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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

In this work, the authors discuss a topological invariant associated with certain triply degenerate nodal 

points (TDNP) in band structures of 3D translationally-symmetric matter. On the one hand, TDNPs can 

be stabilized at high-symmetry points in the momentum space of effectively spinless particles in cubic 

or tetrahedral lattices; on the other hand, Nambu-Goldstone (NG) theorem imposes TDNPs in the 

acoustic (as well as optical) phonon spectra also at high-symmetry points of the momentum space. 

Due to a mathematical analogy, the authors consider both options under the single umbrella notion of 

"acoustic triple point" (ATP). 

The authors characterize these three-fold degeneracies using a topological invariant "q", which is a 

combination of the skyrmion number and of the Euler class on a sphere surrounding the degeneracy. 

If the invariant "q" is non-trivial, the degeneracy is dubbed "topological acoustic triple point" (TATP). 

Implications of this invariant for the nodal-line degeneracies of the band structure are considered, and 

relevance to certain anomalous transport phenomena is briefly foreshadowed in the conclusions. 

The possibility to characterize NG modes by a topological invariant is certainly an interesting 

observation. In particular, while the possibility to characterize the longitudinal mode by a skyrmion 

number is intuitively clear and expected, the authors put these ideas on a solid mathematical footing, 

reveal valuable analogies to electron band structures, and also demonstrate on the case of elemental 

tellurium that the mentioned skyrmion number can (to me quite unexpectedly) even be trivial. 

For these reasons, I find that the work potentially contains enough original results to warrant 

acceptance in journal Nature Communications. 

However, I also must state that I find the presently submitted text at many places inadequately 

structured, as if written in a hurry. In multiple places, the assumptions and the logical reasoning 

leading to the results are obscured to a level that I failed to follow. Thus, the authors should take care 

to considerably improve the overall organization of the manuscript before I can give my final 

assessment. 

I also have several clarifying questions that the authors should consider in their resubmission. I hope 

these concrete questions will help the authors identify the problematic points of their presentation: 

1.) The manuscript has a relatively long supplementary information file (SIF). I think the readers 

would benefit if (a) a table of contents were given in the beginning of SIF, if (b) the main-text 

references to SIF referred to its specific section (S1 to S9), and if (c) more material were moved from 

SIF to Methods (subject to the limitations of the journal) to increase its visibility. 

2.) The role of inversion (P) symmetry is unclear at several places. I understand that PT symmetry is 

needed to define the Euler class, yet the PT symmetry is somehow restored in the continuum limit 

$k\to 0$ of even non-centrosymmetric crystals. Could the authors elaborate on this aspect? (Does this 

statement remain true in magnetic crystals?) 

3.) The authors discuss acoustic spectrum of isotropic media at several places. However, no crystalline 

media with finite unit cell constant (not even the cubic ones) are isotropic, and I find the 

corresponding discussions brings more confusions than clarifications -- especially since this notion is 

often considered alongside the continuum limit. I urge the authors to treat the discussion of the 

isotropic limit (and the inequalities on the elastic tensor it entails) with more care. In fact, I am 

wondering if the isotropic limit is needed at all for any of the derivations presented by the authors. 

4.) The topological invariant is specified as "q=(n_sk,e)" where "n_sk" is the skyrmion number defined 



only in the 3-band models/limit, and "e" is the Euler number which in 3-band models obeys e=2n_sk. 

It therefore seems that the definition "q=(n_sk,e)" is redundant; in principle, "e" contains all the 

topological information (irrespective of the number of bands). Why do the authors not choose this 

seemingly simpler definition of the topological invariant? 

5.) Concerning the last paragraph of Sec.II: First, it refers to a discussion of optical TATPs in the 

Methods section (which I wasn't able to locate). Second, concerning the R-point, why not split the 

bands into the top two and the bottom one (instead of the other way round)? I assume that a similar 

flipping has to be performed for the "symmetry-protected TATPs" arising in electron band structures 

with cubic/tetrahedral symmetry. 

6.) In Sec.III the authors write that "the acoustic phonons of monoatomic lattices [have] q=(1,2)", 

but I fear I overlooked the proof of this statement. 

7.) The evolution of ATP into a nodal link visible in Fig.3(d) seems similar to a similar transformation 

of 3DNP into a nodal link as discussed by Ref.[26]. Could the authors comment if there is a relation 

between these two works? Also, it would be interesting to see the analogous data for the case where 

"q" is trivial, such as for tellurium in Fig.5 (perhaps through an extra panel). 

8.) This question is more my curiosity and does not need to be reflected in the manuscript (or even 

answered in the authors' reply): When describing the dynamics of a lattice, one can theoretically add a 

potential term "V = \sum_{a,i} k*u_{a,i}*u_{a,i}/2" where "u_{a,i}" is the displacement of atom at 

site "a" from the equilibrium position in direction "i". (This means that we first identify the equilibrium 

position of each atom, and then bind the atom to this position with a string of stiffness "k") Such a 

term breaks the translation symmetry of the Hamiltonian (since the atoms acquire a preferred lowest-

energy positions in position space), and therefore gaps out the NG modes. I am wondering if the Euler 

class and its relation to the linking of nodal lines still apply in such a setting. 

9.) Some clarification of the "phonon angular momentum Hall effect" should be added to the main 

text. Note that the abstract advertises that "the [TATPs] can induce anomalous thermal transport in 

phononic systems and orbital Hall effect in electronic systems"; however, I find these statements 

inadequately reflected in the manuscript's main text. 

10.) I would suggest two potentially relevant references for the authors' considerations. First, when 

comparing the Hamiltonian description + topological characterization of phonon vs. electron systems, 

a reference to https://doi.org/10.1073/pnas.1605462113 might be appropriate. Second, when 

considering the possible topological origin of the surface acoustic waves, a reference to the work 

https://arxiv.org/abs/2004.09517 on Rayleigh edge states in certain chiral crystals could be relevant. 

Reviewer #2 (Remarks to the Author): 

This work shows that the triple degeneracy of acoustic phonons can be characterized by a topological 

charge q. The topological charge q can equivalently be characterized by the skyrmion number of the 

longitudinal mode, or by the Euler number of the transverse modes. The authors did stop there, and 

so the authors proceeded to study how TATP strongly constrains the nodal structure around the TATP 

when there is a perturbation. Investigating topological phonon band structures, particularly the triple 

points in the phonon bands, is of considerable interest, but at this point I am not sure if this work has 

completed an in-depth study that warrants publication in Nature Communications. This reviewer also 

finds the writing style, which is intended to be rather concise, contains confusing statements here and 

there and hence weaken my overall impression on this work. 

One page 1, left column and start of right column, authors say “The topological charge q is strictly 

defined only when the total number of energy bands is fixed to there”. This is followed by “The TATP 



protected by NG theorem exists ubiquitously in elastic material.” 

Question 1: I am confused by these two self-contradicting statements. The first sentence said clearly 

that we strictly need 3 bands only, yet the second sentence says that there is no restriction on the 

number of phonon bands. 

On page 2 (left column), the authors say “This condition is strictly satisfied by the phonons in a 

monatomic lattice, which have only three phonon bands. Even when there is more than one atom per 

unit cell, and therefore more than three phonon energy bands, this condition is satisfied near the ATP, 

which can be described by the elastic continuum Hamiltonian” 

Question 2: The confusion is similar. If the second half of the sentence is true, then it seems that 

there is no need to emphasize the condition of only having three bands in many places of this 

manuscript. This style of the writing is creating an unpleasant/insecure experience. Taking the second 

point from the authors -- for systems with more than 3 bands, one must be reminded again that only 

local behaviour of the TATP can be discussed. Can the authors confirm that later, when they talk about 

the perturbation to the system and then the nodal line structure, did they really restrict themselves in 

the near TAPT regime? 

Question 3: In a few places, the authors stressed the role of PT symmetry. But for real symmetric 

matrices under consideration, the time-reversal symmetry is always there. So what is the point of 

considering the joint PT symmetry, which is only about P-symmetry given than T-symmetry is already 

present? In my impression, the authors never spells out what the actual role is as played by PT 

symmetry (and yet they emphasize this throughout the writing). This is a concern. 

Question 4: The authors investigated how TATP charge q constrains the nodal structure of symmetry-

protected TATPs when we perturb the Hamiltonian so that the relevant symmetry is relaxed, while the 

conditions required to define q are maintained. While some interesting consequences are observed 

due to TATP, there is no connection between the topological features of the resultant nodal structure 

(such as some topological invariants depicting the linkage of the nodal lines) and the TATP charge q. 

Based on the authors’ reasoning, this connection seems to be possible but was not done. 

Question 5: In section 5 “AVOIDING THE DOUBLING THEOREM”, the authors discussed some 

examples of how this is achieved. However, the authors did not really establish theoretically why this 

well-known theorem is not relevant to TATPs ---exactly what part of the assumption of this theorem is 

violated? Given many qualitative analyses in the manuscript, the lack of a solid reason to account for 

the avoiding of the doubling theorem is a bit disappointing to this reviewer. 

Reviewer #3 (Remarks to the Author): 

In this paper, Park et al have established the topological nature of a special "node" in the band of 

phonons, which is the zero-momentum-zero-energy nexus of the triplet Goldstone modes. It is shown 

that a pair of topological invariants, the Euler number e and the Skyrmion number q, describe the 

above topology. Similar discussion applies to triplet node at higher energy protected by cubic 

symmetries. Possible consequences for this type of topology are discussed briefly. 

For someone who is familiar with Ref.[35] from the same group, and an earlier paper from another 

group which was not cited, the above result adds limited information to the existing literature. The 

work at hand is more or less an application of the existing theory to the acoustic phonons. For that 

reason, I think the work is not seminal enough as a theoretical breakthrough. On the other hand, I 

appreciate the idea that a rather abstract Z2 topological invariant (which is the Euler number mod 2) 

has found its realization in one of the most common phenomenon of acoustic waves that appear in 



almost every solid. Such identification, ideally, should come with new physical effect to be 

experimentally observed, yet the discussion of possible effects originating from the new topology is 

too brief to be convincing or helpful for experimentalists. For that reason, I think the work has not 

enough potential to drive new experiments. Based on the above observations, I conclude that the 

physics shown in the current form is not sufficiently interesting for publication in Nature 

Communications. 

Sec.I and Sec.II: 

In earlier works, it has been shown that \pi_2(O(M+N)/O(M)*O(N))=Z2 for M, N>2, and also that for 

N=2 (or M=2), this invariant becomes a Z-invariant (later named as the Euler number). Here the 

authors are dealing with M=1, N=2, so a straightforward calculation would show that e=2, or z2=1. 

Sec.III: 

This section is good. It gives clear criterion when the topological invariant becomes nontrivial in terms 

of the elastic constants, and relates this criterion to the stability criterion. One cannot derive such 

information trivially from existing results. 

