nt

2 [7], e places a con-
straint on the total vorticity Nt of the Dirac points on
S2. Here, the vorticity is defined by writing the ef-
fective Hamiltonian around the Dirac point as HD =
r(k) cos θ(k)σx + r(k) sin θ(k)σz , and counting the wind-
ing number of (cos θ(k), sin θ(k)). Therefore, when e = 2,
there must be at least 4 Dirac points on the sphere, i.e. at least
4 nodal lines must emanate from the triple point.

Nodal lines in k.p Hamiltonian of Oh group and the elastic
continuum Hamiltonian in cubic crystals

Here, we study the nodal structure of the k.p Hamiltonian
supporting three-dimensional representation for theOh group,
or equivalently, the nodal structure in the elastic continuum
Hamiltonian for the cubic crystal system. Recall that the
traceless Hamiltonian takes the form in Eq. (34) with fn given
as in Eq. (35). Although it is not practical to analytically diag-
onalize the Hamiltonian at a generic k, we can gain an under-
standing of the nodal structure by diagonalize it along the high
symmetry lines. Now, we assume that a 6= 0, so that there is
only one parameter b

a that determines the form of the Hamil-

𝔮 is not defined

𝔮=(1,2)
Isotropic phonon

b

a

a Oh group

b/a=1/2

Acoustic
triple
point

Th group

Acoustic
triple
point

𝔮 is not defined

𝔮=(1,2)

b

b/a

c/a

Supplementary Figure 3. Topological phase diagram. a, b, Phase
diagram for point groups Oh (a) and Th (b).

tonian. Along the line with ky = kz = 0, the eigenvalues are
4bk2x
3a , −2bk2x

3a , −2bk2x
3 , and along the line with kx = ky = kz ,

the eigenvalues are 2k2
x, −k2

x, −k2
x. From this, we can con-

clude that for b
a < 0, q cannot be defined because along the

line with kx = ky = kz , the lower two bands are degenerate,
while for the line with ky = kz = 0, the upper two bands are
degenerate. On the other hand, for b

a > 0, the behavior along
the high symmetry lines suggest that q can be defined, which
we have confirmed through a numerical study in a reasonable
parameter range. Since we obtain the isotropic case for b = a

2 ,
we conclude that q = (1, 2) for b

a ∈ R+. These results are
summarized in Supplementary Figure 3a.

Now, let us relate the condition b/a > 0 to the Born sta-
bility condition of phonons. Recall that in terms of the elastic
constants, a = C12 +C44 and b = C11

2 −
C44

2 . Also recall that
the Born stability conditions are C44 > 0, C11 − C12 > 0,
C11 + 2C12 > 0. First, let us note that it is not possi-
ble for both a < 0 and b < 0, which would imply that
a+ 2b = C11 + C12 < 0. This contradicts the Born stability
conditions, which constrain (C11 −C12) + 2(C11 + 2C12) =
3(C11 + C12) > 0. Therefore, there are two possibilities (ex-
cluding fine-tuned situations where a = 0 or b = 0): (1) a > 0
and b > 0 and (2) ab < 0. It is clear from the above analy-
sis that for the case (1), the longitudinal velocity exceeds the
transverse velocity along the two families of high symmetry
lines. For the case (2), it is clear from the above analysis that
when a > 0 and b < 0, the longitudinal velocity exceeds the
transverse velocity along the line kx = ky = kz , but not along
the line ky = kz = 0. For the case (2), it is also possible that
a < 0 and b > 0, in which case we just have a reverse sit-
uation where the transverse velocity exceeds the longitudinal
velocity along the line kx = ky = kz , but not along the line
ky = kz = 0.