It is interesting to see, however, that some phonon bands carry q=0. Is it possible to have q>1? If so 

I would find it very interesting. 

Sec.IV: 

In Ref.[35], authors from the same group give very comprehensive discussion of what happens as the 

nodal point breaks into a nodal line, and the linking structure that is basically the same as Fig.3d. 

Rather, in Ref.[35], the discussion is even more general than here, because they were dealing with 

arbitrary M and N. Simply applying the general results to M=1, N=2, one immediately finds the linking 

structure. 

A related question is what happens if q>1 (e>2)? Should one expect a more complicated linking 

structure than Fig.3d? 

Sec.V: 

This section is interesting. It involves the difference between the definition of topological invariants on 

S^n and that on T^n. I suggest to expand this section, specially where the authors claim that such an 

extension to T^n is possible if and only if the non-contractible loop has trivial Berry phase. 

Sec.IV: 

I suggest that the authors significantly expand the discussion on experimental consequences. For me, 

several points should be clarified. (i) Since the nodal point is related to PT-symmetry, which is not 

preserved on any open surface, can I say that there is no topologically protected surface states related 

to this type of node? (ii) Since phonons do not couple to gauge fields, how should one observe the 

phonon angular momentum Hall effect? (iii) Can we have a concrete calculation of the orbital Hall 

effect in an electronic material hosting TP at Fermi energy? 

The bottom line is that since the topological part of the theory is not new enough, the authors may 

consider shifting the emphasis to potentially new observable effects.



Reviewer #1 (Remarks to the Author): 
 
In this work, the authors discuss a topological invariant associated with certain triply degenerate nodal points 

(TDNP) in band structures of 3D translationally-symmetric matter. On the one hand, TDNPs can be stabilized at 
high-symmetry points in the momentum space of effectively spinless particles in cubic or tetrahedral lattices; on 
the other hand, Nambu-Goldstone (NG) theorem imposes TDNPs in the acoustic (as well as optical) phonon 
spectra also at high-symmetry points of the momentum space. Due to a mathematical analogy, the authors 
consider both options under the single umbrella notion of "acoustic triple point" (ATP). 

 
The authors characterize these three-fold degeneracies using a topological invariant "q", which is a 

combination of the skyrmion number and of the Euler class on a sphere surrounding the degeneracy. If the 
invariant "q" is non-trivial, the degeneracy is dubbed "topological acoustic triple point" (TATP). Implications of 
this invariant for the nodal-line degeneracies of the band structure are considered, and relevance to certain 
anomalous transport phenomena is briefly foreshadowed in the conclusions. 

 
The possibility to characterize NG modes by a topological invariant is certainly an interesting observation. 

In particular, while the possibility to characterize the longitudinal mode by a skyrmion number is intuitively 
clear and expected, the authors put these ideas on a solid mathematical footing, reveal valuable analogies to 
electron band structures, and also demonstrate on the case of elemental tellurium that the mentioned skyrmion 
number can (to me quite unexpectedly) even be trivial. 

 
For these reasons, I find that the work potentially contains enough original results to warrant acceptance in 

journal Nature Communications. 
 
Authors’ response: We indeed thank the reviewer for positively evaluating our work. 
 
However, I also must state that I find the presently submitted text at many places inadequately structured, as 

if written in a hurry. In multiple places, the assumptions and the logical reasoning leading to the results are 
obscured to a level that I failed to follow. Thus, the authors should take care to considerably improve the overall 
organization of the manuscript before I can give my final assessment. 

 
I also have several clarifying questions that the authors should consider in their resubmission. I hope these 

concrete questions will help the authors identify the problematic points of their presentation: 
 
Authors’ response: We thank the reviewer for carefully reading our manuscript and giving us valuable 

comments. The reviewer’s comments helped us strengthen our logic and improve the presentation style in our 
manuscript. In the following, we answer all of the questions and comments raised by the reviewer. 

 
1.) The manuscript has a relatively long supplementary information file (SIF). I think the readers would 

benefit if (a) a table of contents were given in the beginning of SIF, if (b) the main-text references to SIF 
referred to its specific section (S1 to S9), and if (c) more material were moved from SIF to Methods (subject to 
the limitations of the journal) to increase its visibility. 

 
 Authors’ response: Following the reviewer’s suggestion, we revised the manuscript and the supplementary 

information file (SIF) in the following way. 
(a) We added a table of contents at the beginning of SIF, where we also briefly introduce which materials are 

covered in the SIF. 
(b) We specified the relevant section in the SIF for each of the references to SIF in the main text. 
(c) Because the contents in the SIF are mostly proofs and details of the calculations, we could not find a 

suitable way to move the contents of the SIF to the Methods section. Instead, we have added some new 
materials in the Methods. These new sections are titled “Note on terminology”, “Theory of elastic continuum”, 
and “TATP in multiband systems”. 

 
2.) The role of inversion (P) symmetry is unclear at several places. I understand that PT symmetry is needed 

to define the Euler class, yet the PT symmetry is somehow restored in the continuum limit $k\to 0$ of even non-
centrosymmetric crystals. Could the authors elaborate on this aspect? (Does this statement remain true in 
magnetic crystals?) 

 
Authors’ response: We thank the reviewer for this question, which helped us clarify some of the subtle 

points regarding the symmetry in our manuscript. As the reviewer mentions, the space-time-inversion (PT) 



symmetry is necessary to define the topological charge । composed of the Euler class क़ and the skyrmion 
number ॡ௦௞. In general, in a system lacking the inversion symmetry or the time reversal symmetry, the inversion 
and time-reversal symmetries are not restored in the continuum limit. On the other hand, the continuum limit of 
acoustic phonons is special because it can be well described by the theory of elasticity. Then, even in non-
centrosymmetric crystals, the inversion symmetry (P) is restored in the continuum limit. On the other hand, in 
time-reversal symmetry broken crystals, the time-reversal symmetry (T) may not be restored in the continuum 
limit. To clarify this, let us first explain why P is restored in the continuum limit in crystals which breaks the P 
symmetry but do not break the T symmetry. 

Elastic crystals are described well by the continuum limit when deformations in crystals have long 
wavelength (typically larger than 10ି଺cm). In the continuum limit, dynamics of low-energy excitations in 
elastic crystals is determined by the elastic energy and kinetic energy. The elastic energy is quadratic in the 
strain tensor (a spatial derivative of displacement ࢛). On the other hand, the kinetic energy is quadratic in  ሶ࢛  (a 
time derivative of ࢛). Then, the equations of motion and its Fourier transforms can be obtained according to the 
Hamilton’s principle. In this way, we can obtain the relation between the dynamical matrix (࢑)ܦ and dispersion 
relation ߱(࢑) of low-energy excitation. Explicitly, this relation is (࢑)ܦ௜௝	ݑ௝(࢑) = ߱(࢑)ଶݑ௜(࢑) where ݑ௜(࢑) is 
the ݅-th component of displacement u after Fourier transformation and ݅ denotes the spatial direction. Given this 
equation, the symmetries in continuum limit are determined by those of the dynamical matrix (࢑)ܦ. Since the 
elastic energy is quadratic in the strain tensor, the dynamical matrix (࢑)ܦ is quadratic in momentum ࢑. That is, 
all the elements of dynamical matrix are quadratic in momentum. Now, let us note that P acts as follows: ࢛(࢑) ௉→ −࢛(−࢑).	Therefore, the constraint of P is (࢑)ܦ =  is (࢑)ܦ which is trivially satisfied because , (࢑−)ܦ
quadratic in k. Consequently, P is restored in continuum limit even for non-centrosymmetric crystals as long as 
the elastic energy is considered up to quadratic order in the strain tensor. However, if we depart from elastic 
continuum limit by considering higher-order terms in ࢑, P may not be restored. However, these higher-order 
terms are negligible for the acoustic modes in the elastic continuum limit. 

In contrast to the inversion symmetry, the terms used to describe the time-reversal breaking effects in 
phonons do not disappear in the elastic continuum limit (this answers the reviewer’s question on the magnetic 
crystal). Notable examples of time-reversal breaking interactions are the constant Raman spin-phonon coupling 
(discussed for example in [L. Zhang et al., PRL 105, 225901 (2010)]) and the Mead-Truhlar term in the Born-
Oppenheimer approximation (discussed for example in PRB 86, 104305 (2012) and PRL 123, 255901 (2019)). 

Both are corrections to the phonon Hamiltonian of the form ቀ(࢑)࢖ −  ൯ቁଶ, where the former is a model(࢑)൫࢛ࢇ

of the form ࢇ ∝ ࢇ and the latter is a model of the form ,(࢑)ݑ ∝ ݇ଶ(࢑)ݑ. Since these coupling terms arise 
because of the external magnetic field, they break the time-reversal symmetry, which can also be checked by 
noting that under the time reversal, (࢑)࢖ → ,(࢑−)࢖− ࢛(࢑) → ࢛(−࢑). Insofar as these models for time-reversal 
breaking effects are correct, we see that time-reversal breaking terms remain important even in the long-
wavelength limit. Therefore, the Hamiltonian in the continuum limit has neither T symmetry nor the PT 
symmetry. For such time-reversal breaking effects, we cannot define the topological chare ।  even in the 
continuum limit. 

In summary, for acoustic phonons in time-reversal-symmetric crystals, the inversion symmetry is present in 
the continuum limit even when the crystal is not centrosymmetric. This enable us to define the topological 
charge ।  that requires PT symmetry. However, in crystals with broken time-reversal symmetry, the time-
reversal symmetry may not be restored in the continuum limit, even for phonons. 

In the revised manuscript, we clarified these points by adding the section titled “theory of elastic continuum” 
in Methods. 

 
3.) The authors discuss acoustic spectrum of isotropic media at several places. However, no crystalline 

media with finite unit cell constant (not even the cubic ones) are isotropic, and I find the corresponding 
discussions brings more confusions than clarifications -- especially since this notion is often considered 
alongside the continuum limit. I urge the authors to treat the discussion of the isotropic limit (and the 
inequalities on the elastic tensor it entails) with more care. In fact, I am wondering if the isotropic limit is 
needed at all for any of the derivations presented by the authors. 

 
Authors’ response: As the reviewer pointed out, the isotropic limit is not essential for deriving any of our 

main results. For example, the topological charge । can be defined without mentioning the isotropic continuum. 
Nevertheless, we choose to discuss the isotropic limit frequently because it is both simple and well-known. 

Furthermore, it allows us to explain in simple language how the topological charge । is defined, and also to 
derive some exact results on the eigenstates and surface acoustic waves. These exact results are expected to help 
readers understand our main results. For instance, by using the isotropic limit, we can easily find the exact 



condition for the appearance of the surface acoustic waves (
௩೅మ௩ಽమ < 1), which we invoke in the discussion section 

to conclude that surface acoustic waves are not directly related to the topology of the ATP. 
On the other hand, we agree that the terminology in our manuscript can be confusing. To clarify this, we 

have decided to change all references to the continuum Hamiltonian of acoustic phonons to “elastic continuum 
Hamiltonian.” We also checked that when we consider isotropic phonons, the isotropicity is explicitly specified. 
We have also changed the references to the continuum Hamiltonian near symmetry enforced triple degeneracy 
to “k.p Hamiltonian”. To further eliminate sources of confusion, we have added a section titled “Note on 
terminology” in Methods. 

 
4.) The topological invariant is specified as "q=(n_sk,e)" where "n_sk" is the skyrmion number defined only 

in the 3-band models/limit, and "e" is the Euler number which in 3-band models obeys e=2n_sk. It therefore 
seems that the definition "q=(n_sk,e)" is redundant; in principle, "e" contains all the topological information 
(irrespective of the number of bands). Why do the authors not choose this seemingly simpler definition of the 
topological invariant? 

 
Authors’ response: As the reviewer mentioned, the Euler number is defined for multi-band systems, in 

contrast to the skyrmion charge ॡ௦௞ , which is defined only for three-band systems (To be more precise, ॡ௦௞	becomes trivial when there are more than three bands in the following sense: let us note that ॡ௦௞ is just the 
second homotopy group ߨଶ(ܵଶ) , characterized by the maps ܵଶ  (sphere in momentum space) → ܵଶ 
(wavefunction space). We can generalize the definition of ॡ௦௞	 to systems with more than three bands by 
considering maps ܵଶ → ܵ௡ with ݊ > 2. However, these maps are contractible to a point: ߨଶ(ܵ௡) = 0 for ݊ >2.). Also, in three-band systems, the skyrmion charge ॡ௦௞  is given by a half of the Euler number क़ , as we 
derived a relation क़ = 2ॡ௦௞  in the manuscript. Because of this relation, our definition । = (ॡ௦௞, क़) can seem 
redundant. However, these two topological charges (ॡ௦௞ and क़) are quite different in nature, and hence they play 
different roles of constraining the nodal structure. 

First, the skyrmion charge ॡ௦௞ is classified as a delicate topological invariant in our system because it is 
trivialized even when we add topologically trivial bands with arbitrary energies. On the other hand, the Euler 
number क़ corresponds to fragile topological invariant. Following the recent classification scheme of topological 
insulators, we think that it is better to distinguish between ॡ௦௞ and क़, even if they are related in a three-band 
system. Thus, our convention of expressing the topological charge । = (ॡ௦௞, क़) 	as a tuple of two different 
classes of topological invariants clarifies that । = ଶ(ܱ(3)ߨ ܱ(1) × ܱ(2)⁄ ) is delicate topological charge and 
that । is reduced to the Euler number क़ when additional bands are added. 

Second, ॡ௦௞  helps us understand the nodal structure of TATP in Section IV. Especially, when the triple 
degeneracy of TATP are lifted by a PT-preserving perturbation, a nodal ring formed by the L mode and one T 
mode must have a nontrivial linking structure with another nodal ring formed by the two T modes. While the 
Euler number constrain the total winding number of vortices which corresponds to intersection points of nodal 
lines formed by the T modes and a sphere encircling the original TATP, the skyrmion charge is needed to 
explain the linking structure. 

Finally, the choice । = (ॡ௦௞, क़) clarifies that we are considering the topological charge of a three-band 
system. If we instead use only क़ to specify the topological charge, it can be confusing especially when we 
discuss systems having more than three bands. This is because the charge । = (1,2) of a TATP in a multiband 
system is defined only in the continuum limit (or by Löwdin partitioning), and this reduces to क़ = 2 if we stray 
away from the continuum limit, see for example the discussion in Sec. V “Avoiding the doubling theorem”. It 
would become more difficult to distinguish between these two viewpoints if we did not introduce a separate 
notation for the topological charge in a three-band system. 

 
5.) Concerning the last paragraph of Sec.II: First, it refers to a discussion of optical TATPs in the Methods 

section (which I wasn't able to locate). Second, concerning the R-point, why not split the bands into the top two 
and the bottom one (instead of the other way round)? I assume that a similar flipping has to be performed for the 
"symmetry-protected TATPs" arising in electron band structures with cubic/tetrahedral symmetry. 

 
Authors’ response: We thank the reviewer for giving these constructive comments. Let us first note that 

reference was to Methods F (Details of ab initio calculations) in the revised manuscript, where we comment that 
optical phonons in insulating ionic crystals can be strongly renormalized, which is usually modeled by non-
analytic corrections to the dynamical matrix. Our theory assumes the Hamiltonian to be at least continuous, so 
that it cannot be applied to such a non-analytic effective Hamiltonian. We did not thoroughly investigate this 
problem because it is a completely different problem in nature to the one we are trying to solve, and the focus in 
the manuscript was on the acoustic modes. In the revised manuscript, we clarify which section was being 
referenced. 



Now, we answer the reviewer’s second question on how to split the bands. In general, there are two ways to 
split the one ‘longitudinal’ and two “transverse” modes of TATP: we can split the three bands into 1) one 
highest band and two lowest bands or 2) one lowest band and two highest bands. The topological charge । can 
be defined only when one of the two gap conditions is maintained over the entire sphere wrapping the ATP. 

 
However, the triple points at high-symmetry point do not always satisfy these two gap conditions. As can be 

seen in Fig. 2b, the bands near R point satisfy neither of the aforementioned gap conditions. In high-symmetry 
line R-M, two highest bands are degenerate. On the other hand, two lowest bands are nearly degenerate along 
two high-symmetry lines R-X and R-Γ. Consequently, we cannot consistently partition the energy bands around 
the triple degeneracy into 2-to-1 fashion, and we cannot assign it the topological charge ।.  

This comment on R point was in Sec. V, but our comment on R point in Sec. II “…because lower two bands 
cannot be fully separated from the highest energy band” can be a bit misleading. We have therefore revised this 
comment as follows: “…because it is not possible to consistently separate one of the energy bands from the 
other two on a sphere surrounding the triple degeneracy” 

 
6.) In Sec.III the authors write that "the acoustic phonons of monoatomic lattices [have] q=(1,2)", but I fear I 

overlooked the proof of this statement. 
 
Authors’ response: We apologize for causing the confusion. The original statement was “The criterion ܾ/ܽ > 0 allows us to easily search for materials with TATP. In particular, the acoustic phonons of monatomic 

lattices such as Au, Ag, and Cu are topological with । = (1,2).” By this, we meant that the criterion ܾ/ܽ > 0 
allows us to easily find materials with TATP, and that by using this criterion, we can easily find that Au, Ag, 
and Cu are examples of monatomic lattices hosting TATP. 

In the revised manuscript, we have revised this expression as follows: “Applying this criterion to some 
monatomic lattices, we find that the acoustic phonons in Au, Ag, and Cu are topological with । = (1,2). Since 
monatomic lattices have only three phonon modes, the nonzero topological charge । diagnosed from the elastic 
continuum approximation does not reduce to क़ even if we consider the full Hamiltonian.” 

 
7.) The evolution of ATP into a nodal link visible in Fig.3(d) seems similar to a similar transformation of 

3DNP into a nodal link as discussed by Ref.[26]. Could the authors comment if there is a relation between these 
two works? Also, it would be interesting to see the analogous data for the case where "q" is trivial, such as for 
tellurium in Fig.5 (perhaps through an extra panel). 

 
Authors’ response: We thank the reviewer for this insightful question. In Ref. [26], the authors consider the 

triple points formed by a band inversion of singly degenerate band and doubly degenerate bands. The double 
degeneracy of the latter is protected by rotation and the PT symmetry. Since the triple points originate from the 
band inversion, they must be formed in pairs. On the other hand, triple points in acoustic systems (i.e. ATP) 
originate from the spontaneous breaking of translation symmetry, and it does not need particular symmetries 
such as rotation symmetry. Also, when TATP in cubic symmetric system is located at high-symmetry point such 
as R point, the triple degeneracy of TATP corresponds to three-dimensional irreducible representation of cubic 
symmetry group. Hence, the protecting symmetry is clearly different from that of Ref. [26]. 

On the other hand, if we compare Fig. 2d in Ref. [26] (panel that shows the linking structure arising from 
breaking the rotational symmetry that protects the type-A triple points) with Fig. 3d in our manuscript, the 
linking structure is similar. Then, one may ask: if we collide two type-A triple points in Ref. [26], will the two 
triple points reduce to the one in our manuscript? We found that a recent preprint by the same authors 
(arXiv:2104.11254) mentions this problem, which we summarize here: The answer to the above question cannot 
be determined just from the linking structure, because of the possibility that the two type-A triple points will 
pair-annihilate, and open the gap between the uppermost band and the lower two bands in Fig. 2 of Ref. [26]. 
On the other hand, it can also happen that the two type-A triple points cannot be pair-annihilated. In this case, 
after fine-tuning the Hamiltonian parameters to bring the two triple points together, the resulting triple point will 
have the same topological charge as the one we study in our manuscript. Conversely, if we take the symmetry-
protected TATP in our manuscript and reduce the cubic symmetry group to ܥସ or ܥସ௩ (while maintaining the PT 
symmetry), we should obtain a pair of type-A triple points that shows a topologically protected linking structure 
upon breaking the rotational symmetry that protects the triple degeneracy. 

Finally, let discuss the nodal structure of the triple points with trivial । as in the case of tellurium. In our 
revised manuscript, the right panel of Fig.5 (subfigures b and e) illustrates the evolution of the nodal structure 
when । = (0,0), which is to be compared with the evolution of nodal structures in the case when । = (1,2) and 
when ।  is not well-defined (Fig. 3). As can be seen, there are no linking structures when । = (0,0) . For 
convenience, we reproduce Fig. 5e below. Let us note, however, that such a perturbation necessarily breaks the 
continuous symmetry, since the triply degenerate Goldstone modes no longer appears. 



 
 
8.) This question is more my curiosity and does not need to be reflected in the manuscript (or even answered 

in the authors' reply): When describing the dynamics of a lattice, one can theoretically add a potential term "V = 
\sum_{a,i} k*u_{a,i}*u_{a,i}/2" where "u_{a,i}" is the displacement of atom at site "a" from the equilibrium 
position in direction "i". (This means that we first identify the equilibrium position of each atom, and then bind 
the atom to this position with a string of stiffness "k") Such a term breaks the translation symmetry of the 
Hamiltonian (since the atoms acquire a preferred lowest-energy positions in position space), and therefore gaps 
out the NG modes. I am wondering if the Euler class and its relation to the linking of nodal lines still apply in 
such a setting. 