Nodal lines in k.p Hamiltonian of Th group

For the k.p Hamiltonian with the Tu and Tg representa-
tions of the Th group, the Hamiltonian is given by Eq. (34)
with fn given by Eqs. (41) and (42). As in the case with
the Oh group, we assume that a 6= 0, so that the Hamilto-
nian is determined by two parameters, b

a and c
a [Note that

we can eliminate d using Eq. (42)]. Since it is not practi-
cal to analytically diagonalize the Hamiltonian at a generic k,
we first study the energy spectrum along the high symmetry
lines. Along kx = ky = 0, the eigenvalues are− 2

3a (2b+c)k2
z ,

2
3a (b + 2c)k2

z , and 2
3a (b − c)k2

z . Along kx = ky = kz , the
eigenvalues are 2k2

x, −k2
x, −k2

x. Thus, we expect the phase
boundaries to be located at b+ca = 0, ba = 0, and c

a = 0 (these
are the parameters for which two of the energy bands along
kx = ky = kz become equal). Through a numerical study, we
find that q = (1, 2) when b

a > 0 and c
a < 0, as illustrated in

Supplementary Figure 3b. Here, we note that this is consistent
with the result for the Oh group, since the the Hamiltonian re-
duces to that of the Oh group (with T1u representation) when
c = −b.
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Supplementary Note 7. DETAILS OF THE 3D LIEB LATTICE MODEL

In this Supplementary Note, we give the details of the 3D Lieb lattice model discussed in the main text.

Tight-binding Hamiltonian

The lattice structure is shown in Fig. 4a in the main text. In each unit cell, there are 4 sublattice sites located at x1 = (0, 0, 0),
x2 = (1/2, 0, 0), x3 = (0, 1/2, 0), x4 = (0, 0, 1/2). The tight-binding Hamiltonian is given by

HLieb(k) = H0(k) +H1(k) +H2(k) +H3(k),

H0(k) =

ε1 0 0 0
0 ε2 0 0
0 0 ε2 0
0 0 0 ε2

 , H1(k) = 2t0


0 cos kx2 cos

ky
2 cos kz2

cos kx2 0 0 0

cos
ky
2 0 0 0

cos kz2 0 0 0

 ,

H2(k) = 4t1


0 0 0 0

0 0 cos kx2 cos
ky
2 cos kz2 cos kx2

0 cos kx2 cos
ky
2 0 cos

ky
2 cos kz2

0 cos kz2 cos kx2 cos
ky
2 cos kz2 0

 ,

H3(k) = 2 (cos kx + cos ky + cos kz)

t2 0 0 0
0 t3 0 0
0 0 t3 0
0 0 0 t3

 . (46)

Here, ε1 is the onsite potential for the s orbital located at x1, and ε2 is the onsite potential for the s orbitals located at x2, x3, and
x4. t0, t1, and t2 are the hopping amplitudes for the nearest, the second-nearest, and the third-nearest neighbors. We note that
for the band structure in the main text, we have chosen the parameters ε1 = −2.0, ε2 = 1.2, t0 = 1.0, t1 = 0.3, t2 = 0.2, and
t3 = 0.1.

Effective Hamiltonian of the triple point

The tight-binding Hamiltonian HLieb(k) has the Oh point group symmetry and the time-reversal symmetry T . As was noted
in the main text, the band structure exhibits a triple point at R = (π, π, π). This triple point is protected by the C2x, C2y , and
C3[111] symmetries [14].

By making an analogy between the triple point at R and the acoustic phonon, we can map the highest energy band to the
longitudinal phonon mode and the lower two energy bands to the transverse phonon modes by explicitly computing the effective
Hamiltonian Heff(k) near the triple point using the Löwdin partitioning [15]:

Heff(k)nm = h(k0)nm +

3∑
i=1

hi(k0)nmki +

3∑
i,j=1

1

2
hij(k0)nm +

∑
m 6=n,m

hi(k0)nmhj(k0)mm
En(k0)− Em(k0)

 kikj +O(k3), (47)

h(k0)ab = 〈a,k0|HLieb(k0)|b,k0〉, hi(k0)ab = 〈a,k0|(∂iHLieb)(k0)|b,k0〉, hij(k0)ab = 〈a,k0|(∂i∂jHLieb)(k0)|b,k0〉,
(48)

where k0 = (π, π, π), and the indices n,m run over the bands that form the triple point, while m runs over the other bands, the
lowest band in this case. Also, the band indices a, b run over any band.
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Straightforward computation yields

Heff(k) =


t3(k2 − 6) +

t20
6t2−ε1 k

2
x + ε2 (t1 +

t20
6t2−ε1 )kxky (t1 +

t20
6t2−ε1 )kzkx

(t1 +
t20

6t2−ε1 )kxky t3(k2 − 6) +
t20

6t2−ε1 k
2
y + ε2 (t1 +

t20
6t2−ε1 )kykz

(t1 +
t20

6t2−ε1 )kzkx (t1 +
t20

6t2−ε1 )kykz t3(k2 − 6) +
t20

6t2−ε1 k
2
z + ε2

 (49)

=
(
t3(k2 − 6) + ε2

)
13 − t1Diag(k2

x, k
2
y, k

2
z) +

(
t1 +

t20
6t2 − ε1

)
(kx, ky, kz)

T (kx, ky, kz). (50)

We can therefore decompose Heff(k) as

Heff(k) = (ε2 − 6t3)13 +Deff(k), (51)

Deff(k) =

C11k
2
x + C44(k2

y + k2
z) (C12 + C44)kxky (C12 + C44)kzkx

(C12 + C44)kxky C11k
2
y + C44(k2

z + k2
x) (C12 + C44)kykz

(C12 + C44)kzkx (C12 + C44)kykz C11k
2
z + C44(k2

x + k2
y)

 , (52)

where

C11 =
t20

6t2 − ε1
+ t3, C12 = t1 +

t20
6t2 − ε1

− t3, C44 = t3. (53)

It is crucial to note that Deff(k) is identical to the dynamical matrix in cubic symmetric system. In this way, we can directly
compare the triple point in the electronic system and that in the elastic material.
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Supplementary Note 8. THE EFFECT OF BOUNDARY
CONDITION ON SURFACE LOCALIZED STATES

In this Supplementary Note, we first study the implica-
tions of Dirichlet boundary condition, which is sometimes
employed when studying the surface states of topological in-
sulators. As a comparison, we also review the free boundary
condition which is known to yield surface acoustic waves.

Dirichlet boundary condition

Since there is no direct analog of the ‘free boundary con-
dition’ of phonons in electronic systems, we first study the
Dirichlet boundary condition. In the bulk, the equation of mo-
tion is

i
∂

∂t
ψ = (−a∇2 − b∇T∇)ψ. (54)

We introduce a boundary at z = 0 and study waves propagat-
ing along the kx direction (ky = 0). To solve this problem, let
us first impose some symmetry constraints. The mirror sym-
metry

My =

1 0 0
0 −1 0
0 0 1

 (55)

gives ψy = 0. Further, we impose

C2zT =

1 0 0
0 1 0
0 0 −1

K, (56)

so that ψx is purely real and ψz is purely imaginary. Then,
the wavefunction naturally satisfy the Hermiticity condition,
which is often imposed when solving for the Fermi arc of
Weyl semimetal:

0 =
[
a (〈∇zψ2, ψ1〉 − 〈ψ2,∇zψ1〉)
+ b (∇zψ∗2zψ1z − ψ∗2z∇zψ1z)

− ibkx (ψ∗2zψ1x + ψ∗2xψ1z)
]
z=0

. (57)

It is convenient to separate the wavefunction into the trans-
verse and the longitudinal modes. Note that this is possible
since we can expand any wavefunction by linear combination
of the transverse and the longitudinal modes. For the trans-
verse part we write