 
Authors’ response: In the situation the reviewer considered, the triple degeneracy at zero momentum does 

not exist in general. However, our results on the topological characterization and linking structure of nodal lines 

can still be applied to this situation: As long as the additional potential term ܸ = ∑ ௄ଶ ௔௜ଶ௔,௜ݑ	  with spring constant K preserves PT symmetry, the topological charge । can be defined and constrains the linking structure of the 
nodal structure arising from breaking the triple degeneracy. In fact, this situation is analogous to triple points at 
high-symmetry points. In Section IV, we discuss the nodal structure when the degeneracy of triple point at high-
symmetry points is lifted by a PT preserving perturbation. The potential term ܸ considered by the reviewer 
plays the same role as such PT preserving perturbation. 

 
9.) Some clarification of the "phonon angular momentum Hall effect" should be added to the main text. Note 

that the abstract advertises that "the [TATPs] can induce anomalous thermal transport in phononic systems and 
orbital Hall effect in electronic systems"; however, I find these statements inadequately reflected in the 
manuscript's main text. 

 
Authors’ response: We thank the reviewer for this comment. The reason that we did not discuss the phonon 

angular momentum Hall effect and the orbital Hall effect in detail in the main text was due to the reason that 
they were investigated in detail in Refs. [51,52,53], although their connection to the topological charge was 
overlooked in these references. Since many readers may not be familiar with the relation between the 
wavefunction texture and the anomalous transport, we have slightly expanded the discussion related to these 
phenomena. 

 
10.) I would suggest two potentially relevant references for the authors' considerations. First, when 

comparing the Hamiltonian description + topological characterization of phonon vs. electron systems, a 
reference to https://doi.org/10.1073/pnas.1605462113 might be appropriate. Second, when considering the 
possible topological origin of the surface acoustic waves, a reference to the 
work https://arxiv.org/abs/2004.09517 on Rayleigh edge states in certain chiral crystals could be relevant. 

 
Authors’ response: We thank the reviewer for bringing our attention to interesting references [R. Süsstrunk 

and S. D. Huber, PNAS.1605462113] and [C. Benzoni et al., arXiv:2004.09517]. 
The first reference [R. Süsstrunk and S. D. Huber, PNAS.1605462113] discusses topological classification 

of mechanical systems. In mechanical systems they considered, continuous translation symmetry is not broken 
spontaneously as in phonons. Therefore, the band structure is gapped in general. The authors classified these 
systems in a similar way that topological insulators are classified. In particular, their classification scheme uses 
the well-known Altland-Zirnbauer (AZ) symmetry classes to characterize the stable topology of mechanical 
systems that is robust under the addition of topologically trivial bands. 

However, we would like to point out that the method employed in the PNAS paper to relate the electron and 
phonon problem is different from ours because the authors consider a more general problem: ݔሷ(ݐ) =∑ ௜௝ே௝ୀଵܦ−] (ݐ)ݔ + Γ௜௝ݔሶ  This requires them to treat the phonon Hamiltonian as a 2N by 2N matrix, where N .[(ݐ)
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ky
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is the number of energy modes. In contrast, we consider the case when Γ௜௝ = 0, which is usually the case in 
phonons (if we do not consider phonon damping, Raman-like terms, and Mead-Truhlar term in the Born-
Oppenheimer approximation). This allows us to restrict our attention to just the dynamical matrix D. Also, the 
authors of the paper discuss the edge modes related to the stable topological charge. On the other hand, the 
topological charge we discuss is the delicate charge, so that the theory discussed in the PNAS paper cannot be 
applied to our problem. 

In the second reference [C. Benzoni et al., arXiv:2004.09517], the authors investigate the Rayleigh wave in 
two-dimensional elastic solid with broken time-reversal symmetry. They conclude that because of the time-
reversal breaking term, which they call the “Berry term”, the Rayleigh modes can appear asymmetrically, and 
even merge into the bulk modes, and that this can be controlled by the Poisson ratio. Like us, the authors of this 
paper conclude that the Rayleigh modes they discuss are not of topological origin (although the authors make 
this claim, we could not locate their argument regarding this point). We would like to note, that the symmetry 
class discussed in this paper is different from the one in our manuscript, so that the discussion there cannot be 
directly applied to the situation in our manuscript. 
  



Reviewer #2 (Remarks to the Author): 
 
This work shows that the triple degeneracy of acoustic phonons can be characterized by a topological charge 

q. The topological charge q can equivalently be characterized by the skyrmion number of the longitudinal mode, 
or by the Euler number of the transverse modes. The authors did stop there, and so the authors proceeded to 
study how TATP strongly constrains the nodal structure around the TATP when there is a perturbation. 
Investigating topological phonon band structures, particularly the triple points in the phonon bands, is of 
considerable interest, but at this point I am not sure if this work has completed an in-depth study that warrants 
publication in Nature Communications. This reviewer also finds the writing style, which is intended to be rather 
concise, contains confusing statements here and there and hence weaken my overall impression on this work. 

 
Authors’ response: We thank the reviewer for the valuable questions and comments, which helped us 

improve parts of the manuscript which the reviewer has found confusing, and which could also have caused 
confusion for other readers. As the reviewer said, there is indeed a great interest in the topology of phonon band 
structure, and particularly about triple points in phonons. In this context, we think that our result that acoustic 
phonons can be characterized by a delicate topological charge, which is often deemed artificial by the 
community that studies topological insulators and semimetals, can be of wide interest. Unfortunately, the 
reviewer felt that our work has not completed an in-depth study. However, we think this impression was made 
not due to the lack of progress made in our work, but rather due to some of the statements that the reviewer 
found confusing, which also seems to be the reason that the reviewer thought that some of the statements were 
analyzed only qualitatively. In our revised manuscript, we have carefully considered the questions and 
comments raised by the reviewer to improve the overall presentation of our results. We hope the reviewer will 
find that our revised manuscript is suitable for publication in Nature Communications. 

 
One page 1, left column and start of right column, authors say “The topological charge q is strictly defined 

only when the total number of energy bands is fixed to there”. This is followed by “The TATP protected by NG 
theorem exists ubiquitously in elastic material.” 

 
Question 1: I am confused by these two self-contradicting statements. The first sentence said clearly that we 

strictly need 3 bands only, yet the second sentence says that there is no restriction on the number of phonon 
bands. 

 
Authors’ response: We agree that the statement can seem contradictory. We think this confusion was caused 

because we have not specified the context in which the statement holds in the introduction section (please also 
refer to our response to the reviewer’s Question 2). To clarify the meaning of this statement, we have reworded 
the second statement as follows: “Although only phonons in monatomic lattices have precisely three-bands, the 
theory of elasticity naturally yields an effective three-band description of the ATP, which are the three NG 
modes. In this sense, we find that TATP protected by the NG theorem is ubiquitous in elastic materials.” 

 
On page 2 (left column), the authors say “This condition is strictly satisfied by the phonons in a monatomic 

lattice, which have only three phonon bands. Even when there is more than one atom per unit cell, and therefore 
more than three phonon energy bands, this condition is satisfied near the ATP, which can be described by the 
elastic continuum Hamiltonian.” 

 
Question 2: The confusion is similar. If the second half of the sentence is true, then it seems that there is no 

need to emphasize the condition of only having three bands in many places of this manuscript. This style of the 
writing is creating an unpleasant/insecure experience. Taking the second point from the authors -- for systems 
with more than 3 bands, one must be reminded again that only local behaviour of the TATP can be discussed. 
Can the authors confirm that later, when they talk about the perturbation to the system and then the nodal line 
structure, did they really restrict themselves in the near TAPT regime? 

 
Authors’ response: We thank the reviewer for asking this question. Especially, the question about the linking 

structure in multiband systems, which we have not considered in the previous version of the manuscript, helped 
us generalize the statement in our manuscript.  

We agree that the statement the reviewer is pointing to can seem contradictory if the reader did not catch the 
point we wanted to make about the elastic continuum Hamiltonian. Although the reviewer may already be 
familiar with the theory of elasticity, let us first recall the basics of the theory of elasticity to clarify the point we 
wanted to make in our manuscript. Applied to crystals, the theory of elasticity assumes that the displacement ࢛௡,ఈ of atom at unit cell index ݊ and sublattice ߙ (so that the equilibrium position is ࢞௡,ఈ) can be considered as a 



continuous vector field ࢛(࢞). This allows us to define the strain tensor ݑ௜௝ = డ௨೔డ௫ೕ + డ௨ೕడ௫೔  and the elastic free 

energy ܨ = ଵଶ∑ ௞௟௜௝௞௟ݑ௜௝ݑ௜௝௞௟ߣ . As is well known, this is an excellent approximation for acoustic waves, and it 

naturally yields a 3-by-3 dynamical matrix. In other words, even in crystals with many optical phonons, the 
long-wave dynamics (the three acoustic waves) can be described by an effective 3-by-3 dynamical matrix, and 
this approximation is commonly made when studying the properties of acoustic waves. 

 
The point here is that the dynamical matrix studied in elastic continuum theory is a 3-by-3 matrix, and it is 

an excellent approximation for acoustic waves. Furthermore, the dynamical matrix is a real-valued 3-by-3 
matrix regardless of the number of optical phonons, and our theory can be applied whenever the elastic 
continuum theory is employed (Note that by stating that the dynamical matrix is ‘real-valued’, we are implicitly 
assuming that the time reversal symmetry is not broken in the phonon spectrum. Under this assumption, the 
dynamical matrix in the continuum limit is real valued. Please refer to our response to the reviewer 1’s question 
2 about this point on time reversal symmetry in elastic continuum limit.) In other words, although our theory is 
applicable only for strictly three-band systems (which can occur in monatomic lattices), effective Hamiltonians 
that contain only three bands arise naturally through the theory of elasticity, and our theory is also applicable to 
these Hamiltonians as long as these approximate Hamiltonians are valid. We note however, that even in the case 
when the three-band description is an approximation to the full phonon Hamiltonian, it is still meaningful in the 
sense that the Euler number in the topological charge । = (ॡ	௦௞, क़)	is well defined even in systems with more 
than three bands. Thus, if the elastic continuum theory (which is exact in the limit as ࢑ → 0) predicts । = (1,2), 
it implies that । = (1,2) → क़ = 2 if we do not employ the continuum approximation, but consider the full 
phonon Hamiltonian. 

 
At this point, the reviewer may also ask about the TATPs that are not described by the elastic continuum 

theory, but instead appear at high-symmetry points due to the symmetry constraints, and their status when there 
are more than three bands in total. A similar discussion applies in these cases. Locally, these TATP can be 
described well through the k.p Hamiltonian near the TATP, which becomes exact in the limit ࢑ → 0, and the 
charge । is well-defined in this limit. On the other hand, if we depart from k.p theory, । is not well defined 
because the skyrmion number is not well defined in a multiband system. However, the Euler number is still 
well-defined, and in this sense, । is still meaningful as discussed above. 

 
Let us now answer the question about the nodal line structure resulting from perturbations that break the 

triple degeneracy. In the previous version of the manuscript, we have proved that linking structure will emerge 
only for a 3-by-3 matrix in the Supplementary Information (Supplementary Note 5 “Linking structure protected 
by ।”). Because this proof holds only for a strictly three-band system, we have discussed the linking structure 
only for strictly three-band systems in our manuscript. On the other hand, we have found that near the TATP, it 
is not difficult to extend our proof for the three-band system to systems with more than three bands, as long as a 
gap between the three bands in question and the other energy bands is maintained, as we show below through an 
application of the Löwdin perturbation theory, which is also known as Löwdin partitioning [P. Löwdin, J. Chem. 
Phys. 19, 1396 (1951)]. 

 
First, let us consider the case when we do not apply perturbation that breaks the triple degeneracy. We can 

write the N-by-N Hamiltonian as (࢑)ܪ = (0)ܪ +  where we can assume without loss of generality that ,(࢑)ܪߜ
the TATP occurs at ࢑ = 0 and that (0)ܪ is block diagonal: (0)ܪ = ൬(0)ܣ 00  .൰(0)ܤ
Here, A block is the 3-by-3 matrix that contains the triple degeneracy, and B is the (N-3)-by-(N-3) matrix that 
contains all the other energy bands. Then, for k near 0, it is possible to obtain an effective 3-by-3 Hamiltonian 
for the A block and (N-3)-by-(N-3) Hamiltonian for the B blocks through a unitary transformation ݁ିௌ(࢑)(࢑)ܪ݁ௌ(࢑), where ܵ(࢑) can be expanded perturbatively in (ܪߜ/Δܧ), where Δܧ is the (smallest) energy 
gap between A and B blocks, see [Appendix B] in [R. Winkler, Spin-orbit coupling effects in two-dimensional 
electron and hole systems, (Springer, 2003)] for explicit form of ܵ(࢑). Therefore, as long as the perturbation 
theory converges (for k for which gap between A and B blocks is large), there exists a basis that can be obtained 
through the unitary transformation ݁ௌ(࢑) such that the Hamiltonian can be expressed as a block diagonal matrix 
with two diagonal blocks corresponding to A and B blocks. Then, the Hamiltonian for the three bands hosting 
the TATP is given by the first diagonal block, which is a 3-by-3 matrix. Note that this 3-by-3 Hamiltonian 
obtained from the Löwdin partitioning describes the band structure about TATP exactly, in contrast to the 
continuum approximation obtained by small ࢑ expansion. 

 



Now, let us consider the effect of perturbations that breaks the triple degeneracy. This perturbation can 
similarly be written as (࢑)ܸߣ = (0)ܸߣ +  controls the strength of the perturbation. Applying ߣ where ,(࢑)ܸߜߣ
the above perturbation theory to ܪఒ(࢑) = (࢑)ܪ +  we can obtain an effective 3-by-3 Hamiltonian for the ,(࢑)ܸߣ
three bands corresponding to the TATP, as long as (ܪߜ +  .is small ܧΔ/(ܸߜߣ

 
In this way, we see that although we have proved the linking structure in the presence of perturbations only 

for strictly three-band system, it can be applied to cases when there are more than three bands as long as the gap 
between the TATP and the other bands is large. 

 
In the revised manuscript, we have added this argument in the section titled “TATP in multiband systems” in 

Methods. 
 
Question 3: In a few places, the authors stressed the role of PT symmetry. But for real symmetric matrices 

under consideration, the time-reversal symmetry is always there. So what is the point of considering the joint PT 
symmetry, which is only about P-symmetry given than T-symmetry is already present? In my impression, the 
authors never spells out what the actual role is as played by PT symmetry (and yet they emphasize this 
throughout the writing). This is a concern. 

 
Authors’ response: We thank the reviewer for pointing out that we have not spelled out why the PT 

symmetry is needed to impose the reality condition in the main text (we found that the reason was explained 
only in the Supplementary Information). Before explaining the role of the PT symmetry, let us first note that 
time reversal symmetry alone does not constrain the Hamiltonian to be real and symmetric, which the reviewer 
seems to be claiming. In fact, the time reversal symmetry does not have to be present in a real symmetric 
Hamiltonian. A simple one-band Hamiltonian (or energy spectrum) that shows this in 1D is ܪ(݇) = sin(݇) +cos(݇). This real Hamiltonian obviously breaks time reversal symmetry because the energy at ݇ and −݇ are not 
the same. In fact, individually, P and T symmetries cannot constrain the Hamiltonian to be real and symmetric 
because these symmetries relate ܪ(݇) and ܪ(−݇). On the other hand, PT symmetry relates ܪ(݇) with ܪ(݇), 
because P and T individually relates ܪ(݇) and ܪ(−݇). This is because individually, P and T acts nonlocally in 
the momentum space, but their combination acts locally in the momentum space. In fact, it is known that when ܲଶ = 1 and ܶଶ = 1, it is possible to choose a basis in which PT=K, where K is the complex conjugation. Thus, 
in this basis, the constraint is (࢑)ܪ = ற(ܶܲ)(࢑)ܪ	ܶܲ = ܭ(࢑)ܪܭ =  .(࢑)∗ܪ

 
This is the reason that the PT symmetry constrains the Hamiltonian to be real, which is a condition that is 

necessary to define the topological charge । (in addition to (࢑)ܪ being a 3-by-3 matrix).  
 
In the revised manuscript, we have added an explanation regarding the role of the PT symmetry in Section I 

of the main text. 
 
Question 4: The authors investigated how TATP charge q constrains the nodal structure of symmetry-

protected TATPs when we perturb the Hamiltonian so that the relevant symmetry is relaxed, while the 
conditions required to define q are maintained. While some interesting consequences are observed due to TATP, 
there is no connection between the topological features of the resultant nodal structure (such as some topological 
invariants depicting the linkage of the nodal lines) and the TATP charge q. Based on the authors’ reasoning, this 
connection seems to be possible but was not done. 

 
Authors’ response: We thank the reviewer for taking an interest in the linking structure resulting from the 

TATP. Actually, we have given the exact relation between the topological charge, the linking structure, and its 
proof in the Supplementary Information V. Because it is technical and lengthy, we have not included it in the 
main text. Instead, we have commented in Sec. IV that a further explanation for the linking structure is given in 
the Methods (“Linked nodal structure protected by ।”), where we explain why there should be a linking 
structure. The essence of the argument given in the Methods is that the black nodal ring can be contracted and 
gapped out if it is not threaded by the red nodal lines as in Fig. 3d. However, such a situation is not compatible 
with the skyrmion charge of the uppermost energy band, which guarantees that the uppermost band cannot be 
gapped out from the lower two bands (these gap closing points form the black nodal ring). The exact relation 
between the topological charge and the linking structure and its proof is given in the Supplementary Information 
(this was mentioned in the Methods section): on a surface having the black nodal ring as its boundary, the total 
vorticity of the 2D Dirac points (formed by intersection of the surface with the red nodal lines) is given by 2ॡ௦௞. 

Because the Supplementary Information is lengthy, we have specified exactly which sections are being 
referenced in our revised manuscript.  

 



Question 5: In section 5 “AVOIDING THE DOUBLING THEOREM”, the authors discussed some 
examples of how this is achieved. However, the authors did not really establish theoretically why this well-
known theorem is not relevant to TATPs ---exactly what part of the assumption of this theorem is violated? 
Given many qualitative analyses in the manuscript, the lack of a solid reason to account for the avoiding of the 
doubling theorem is a bit disappointing to this reviewer. 

 
 Authors’ response: We thank the reviewer for asking this important question. In the manuscript, we 

explained two ways to avoid the doubling theorem, in the CsCl lattice and in the 3D Lieb lattice. To understand 
why the doubling theorem is avoided, let us first recall the argument that is used to show the doubling theorem 
(see Sec. V). We first assume that the integer valued topological charge can be defined for a two-dimensional 
(2D) slice in the BZ. In the case of the doubling of the TATP, the relevant integer valued topological charge is 
the Euler number computed for the two bands corresponding to the T modes of a TATP. Since the Euler number 
changes by ±2 across the TATP, the periodicity of the BZ (see Fig. 4d) can be satisfied only if there is another 
TATP with Euler number ∓2. However, this argument can be avoided when it is not possible to define the Euler 
number for a 2D slice in the BZ. In our manuscript, we gave two representative ways that this can happen. 

 
Let us first consider the CsCl lattice. To understand why the doubling theorem is avoided, let us recall that 

the topological charge । that we are considering requires that around the triple point, there is a gap between two 
of the energy bands and the remaining energy band. For a TATP, the topological charge of the two energy bands 
is the Euler number, which can be defined regardless of the total number of energy bands in the system (as we 
have explained in Secs. I and II). Because the Euler number is a ℤ valued quantity, we might expect that nodal 
structure with non-zero Euler number (i.e. the TATP) will not exist alone, as explained above. 

 
However, in the case of CsCl, the doubling theorem is avoided: for the three lowest energy bands (let us call 

them the acoustic phonons), the only TATP is at Γ. To explain this, let us note that there is an energy gap 
between the lowest two acoustic phonons (the T modes) and the highest acoustic phonon (the L mode) around 
the TATP. However, this gap is not maintained throughout the BZ. In fact, as we have explained in Sec. V, there 
is a degeneracy between the L and one of the T modes along the RM line, as can be seen in Fig. 2b. This means 
that we cannot choose a 2D plane in the BZ as in Fig. 4d on which there is an energy gap between the L and the 
T modes throughout the 2D plane. Since such a gap must be satisfied to define the Euler number in a 2D plane, 
we see that it is not possible to define the Euler number for the two lowest energy bands on the 2D slice of the 
BZ when there is a band degeneracy between the L and T modes. This is why the periodicity argument that we 
have reviewed above cannot be applied to the TATP in CsCl. 

 
In contrast to the phonon energy spectrum of CsCl, the energy spectrum in the 3D Lieb lattice does allow 

such a partitioning between the T modes and the L mode throughout the BZ. Here, as before, the T modes refer 
to the two modes with Euler number when computed on a sphere surrounding the TATP, and the L mode refers 
to the mode with skyrmion number on the same sphere. Therefore, one may expect that when we consider two 
parallel 2D planes in the BZ on the opposite sides of the TATP as in Fig. 4d, the difference between the Euler 
numbers computed on the two planes should be 2, and there should be a doubling of TATP. However, the 
argument for the doubling fails because of the Zak phase: when the Zak phase along any direction in the 2D 
plane is ߨ, it is not possible to define the Euler number in the 2D plane at all. This is because two T modes do 
not form an orientable vector bundle when the Zak phase is ߨ, whereas Euler number is defined only for 
orientable bundles, as we have explained in Sec. V. 