ψT =

ψTxψTy
ψTz

 eκT zeikxx−iωt, (58)

where κT is the inverse decay length, and ψT (x,y,z) are con-
stants. The transversality condition∇ · ψT = 0 gives

ikxψTx + κTψTz = 0. (59)

Also, the equation of motion in the bulk gives

κT =
√
k2
x − ω/a. (60)

Thus,

ψT = cT

 κT
0
−ikx

 eikxx−iωteκT z. (61)

Similarly, the longitudinal part is written as

ψL =

ψLxψLy
ψLz

 eκLzeikxx−iωt. (62)

The longitudinal condition∇× ψL = 0 gives

κψLx − ikxψLz = 0. (63)

Also, the equation of motion in the bulk gives

κL =
√
k2
x − ω/(a+ b). (64)

Thus,

ψL = cL

 kx
0
−iκL

 eikxx−iωteκLz. (65)

The Dirichlet condition is that ψ = 0 at the boundary. This
requires the following two equations to be satisfied:

cT
√
k2
x − ω/a+ cLkx = 0 (66)

cT kx + cL
√
k2
x − ω/(a+ b) = 0. (67)

Thus, we must have

− k2
x√

k2
x − ω/a

+
√
k2
x − ω/(a+ b) = 0. (68)

This yields two solutions

ω = 0

ω = k2
x(2a+ b). (69)

When the first condition is satisfied, Eq. (67) demands kx = 0,
so that the solution is not really independent of ω = k2

x(2a+
b).

Let us note that the following conditions must be satisfied
to obtain surface-localized states (i.e. κT,L > 0):

− b
a
> 1 and

b

a+ b
> 1. (70)

The parameter region satisfying these conditions is shown in
Supplementary Figure 4a.

Although the Dirichlet boundary condition is sometimes
used to show that surface localized states exist in topologi-
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vT

2

vL
2

vT
2/ vL

2=1
vT

2/ vL
2=3/4
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Stability criteria

b

Supplementary Figure 4. Conditions for the presence of surface lo-
calized states. a, Diagram showing when surface localized states can
appear for Dirichlet boundary condition. b, Diagram showing when
surface localized states can appear for free boundary condition. Note
that when the phonon satisfies the stability criteria, surface acoustic
wave always appears.

cal insulators, we note that naively solving for the wavefunc-
tions in a finite size system does not yield surface modes con-
sistent with the Dirichlet boundary condition. To illustrate
this, let us study the Lieb lattice with the parameters chosen
such that the triple point at R falls in the region in which the
Dirichlet boundary condition yields surface localized modes,
see Eq. (70).

We first notice from Eq. (50) that the isotropic limit can be
achieved by setting t1 = 0 and ε2 = 6t3. In order to test the
existence of surface states, we choose the parameter values,
ε1 = 0.5, ε2 = −1.2, t0 = 1.0, t1 = 0.0, t2 = 0.3, t3 =
−0.2. The band structure along the high symmetry lines is
shown in Supplementary Figure 5a. We note that the second
and third lowest bands are degenerate throughout the BZ. The
k.p Hamiltonian near R is given by

H(k) = −0.2k213 + 0.77(kx, ky, kz)
T (kx, ky, kz), (71)

which corresponds to Eq. (54) with a = −0.2 and b = 0.77.
From Eq. (70), we expect surface states for Dirichlet bound-
ary condition. However, we do not observe the desired surface
states in the surface spectrum with both asymmetric and sym-
metric terminations (Supplementary Figure 5b,c). In fact, it is
not clear how Dirichlet boundary condition can be achieved
for discrete tight-binding model.

We note in passing that for phonon, the equation of motion
is

−∂
2ψ

∂t2
= (−a∇2 − b∇T∇)ψ. (72)

Thus, the only difference is that ω → ω2, and a = v2
T ,

b = v2
L − v2

T . We see that there are no localized states for
the Dirichlet boundary condition for phonons (Note that we
always have vL > vT for isotropic phonon).