 
The two examples discussed here are two representative ways to avoid the doubling theorem. In both 

examples, the doubling is avoided because it is not possible to define the Euler number on a 2D slice in the BZ. 
In the CsCl lattice, the Euler number cannot be defined because it is not possible to partition the energy bands 
on the 2D slice in the BZ into the L and the T modes. In the 3D Lieb lattice, the Euler number cannot be defined 
on the 2D slice in the BZ because the Zak phases are nontrivial.  

 
In the revised manuscript, we have added some further explanation in Sec. V for clarity. 
 
In summary, we think that the main reason the reviewer feels that the analysis was qualitative is due to the 

confusion caused by the fact that we have not clarified the relation between TATP defined in strictly three-band 
systems and the TATP that can appear in systems with more than three bands. Another possible reason that the 
reviewer feels that our analysis is qualitative seems to be caused by the fact that we have not pointed to the 
exact section in the Supplementary Information that are being referenced in the main text for the proof (e.g. the 
proof for the linking structure). We believe that these are the reasons that the reviewer felt that our work was not 
carried out in depth. In the revised manuscript, we have clarified the possibility of confusion about the three-



band conditions, and also clarified exactly which section in the Supplementary Information is being referenced 
in the main text. To further eliminate sources of confusion, we have added a section titled “Note on terminology” 
in Methods. As we have clarified in this response, we feel that we have given a solid reasoning for all of the 
statements we have made in our manuscript. Because all the concerns raised by the reviewer are appropriately 
addressed in our response and the revised manuscript, we hope that the reviewer will have a better opinion on 
our revised manuscript. 

 
  



Reviewer #3 (Remarks to the Author): 
 
In this paper, Park et al have established the topological nature of a special "node" in the band of phonons, 

which is the zero-momentum-zero-energy nexus of the triplet Goldstone modes. It is shown that a pair of 
topological invariants, the Euler number e and the Skyrmion number q, describe the above topology. Similar 
discussion applies to triplet node at higher energy protected by cubic symmetries. Possible consequences for this 
type of topology are discussed briefly. 

 
For someone who is familiar with Ref.[35] from the same group, and an earlier paper from another group 

which was not cited, the above result adds limited information to the existing literature. The work at hand is 
more or less an application of the existing theory to the acoustic phonons. For that reason, I think the work is not 
seminal enough as a theoretical breakthrough. On the other hand, I appreciate the idea that a rather abstract Z2 
topological invariant (which is the Euler number mod 2) has found its realization in one of the most common 
phenomenon of acoustic waves that appear in almost every solid. Such identification, ideally, should come with 
new physical effect to be experimentally observed, yet the discussion of possible effects originating from the 
new topology is too brief to be convincing or helpful for experimentalists. For that reason, I think the work has 
not enough potential to drive new experiments. Based on the above observations, I conclude that the physics 
shown in the current form is not sufficiently interesting for publication in Nature Communications. 

 
 Authors’ response: We thank the reviewer for appreciating the fact that the topological charge । can appear 

in the common phenomenon of acoustic waves, which was the main conclusion we wanted to convey. Because ।  is a delicate topological charge, which is often looked on as something artificial due to the constraint on the 
number of energy bands required to define the charge, we think that this result can be of wide interest. Based on 
the reviewer’s comments, we believe that the main reason the reviewer does not believe that our work is suitable 
for publication in Nature Communications is due to the overlap with Ref. [35]. However, as we explain below, 
the topological charge we studied in the present manuscript cannot be analyzed by a simple application of the 
theory in Ref. [35]. Actually, the reference to Ref. [35] in the present manuscript was not in regards to the Z2 
monopole nodal lines. In fact, Z2 monopole nodal lines are not directly relevant to this work as we explain 
below. This is also the reason that other works on Z2 monopole nodal lines were not cited. We hope that once 
this misunderstanding is resolved, the reviewer will have a better opinion of our manuscript. 

 
Sec.I and Sec.II: 
In earlier works, it has been shown that \pi_2(O(M+N)/O(M)*O(N))=Z2 for M, N>2, and also that for N=2 

(or M=2), this invariant becomes a Z-invariant (later named as the Euler number). Here the authors are dealing 
with M=1, N=2, so a straightforward calculation would show that e=2, or z2=1. 

 
 Authors’ response: We thank the reviewer for this comment, since this point could also have caused other 

readers to feel that the topological charge we have studied is a simple application of existing theories such as 
Ref. [35]. As pointed out by the reviewer, the topological invariants for such cases have been computed in 
previous works, such as Ref. [34]. However, we are not aware of any work studying triple points with the 
charge  ߨଶ(ܱ(3) ܱ(1) × ܱ(2)⁄ ). Furthermore, the charge । = (ॡ௦௞, क़) = (1,2) does not reduce to the charge ℤଶ = 1 (it reduces to ℤଶ = 0 as क़	is even) when additional bands are present, if this is what the reviewer is 
implying by the comment “a straightforward calculation would show that e=2, or z2=1.” For this reason, 
properties of nodal structures with ℤଶ = 1 does not apply to the topological charge ।. 

 
Sec.III: 
This section is good. It gives clear criterion when the topological invariant becomes nontrivial in terms of 

the elastic constants, and relates this criterion to the stability criterion. One cannot derive such information 
trivially from existing results. 

It is interesting to see, however, that some phonon bands carry q=0. Is it possible to have q>1? If so I would 
find it very interesting. 

 
 Authors’ response: We thank the reviewer for asking this interesting question. We do not think that it is 

possible for acoustic phonons to have ॡ௦௞ > 1 (we take it that the reviewer is referring to the skyrmion charge 
by q) as we explain below. For simplicity, let us assume a cylindrical symmetry about the z axis. Also, let us 
note that in the isotropic case, the dynamical matrix is given by ܪ = ଶ்݇ଶ1ଷ×ଷݒ + ݇ଶ(ݒ௅ଶ − (ଶ்ݒ ቌ sinଶ ߠ cosଶ ߶ sinଶ ߠ cos ߶ sin߶ sin ߠ cos ߠ cos ߶sinଶ ߠ cos ߶ sin߶ sinଶ ߠ sinଶ ߶ sin ߠ sin߶ cos sinߠ ߠ cos ߠ cos߶ sin ߠ sin߶ cos ߠ cosଶ ߠ ቍ 



Noting that ॡ௦௞ > 1 requires that the L mode be a map ܵଶ → ܵଶ with degree greater than one, we can obtain 
such wavefunction texture by replacing ߶ → 2߶. However, such a dynamical matrix is not a smooth function in ݇ . For example, the term ݇ଶ sinଶ ߠ sinଶ 2߶ = 4݇ଶ sinଶ ߠ sinଶ ߶ cosଶ ߶ = 4݇௬ଶ cosଶ ߶ = 4݇௬ଶ × ௞మೣ௞మೣା௞೤మ  is not 

smooth in ݇ . This can be rectified only by introducing terms that are quartic in momentum, which is not 
compatible with elastic continuum theory, which yields only dynamical matrix that are quadratic in momentum. 

 
Sec.IV: 
In Ref.[35], authors from the same group give very comprehensive discussion of what happens as the nodal 

point breaks into a nodal line, and the linking structure that is basically the same as Fig.3d. Rather, in Ref.[35], 
the discussion is even more general than here, because they were dealing with arbitrary M and N. Simply 
applying the general results to M=1, N=2, one immediately finds the linking structure. 

A related question is what happens if q>1 (e>2)? Should one expect a more complicated linking structure 
than Fig.3d? 

 
 Authors’ response: We thank the reviewer for this comment, which can be a source of confusion. As the 

reviewer points out, based on the observation that the black nodal ring in our manuscript and the Z2 monopole 
nodal lines in Ref. [35] both show some form of linking structure, it can appear that the two are of the same 
origin. However, the linking structure in our manuscript cannot be explained by simply applying the argument 
in Ref. [35] as we now explain. 

Let us recall that in Ref. [35], the authors consider nodal lines (forming a ring) with the Z2 monopole charge 
(computed on a sphere surrounding the nodal line), and show that it should be linked with another nodal line 
due to this charge. To show this, the authors 

 “continuously deform the sphere wrapping a NL γ, by gluing the north and south poles at the center, into a 
thin torus completely enclosing γ. As long as the band gap remains finite during the deformation, w2 is invariant 
since the gluing of the north and south poles does not create a monopole… We assume that the torus is thin 
enough so that all occupied bands on it are nondegenerate. In this limit, according to the Whitney sum formula, 
w2 satisfies the following relations modulo two …” 

First, let us note that this argument uses the Whitney sum formula for the second Stiefel-Whitney class for a 
nodal line with w2=1. However, we are considering the case when क़ = 2 for the two lower energy bands in Fig. 
3d in our manuscript (computed on a sphere surrounding the black nodal ring), which implies that w2=0 mod 2. 
Since the nodal structure considered in our manuscript has w2=0, the argument in Ref. 35 does not carry over, 
and we require a separate proof for the three-band system. 

Moreover, in a three-band system, the ‘smallest’ nontrivial topological charge is । = (1,2), meaning that the 
smallest nonzero Euler number possible is 2. In other words, in a three-band system, we cannot even obtain a Z2 
monopole nodal lines having क़ = 1 (corresponding to w2=1). This implies that it is not even possible to regard 
the black nodal ring in our manuscript as a simple superposition of two Z2 monopole nodal lines. In fact, as 
pointed out in Ref. [35], the Z2 monopole nodal line requires a minimum of four bands, and the three-band case 
discussed in our manuscript is not a trivial application of the results in Ref. [35]. 

Next, let us answer the reviewer’s question on the case with ॡ௦௞>1 (we take it that this is what the reviewer 
means by ।>1). Because the nodal structure in Fig. 3d with । = (1,2)  is the building block for the charge ।, 
when । = (2,4), we can simply regard it as two black nodal ring, each threaded by at least two nodal lines (in the 
terminology of Fig. 3d). If the black nodal rings merge, it will be threaded by at least four red nodal lines. Let us 
note that the total vorticity of the 2D Dirac points on a surface having the black nodal line as its boundary is 
twice the skyrmion number of the charge computed on the sphere surrounding it. 

 
Sec.V: 
This section is interesting. It involves the difference between the definition of topological invariants on S^n 

and that on T^n. I suggest to expand this section, specially where the authors claim that such an extension to 
T^n is possible if and only if the non-contractible loop has trivial Berry phase. 

 
 Authors’ response: We thank the reviewer for this comment. Although the important quantity in this section 

was the Euler number (which is not the same as । as we have defined it), the reviewer rightly points out that the 
transition in the discussion of the charge defined on S^2 to T^2 may not have been obvious. It is of course also 
true that for a three-band system, । can be defined on a T^2 if and only if non-contractible loop has trivial Berry 
phase and there is a gap between two of the bands and the remaining band in a three-band system. This is 
actually quite easy to see because the Euler number can be defined only when the Berry phase is zero along all 
non-contractible loops in T^2. Because the only obstruction to contracting the loops in T^2 is ߨଵ(ܱ(3) ܱ(1) × ܱ(2)⁄ ) = ℤଶ, which is the Berry phase, when the Berry phases are trivial, the topological 
charge on T^2 is the same as the topological charge on S^2, which is nothing but ।.  



 
In the revised manuscript, we have added some further discussion on the Euler number to Sec. V. 
 
Sec.IV: 
I suggest that the authors significantly expand the discussion on experimental consequences. For me, several 

points should be clarified. (i) Since the nodal point is related to PT-symmetry, which is not preserved on any 
open surface, can I say that there is no topologically protected surface states related to this type of node? (ii) 
Since phonons do not couple to gauge fields, how should one observe the phonon angular momentum Hall 
effect? (iii) Can we have a concrete calculation of the orbital Hall effect in an electronic material hosting TP at 
Fermi energy? 

The bottom line is that since the topological part of the theory is not new enough, the authors may consider 
shifting the emphasis to potentially new observable effects. 

 
 Authors’ response: We thank the reviewer for carefully reading our manuscript and considering ways to 

improve it. Let us answer the reviewers’ comments point by point below. 
(i) Although the reviewer may know this, we would first like to point out that we have discussed the surface 

modes in the Discussion section, and we have investigated the problem in more detail in the SM, where we 
conclude that the TATP is not directly related to surface modes which is suggestive due to presence of surface 
acoustic waves in elastic systems. However, this is not related to the fact that PT symmetry is broken on systems 
with open surface.  

This is because even if the PT symmetry is broken on the surface, topological surface states are not 
forbidden. As an example, let us consider a two-dimensional insulator with क़ = 1 (for further discussion on this 
example, see Ref. [18] Phys. Rev. X, 021013 (2019)). If we introduce edges to this system so that it has a square 
shape, for example, the PT symmetry is broken on each of the edges (note that the 2D system as a whole still 
preserves the PT symmetry). It nevertheless shows corner states because a 2D insulator with क़ = 1	is a higher-
order topological insulator. 

(ii) The reviewer is correct in saying that the phonon angular momentum does not directly couple to gauge 
fields like the electromagnetic field. However, let us note that the phonon angular momentum Hall effect 
discussed in Ref. [50] is a response to the thermal gradient, which can couple to phonon angular momentum. 
Furthermore, the phonon angular momentum Hall current induces accumulation of the phonon angular 
momentum on the surface. For an ionic crystal, the phonon angular momentum on the surface can induce edge 

magnetization due to the well-known relation ߤ = ௘௓೐೑೑ଶெ  is the Born effective charge. This edge	௭, where ܼ௘௙௙ܮ

magnetization does couple to the electromagnetic field (gauge field). This was discussed in detail in Ref. [50]. 
Because the PAMHE is not well known, we have made additional comments regarding this point in the 
Discussion section. 

(iii) The orbital Hall effect arising from TATP is discussed in detail in Refs. [51,52] as we have pointed out 
in the Discussion section, although the authors in these papers did not recognize the relation between the texture 
of the wavefunctions they study and the topological charge ।. The point we wanted to make in the present 
manuscript is that the texture that was already pointed out as a source of the PAMHE and the orbital Hall effects 
are actually characterized by the topological charge ।. 

Although we appreciate the reviewer’s suggestion of studying the orbital Hall effect arising from TATP in 
more detail, we do not feel that it is a suitable subject for this particular manuscript, firstly because the orbital 
Hall effect is not the main topic of our manuscript, and secondly, because we believe that a study of PAMHE 
and orbital Hall effect that goes beyond Refs. [50,51,52] would be suitable for a separate research paper. This is 
especially so because although TATP can be a significant source of the OHE, it is not the only source of OHE 
(just as Weyl points are not the only sources of anomalous Hall effect), and even in the case of TATP, the 
energetics will influence the magnitude of the orbital Hall effect. Therefore, finding a real material that hosts 
just the TATP at the fermi surface and studying the orbital Hall effect would make our paper too long and even 
motley. However, for the reference for the reviewer, we have analytically computed Ω௞,௡ that appears in the 
expression for the orbital Hall effect for the isotropic Hamiltonian. The orbital Hall conductivity is given by the 
expression ߪைு = ℏ݁ ෍ න ݀ଷ݇(2ߨ)ଷ ( ௠݂௞ − ௡݂௞)Ω௡௠௞௅೥௡ஷ௠ , Ω௡௠௞௅೥ = ℏଶIm൭⟨ݑ௡௞ห݆௬௅೥หݑ௠௞⟩⟨ݑ௠௞|ݒ௫|ݑ௡௞⟩(ܧ௡௞ − ௠௞ܧ + ଶ(ߟ݅ ൱ 

For TATP with Hamiltonian [ܪ௞]ఈఉ = ܽ݇ଶߜఈఉ + ܾ݇ఈ݇ఉ, Ω௅ భ்௞௅೥ = −Ω భ்௅௞௅೥ = ℏ݇௬ଶ݇௭ଶܾ + 2݇௬ଶ ෨݇ଶ(2ܽ + ܾ)2 ෨݇ଶ݇ସܾ 	Ω௅ మ்௞௅೥ = −Ω మ்௅௞௅೥ = ℏ ݇௫ଶ݇௭ଶ2 ෨݇ଶ݇ସ	



Ω భ் మ்௞௅೥ = −Ω మ் భ்௞௅೥ = 0,	
where ෨݇ ଶ = ݇௫ଶ + ݇௬ଶ. We would like to note that although a direct relation between TATP and orbital Hall 
effect is complicated by the location of fermi energy, the energy spectrum around the TATP, and the difficulty 
of isolating just the TATP, the phonon angular momentum Hall effect results almost exclusively from the TATP 
at low temperatures, as discussed in detail in Ref. [50] (note that the relation to the topological charge was also 
overlooked there). 

 
We hope that our response has cleared up the misunderstanding that the theory in this manuscript is a trivial 

corollary of the theory in Ref. [35]. Because this was the main reason that the reviewer did not feel that our 
work is new, we would like to ask the reviewer to kindly re-evaluate our manuscript based on our response. 

 
  



REVIEWER COMMENTS 

Reviewer #2 (Remarks to the Author): 

I have read authors' responses to questions from all three referees. The authors have done a beautiful 

job in addressing many concerns and I tend to believe that this work may now probably make it to 

Nature Communications. The extensive exchange between the authors and the reviewers is highly 

academic and hence professional. 

However, this reviewer is still confused by the role of T-symmetry. In their reply to reviewer 2, they 

said the following: 

"Note that by stating that the dynamical matrix is ‘real-valued’, we are implicitly assuming that the 

time reversal symmetry is not broken in the phonon spectrum. Under this assumption, the 

dynamical matrix in the continuum limit is real valued. Please refer to our response to the reviewer 1’s 

question 

2 about this point on time reversal symmetry in elastic continuum limit.". 

This is precisely this reviewer's point in his first report. If T-symmetry is already assumed to be there, 

why should the authors keep emphasizing PT symmetry? That is, if T-symmetry is implicitly assumed 

from the very beginning, then only P-symmetry is relevant, not the PT symmetry. PT-symmetry is 

more relevant only if both P and T symmetries are individually broken. 

In their reponse following the above statement, the authors then condradicted themselves by saying 

(in reply to Question 3 of reviewer 2) that the joint PT symmetry (not T-symmetry) can guarantee 

that the dynamical symmetry is real. 

I hope that the above-mentioned self-contradiction is merely caused by authors' writing, not on the 

fundamental level.



Response to the reviewer 
 
Reviewer #2 (Remarks to the Author): 
I have read authors' responses to questions from all three referees. The authors have done a 

beautiful job in addressing many concerns and I tend to believe that this work may now probably 
make it to Nature Communications. The extensive exchange between the authors and the reviewers is 
highly academic and hence professional. 

 
Authors’ response: 
We thank the reviewer for the positive evaluation of the revision of our manuscript.  
 
However, this reviewer is still confused by the role of T-symmetry. In their reply to reviewer 2, they 
said the following: 
 
"Note that by stating that the dynamical matrix is ‘real-valued’, we are implicitly assuming that the 
time reversal symmetry is not broken in the phonon spectrum. Under this assumption, the 
dynamical matrix in the continuum limit is real valued. Please refer to our response to the reviewer 
1’s question 2 about this point on time reversal symmetry in elastic continuum limit.". 
 
This is precisely this reviewer's point in his first report. If T-symmetry is already assumed to be there, 
why should the authors keep emphasizing PT symmetry? That is, if T-symmetry is implicitly assumed 
from the very beginning, then only P-symmetry is relevant, not the PT symmetry. PT-symmetry is 
more relevant only if both P and T symmetries are individually broken. 
 
In their reponse following the above statement, the authors then condradicted themselves by saying 
(in reply to Question 3 of reviewer 2) that the joint PT symmetry (not T-symmetry) can guarantee that 
the dynamical symmetry is real. 
 
I hope that the above-mentioned self-contradiction is merely caused by authors' writing, not on the 
fundamental level. 

 
Authors’ response: 
We thank the reviewer for carefully reading the previous response letter and clarifying the reviewer’s 
intention for Question 3 in the previous correspondence. The reviewer is certainly correct in saying 
that once we assume that the time-reversal symmetry is present in the dynamical matrix, only the 
presence of the inversion symmetry needs to be emphasized. However, we opted to emphasize the 
role of the PT symmetry for the following reasons: 
 

1. The main role of the PT symmetry is in constraining the Hamiltonian to take real values. As 
we have explained in the previous correspondence, this is because we can take PT=K 
(complex conjugation). Because the reality condition is crucial in defining the topological 
charge , the PT symmetry is necessary for us to define this topological charge. Although this 
point may already be clear to the reviewer, let us again emphasize that neither P nor T by 
itself can constrain the Hamiltonian to be real, and it is the combined PT symmetry that 
constrains the Hamiltonian to be real. Furthermore, the condition that PT symmetry is present 
is more general than the condition that both P and T symmetries are present. For these 
reasons, we believe that even in the case when both the P and the T symmetries are present, it 
is better to emphasize the presence of the PT symmetry rather than the presence of both the P 
and the T symmetries when discussing the topological charge  of a real Hamiltonian. Please 
refer to the following comments in Sec. I “To define , we require that Hk be 3x3 real 
symmetric matrix” and “The condition that Hk be real is satisfied if there is PT symmetry…”. 
 