Free boundary condition

For completeness, we show that surface acoustic waves ap-
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Supplementary Figure 5. Absence of surface states in 3D Lieb
model. a, The band structure of the 3D Lieb model in the isotropic
limit with the parameters ε1 = 0.5, ε2 = −1.2, t0 = 1.0, t1 = 0.0,
t2 = 0.3, and t3 = −0.2. Note that two bands corresponding to
transverse phonon modes are degenerate. The parameters are cho-
sen such that if we impose the Dirichlet boundary condition, surface
localized modes appear. b, Surface spectrum for 001 termination.
Color indicates the center of wavefunction. Note that the finite-size
slab is constructed by stacking 20 layers along the z direction. c,
Same as b but we remove the dangling atoms so that the finite-size
slab is mirror symmetric in the z-direction. d, The band structure
with the ε1 = 0.5, t0 = 1.0, t1 = 0.0, t2 = 0.4, t3 = 0.2. The
parameters are chosen that a = 0.2, b = 0.5263 in Eq. (72) to
mimic the isotropic phonon. Notice that there are no surface local-
ized modes analogous to the surface acoustic waves in e and f, which
are the surface spectrums for asymmetric and symmetric termination,
respectively, in the 001 direction.

pear in isotropic medium by following Ref. 11. It is well
known that isotropic phonons support surface acoustic waves.
Denoting the stress tensor by σij , the free boundary condi-
tion is

∑
k σijnj = 0, where n = (0, 0, 1), since we are

assuming a boundary at z = 0. This entails the following:
σxz = σyz = σzz = 0. For isotropic medium, we have σij =

Kukkδij + 2µ(uij − 1
3δijukk), where uij = 1

2 ( ∂ui

∂xj
+

∂uj

∂xi
) is

the strain tensor. Here, the K and µ are related to the longi-
tudinal and transverse velocity by the relations K = λ + 2

3µ,
µ = v2

T , and λ = v2
L − 2v2

T . Thus, σyz = 0 implies uyz = 0.
Since we assume the that the wave does not depend on the
value of y, this implies ∂uy

∂z = 0. Using the surface wave
ansatz, we obtain uy = 0.

Next, we note that the transverse and longitudinal modes
essentially take the form in Eqs. (61) and (65), respectively.
With this in mind, we now examine the other two constraints.
The condition σxz = 0 implies uxz = 0, which translates to
cT (k2

x + κ2
T ) + 2cLkxκL = 0. The condition σzz = 0 gives

2cT v
2
TκT kx + cL(2v2

T k
2
x + v2

L(κ2
L − k2

x)) = 0. These two
combines to 4k2

xκLκT = (k2
x + κ2

T )2. Thus, ω and kx satisfy
ω8

v8T
− 8k2

x
ω6

v6T
+ 8k4

x
ω4

v4T
(3− 2

v2T
v2L

) + 16k6
x
ω2

v2T
(
v2T
v2L
− 1) = 0. We

then use the ansatz ω = vT kxξ to obtain ξ6 − 8ξ4 + 8ξ2(3−
2
v2T
v2L

) + 16(
v2T
v2L
− 1) = 0.

Let us note that the localization requires 1 − ξ2 > 0 and
1 − v2T

v2L
ξ2 > 0. Also, the SAW at (k′x, k

′
y) is R(φ)uSAW(k′),

where k′ = R(φ)k, where R is rotation by φ about the z axis.
For isotropic case, the longitudinal velocity always exceeds
the transverse velocity due to the Born stability criterion that
v2
T /v

2
L < 3

4 . Since the SAW exists for v2
T /v

2
L < 1, we see
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that isotropic medium always has SAW for free boundary, as
summarized in Supplementary Figure 4b. However, this may
not be true when we move away from isotropic case, and it
would be interesting to investigate the properties of surface
acoustic waves in relation to the topology.