2. In our manuscript, we also extended the discussion of the topological charge  to electronic 
bands. In electronic systems, the effect of time-reversal breaking is more apparent than in 



phonons. Therefore, in electronic systems, there is no reason to limit the discussion to time-
reversal symmetric systems, in contrast to phonons, where the appearance of time-reversal 
breaking is rather special. At this point, the reviewer might ask the following question: since 
we state that the TATP can appear in high symmetric points in the presence of Oh and Th 
groups (in electronic systems), are we not assuming that both the P and the T symmetries are 
present even in electronic systems (since Oh and Th is P-symmetric and we also assume PT-
symmetry)? While this is a valid point, we still think that it is better to emphasize the PT 
symmetry, because in our manuscript, we also discuss the fate of the TATP under the 
perturbations that keep the Hamiltonian to be real. Such perturbations are allowed to break 
both the P and the T symmetries, but they must preserve the PT symmetry in order to observe 
the linking structure protected by the charge  (note that the Hamiltonian must be real in 
order to define , but it does not have to be symmetric under both T and P). Thus, for this 
discussion, it is necessary to emphasize the PT symmetry. 
 

3. Even for phonons, it is in principle possible for the P and the T to be broken, but for the PT 
symmetry to be present. Actually, in the previous response, our comment “we are implicitly 
assuming that the time reversal symmetry is not broken in the phonon spectrum” was made 
with a specific situation in mind. Namely, we were considering specific examples of how the 
time-reversal symmetric phonon Hamiltonian is modified in response to external magnetic 
field (manifested by the Mead-Truhlar term and Raman coupling). However, it is also 
possible for antiferromagnetic ordering to break the T symmetry and modify the phonon 
spectrum. Furthermore, antiferromagnetic ordering can be compatible with the PT symmetry, 
but it is not compatible with the time-reversal symmetry, so that in such cases, it would be 
the PT symmetry that constrains the phonon Hamiltonian to be real. Although time reversal 
symmetry breaking effects in phonon spectrum are usually small, we prefer not to completely 
exclude such possibilities. To summarize, it is true that in time-reversal symmetric crystals, 
the reality of the phonon Hamiltonian additionally requires only the inversion symmetry. 
However, in time-reversal broken crystals, the reality of the phonon (and electronic) 
Hamiltonian depends on the PT symmetry. 
 

For the convenience of the reviewer, we provide a summary of relevant facts: 
 

 The PT symmetry is necessary for constraining the Hamiltonian to be real.  
 The Hamiltonian must be real in order to define the topological charge .  
 Neither P nor the T symmetry can individually constrain the Hamiltonian to be real. 
 The Hamiltonian for acoustic phonons in the presence of time-reversal symmetry is real due 

to the presence of the (emergent) inversion symmetry (cf. response to Question 2 of reviewer 
1 in the previous correspondence). 

 The Hamiltonian for acoustic phonons does not have to be real in the presence of magnetic 
fields/magnetic order. 

 However, even if the P and the T symmetry are broken, if the PT symmetry is present, the 
Hamiltonian is real. This can happen in antiferromagnetic systems. 

 For the presence of triple degeneracy (TATP), we considered only the cases when both P and 
T symmetries are present.  

 However, definition of  does not require both the P and the T symmetries, but only the PT 
symmetry. Thus, perturbations that break the triple degeneracy while maintaining the 
condition necessary to define  can break both P and the T symmetries, but not the PT 
symmetry. Let us note that this point was discussed in Sec. IV (“the definition of  only 
requires that the Hamiltonian be a 3 x 3 real symmetric matrix with a spectral gap between 
(the) L and the T modes, while the symmetry-protected TATP requires further constraints 
such as the Oh symmetry”: note here that the reality condition is equivalent to the presence of 
PT symmetry) 
 

We hope that the above explanation clarifies the confusion. 
 



To emphasize the role played by the PT symmetry for the perturbation that breaks the triple 
degeneracy, we added the following comment in Sec. IV: 
“Let us note that we allow the possibility for the perturbation to break the P and the T symmetries, but 
the perturbation must preserve the combined PT symmetry to keep the Hamiltonian real.” 
  



REVIEWERS' COMMENTS 

Reviewer #2 (Remarks to the Author): 

The authors have answered my question with great efforts. Delaying the review process is the last 

thing I hope to do, but some further discussion should be healthy. What the authors said did not 

explain their logically contradicting sentence below: (authors did not get the key point in my earlier 

report) : 

Authors say: "Note that by stating that the dynamical matrix is ‘real-valued’, we are implicitly 

assuming that the time reversal symmetry is not broken in the phonon spectrum". 

According to this logic, if the matrix is real, then there is assumed time reversal symmetry. On the 

other hand, the authors keep highlighting that real matrix is associated with PT symmetry, rather than 

the T symmetry alone. So what does the authors really wish to say, by saying "implicitly 

assuming....". Can the authors fix this? 

Reviewer #3 (Remarks to the Author): 

I personally apologize to the authors and the editor for my overdue report. 

I was previously convinced that, despite the authors' explanation in their reply, that Euler#=2 

corresponds to the Z2=1 case. I was of the intention to use an explicit example to show this to the 

authors, until today when I found that my example proved exactly the opposite, that E#=2 

corresponds to Z2=0. 

With the main misunderstanding resolved, I am convinced of the authors' major claim that TATP is a 

simple but novel example for realizing the E#=2 topological node. 

I am fine with the rest of the reply and revision, except for the one on the avoidance of the NN-

theorem. In fact, I prefer what the authors say in the reply to what they write in the paper, explaining 

well that the NN-theorem only works for S^n, but may be extended to T^n given trivial invariants for 

all non-contractible loops. 

I recommend publication after the optional minor revision (mentioned above).



Reviewer #2 (Remarks to the Author): 

 

The authors have answered my question with great efforts. Delaying the review process is the last 

thing I hope to do, but some further discussion should be healthy. What the authors said did not 

explain their logically contradicting sentence below: (authors did not get the key point in my earlier 

report): 

 

Authors say: "Note that by stating that the dynamical matrix is „real-valued‟, we are implicitly 

assuming that the time reversal symmetry is not broken in the phonon spectrum". 

According to this logic, if the matrix is real, then there is assumed time reversal symmetry. On the 

other hand, the authors keep highlighting that real matrix is associated with PT symmetry, rather than 

the T symmetry alone. So what does the authors really wish to say, by saying "implicitly assuming....". 

Can the authors fix this? 

 

Authors‟ response:  

We agree that the expression “Note that by stating that the dynamical matrix is „real-valued‟, 

we are implicitly assuming that the time reversal symmetry is not broken in the phonon spectrum” is 

misleading. The correct statement should be “Note that the dynamical matrix is real-valued when 

the system has PT symmetry. As P symmetry is restored in the elastic continuum limit near the 

triple degeneracy point even in noncentrosymmetric crystals, when the system has T symmetry, 

the dynamical matrix becomes real in both centrosymmetric and non-centrosymmetric crystals”. 

The meaning of “implicitly assuming” was that we focused on the time-reversal symmetric crystals. 

 

Please find more detailed context of such an explanation, including the effect of time-reversal 

symmetry breaking, in our previous response. Let us stress that the above confusing expression, 

correctly pointed out by the reviewer, appeared only in our response letter in the first round of the 

review process. Since this expression is not directly related to the main point of our paper, there is no 

logical flaw in our paper. We hope that this resolves the remaining issue pointed out by the reviewer. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

I personally apologize to the authors and the editor for my overdue report. 

 

I was previously convinced that, despite the authors' explanation in their reply, that Euler#=2 

corresponds to the Z2=1 case. I was of the intention to use an explicit example to show this to the 

authors, until today when I found that my example proved exactly the opposite, that E#=2 

corresponds to Z2=0. 

 

With the main misunderstanding resolved, I am convinced of the authors' major claim that TATP is a 

simple but novel example for realizing the E#=2 topological node. 

 

I am fine with the rest of the reply and revision, except for the one on the avoidance of the NN-

theorem. In fact, I prefer what the authors say in the reply to what they write in the paper, explaining 

well that the NN-theorem only works for S^n, but may be extended to T^n given trivial invariants for 

all non-contractible loops. 

 

I recommend publication after the optional minor revision (mentioned above). 

 

Authors‟ response: 

We thank the reviewer for carefully reviewing our manuscript, and recommending our 

manuscript for publication at Nature Communications. We fully understand the difficulty that the 



reviewer had about the topological charge, as the point on the topological charge can be subtle, 

especially because both topological charges are associated with linking structures. 

 

In regards to the NN theorem, we appreciate the reviewer for making suggestions to improve 

our manuscript. Here, we believe that the reviewer is referring to our response to the following 

comment in the first round of review: 

“Sec.V: 

This section is interesting. It involves the difference between the definition of topological 

invariants on S^n and that on T^n. I suggest to expand this section, specially where the 

authors claim that such an extension to T^n is possible if and only if the non-contractible 

loop has trivial Berry phase.” 

Our reply was that the possible topological charge on T2 is the same as the possible topological charge 

on S2 when there is no topological obstruction to shrinking the non-contractible loops on T2. 

 

 In the previous discussion we mentioned above, the main point is regarding the „difference‟ 

between the possible topological charges on T2 as opposed to S2. Because the Reviewer is now 

referring to the status of NN theorem on S3 vs T3, we are slightly confused on whether the Reviewer is 

referring to the topological charge on 2D as mentioned above, or the NN theorem in 3D, since they 

are two different topics and we did not explicitly mention the NN theorem in our previous response.  

Our understanding is that by the statement “the NN-theorem only works for S^n, but may be extended 

to T^n given trivial invariants for all non-contractible loops”, the reviewer means that on S^n, there is 

no orientability obstruction to defining the Euler number (the „difference‟ between the topological 

charge on S2 and T2), so that there should be a doubling of TATP on for S3. Then, we can reverse the 

process of the deformation involved in      (        )⁄      (here,   is the wedge sum), to 

obtain the NN theorem on the torus from that on the sphere. While this is true, we think that this could 

be confusing to the reader for a few reasons. 

 

First, the NN theorem is usually discussed on the torus by using the periodicity argument (this 

is how we proceeded in Sec. V), so that stating the NN theorem on S^n is slightly awkward (the first 

part of the logic in <NN holds on S3   extension to T3>).  

 

Second, to follow the logical flow <NN holds on S3   extension to T3>, we need to first 

explain why doubling holds on S3. Although it is possible to directly show this, and extend to T3 by 

reversing      (        )⁄    , we think that this takes us too far away from the core 

discussion in this section. This is because the main message we wanted to get across in this section is 

that the doubling of TATP can be avoided due to the two reasons we have explained in the manuscript, 

although the viewpoint suggested by the Reviewer is certainly interesting. 

 

Third, we do not use the doubling of the TATP on S3 anywhere in our manuscript, so we 

could not find a suitable way to fit it naturally into the flow of our manuscript without disrupting the 

flow.  

 

Since the Reviewer kindly suggested this as an optional revision, we have decided to keep the 

logical flow of Sec. V (“Avoiding the doubling theorem”) as is. 