Finally, let us note because the equation of motion for
phonon is ∂2uk

∂t2 = −H(k)uk and the equation of motion
electron is i∂ψk

∂t = H(k)ψk, the wavefunction are eigen-
vectors of H(k). However, the free boundary condition for
phonon does not have a clear interpretation for electrons, and
we are not guaranteed to obtain surface modes. We demon-
strate this using the Lieb lattice example. As before, we
choose the parameters such that the k.p Hamiltonian near R
can be mapped to isotropic phonon. Here, we additionally de-
mand vL > vT > 0 under this identification. The parameters
ε1 = 0.5, t0 = 1.0, t1 = 0.0, t2 = 0.4, t3 = 0.2 yield
a = 0.2, b = 0.5263 in Eq. (72). The energy bands along the
high symmetry lines are shown in Supplementary Figure 5d.
Although the isotropic phonon should show surface localized
states, we do not find any for the electronic case, as can be
seen in Supplementary Figure 5e,f for both asymmetric and
symmetric terminations.
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Supplementary Note 9. PHONON ANGULAR MOMENTUM
AT THE SURFACE

Because both the phonon angular momentum Hall effect
and the surface acoustic wave are properties of the low-energy
phonons, it is tempting to ask whether there is any relation
between them. It is known that surface acoustic waves induce
rotational motion [16], and we find that surface acoustic wave
also has phonon angular momentum. The reason behind this
is that the inversion symmetry is broken whenever surface is
introduced, as we explain below.

Let u(r) be the displacement and p(r) be the momen-
tum of elastic medium at position r. For convenience, we
choose to work with the rescaled position and momentum,
u(r)
√
ρ→ u(r) and p/

√
ρ→ p(r), where ρ is the mass den-

sity. We will always put ~ = 1. In the momentum space, the
low-energy phonon Hamiltonian (elastic continuum approxi-
mation) isH(0) = 1

2

∑
k x
†
kHkxk, where xk = ( pk

uk
) and

Hk =

(
13×3 0

0 Dk

)
. (73)

Here, (Dk)αβ is the dynamical matrix.
The phonon angular momentum refers to the orbital motion

of the atoms making up the solid with respect to the rest posi-
tion. For elastic continuum, we have L =

∫
dr u(r) × p(r).

In the momentum space, Lρ = 1
2

∑
k x
†
kL

ρxk, where

Lρ =

(
0 −`ρ
`ρ 0

)
, `ρµν = εµνρ, (74)

and εµνρ is the Levi-Civita symbol (we drop the zero-point
phonon angular momentum as it is not our focus). Since
the time-reversal symmetry and inversion symmetry are rep-
resented by

T =

(
−13×3 0

0 13×3

)
K, P = −16×6, (75)

we see that the phonon angular momentum transforms like
an axial vector in the momentum space. Therefore, when
both the time reversal and inversion symmetry are present, the
phonon angular momentum vanish in the momentum space.

Let us now consider the surface acoustic wave in an
isotropic medium propagating in the x direction with sur-
face termination at z = 0. Then, the mirror symmetry
My : (x, y, z) → (x,−y, z) forces the angular momentum
to point along the y direction. To calculate this component of
the angular momentum, we normalize the polarization vectors
such that

∫ 0

−∞ dz |ε(kx, z)|2 = 1. Then the angular momen-
tum density of the surface acoustic wave at z in the y direc-
tion is given by LSAW(kx, z) = −iε(kx, z)†`yε(kx, z). For
concreteness, let us assume that vT /vL = 0.5, so that the
surface acoustic wave has energy spectrum E = kvT ξ with
ξ ≈ 0.933, see Free boundary condition in Supplementary
Note 8. We show LSAW(kx, z) in Supplementary Figure 6a.

Using the isotropicity of the phonon under consideration,
the surface acoustic wave with k = (kx, ky) therefore car-

ries angular momentum LSAW(k, z) = LSAW(k, z)ẑ × k̂ as
shown in Supplementary Figure 6c. The winding structure of
the phonon angular momentum is reminiscent of the spin tex-
ture in Rashba electron gas, and we can expect that there is
a thermal version of the Rashba-Edelstein effect [17, 18] for
surface acoustic waves. Note, however, that the bulk modes
(non-localized) must also satisfy the boundary condition, so
that it is not possible to neglect their contribution.

To see how much of the surface angular momentum results
from SAW under the application of a thermal gradient, we
compute the angular momentum induced by thermal gradient
in a two-dimensional square lattice, as shown in Supplemen-
tary Figure 6d (here, it suffices to consider only the in-plane
vibration). Here, we use the mass-spring model with the near-
est neighbor longitudinal and transverse spring constants, and
the next nearest neighbor longitudinal and transverse spring
constants. Let Dk be the resulting 2N × 2N dynamical ma-
trix, where N is the thickness, so that

Hk =

(
12N×2N 0

0 Dk

)
. (76)

It is also convenient to use the notation |n,k〉 for phonon
eigenstates, which satisfy

σyHk|n,k〉 = Ek,n|n,k〉, 〈n,k|σy|m,k〉 = (σz)nm.
(77)

Here, σi with i = x, y, z are the generalized Pauli matrices
with block structure ofHk in Eq. (76). Note that there are 2N
eigenstates with n = −2N,−1, 1, ..., 2N .

Let us apply a thermal gradient along the y direction and
compute the phonon angular momentum induced in the z
direction. For a rough estimation of the thermally induced
phonon angular momentum, we use the Boltzmann transport
theory with constant phonon lifetime τ . Then, the phonon
angular momentum density induced by temperature gradient
(∇yT )ŷ is 〈Lzx〉neq − 〈Lzx〉eq = −λy(x)∇yT , where

λy(x) =
τ

2kBT 2

1

V

∑
k

2N∑
n=−2N

〈n,k|Lzx|n,k〉×

〈n,k|vk,y|n,k〉
σzn,nEk,ne

σz
nnEk,n/kBT

(eσ
z
nnEk,n/kBT − 1)2

. (78)

Here, T is the temperature, kB is the Boltzmann constant. Lz

is as given in Eq. (74) with ρ = z for each of the N blocks
(corresponding to each of the position x in Supplementary
Figure 6), except that µ and ν takes only the values x and
y, since we are studying a two-dimensional model.

We show λy(x) in Supplementary Figure 6d. Because the
lowest two energy bands (near ky = 0) are the surface acous-
tic waves for each of the two edges, we estimate the surface
acoustic wave contribution by summing over the two lowest
energy states (n = 1, 2) and the hole partners (n = −1,−2).
We see that the angular momentum due to the surface acous-
tic waves quickly decays, in contrast to that resulting from the
bulk states, which does not decay to 0 as fast. We also see
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Supplementary Figure 6. Phonon angular momentum of surface acoustic waves. a, Distribution of the angular momentum of the surface
acoustic wave at given kx for the infinite slab geometry shown in b. The color represents the density of angular momentum along the y
direction. Because the sum over z of the angular momentum along the y direction for fixed kx is positive, we conclude that the angular
momentum of the surface acoustic wave at a fixed energy is given as shown in c. d, Left: square lattice model. The nearest neighbor
longitudinal and transverse spring constants are 50 and 20, respectively. The next nearest longitudinal and transverse spring constants are 12.5
and 5.0, respectively. Right: By applying thermal gradient along the y direction, there is an accumulation of phonon angular momentum at the
edges. For calculation, the total thickness was set to 300. We show the distribution near the left edge (the distribution of angular momentum
is antisymmetric in the x direction.)

that the bulk states also contribute significantly to the surface
angular momentum, although the trend of the total angular
momentum induced on the surface is similar to that due to the

SAW.
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