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Supplementary materials 

Dataset details of binary classification problems 
The IDaRS deep neural network model is trained for binary classification. For instance, in the case of 
hypermutated (HM) tumor prediction, the two classes are high mutation density (HMD) and low mutation 
density (LMD). For MSI pathway prediction, the two classes are microsatellite instable-High (MSI-High) (MSI) 

and microsatellite stable (MSS) tumors; MSI-Low are combined with MSS in line with general literature as well 
as another recent study.1 For chromosomal instability (CIN) pathway, the two classes are CIN and genome 

stable (GS), and for CPG island methylator phenotype (CIMP) pathway, the two classes are CIMP-High (CIMP-
H from hereon) and CIMP-Low (CIMP-L from hereon), whereas for BRAF and TP53 mutation prediction, the 

two classes are mutant (MUT) and Wild Type (WT). During the IDaRS training, MSI, CIN, CIMP-H and MUT 
labels are used as positive class labels and MSS, GS, CIMP-L, and WT as negative class labels.  

For MSI prediction, a total of 428 WSIs (n=423, where n denotes the number of unique patients) were available 
with MSI labels in the TCGA-CRC-DX cohort also used in a study.1,2 The full cohort of 502 TCGA-CRC-DX 

WSIs is also used for BRAF, KRAS, and TP53 prediction whereas a subset (for which the pathway labels are 
available) is used for the prediction of HM, CIN and CIMP pathways. Table S1 lists the number of patients and 

WSIs in TCGA-CRC-DX, after excluding slides with missing metadata and those with less than ten tumor tiles, 
and the number of patients in different stage groupings for each pathway.  

n nslides Median 
Age (y) 

Gender 
Stage I Stage II Stage III Stage IV F M 

HM/CIN 425 430 66.5 216 209 72 149 135 72

MSI 423 428 67.0 214 209 72 149 135 72 

CIMP 235 239 68.0 112 123 48 92 72 27 

Mutations 497 502 67.0 246 251 72 151 135 144 

Table S1. Number of cases (n) and slides (nslides) in TCGA-CRC-DX, and associated statistics for different stage 
groupings and demographic variables obtained from Liu et al.3

Ground truth labels 
The ground truth labels of TCGA-CRC-DX for HMD/LMD, MSI/MSS, CIN/GS, and CIMP- H/L are obtained 
from Liu et al.3 HMD tumors are defined as those with mutation density > 10 per megabase. MSI pathways are 
defined as those arising from defective DNA mismatch repair. CIN exhibit marked aneuploidy defined by a 

clonal deletion score (> 0.0249) and GS lack such aneuploidy. The high and low frequencies of DNA 
hypermethylation are used to stratify CIMP-H and CIMP-L respectively, where more than 30% of the CIMP-H 
tumors lack MLH1 silencing and MSI. The Venn diagrams shown in Fig S1 illustrate the overlap of MSI cases 
with other pathways (Fig S1a) and HM with MSI pathway (Fig S1b) in terms of shared number of cases. 

Fig S1 Number of samples shared among different molecular types of CRC. a. MSI samples in CIMP-H, GS, CIN, and 
CIMP-L subgroups. b. HM tumors in MSI and MSS subgroups. 

TCGA cohort images and molecular labels of TCGA-CRC-DX 
Whole-slide images for the TCGA cohort can be downloaded using the manifest file added as part of Appendix 

2 (MS Excel sheet, GDC_manifest.2021.01.08). The molecular data of TCGA-CRC-DX cohort (obtained from 
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the molecular data published in Liu et al.3) is available as part of Appendix 2 (MS Excel sheet , TCGA-CRC-
DX Ground Truths). TCGA-CRC-DX cohort with clinical follow-up data is publicly available at 

http://cancer.digitalslidearchive.net/. The process of slide selection was done blinded to all other 
clinicopathological variables and outcome data. The process of extracting the regions was blinded to all 
clinicopathological data, outcome data, and molecular data. More extensive clinical data on the subjects in this 
cohort are publicly available via the GDC data portal at https://portal.gdc.cancer.gov/projects/TCGA-
COAD and https://portal.gdc.cancer.gov/projects/TCGA-READ. Tissue samples in this cohort were provided by 

multiple institutions in different countries, which are listed at https://gdc.cancer.gov/resources-tcga-users/tcga-
code-tables/tissue-source-site-codes. 

Supplementary methods 

Data preprocessing 
All slides are preprocessed for tissue segmentation using Otsu thresholding.4 Then tiles are extracted from the 
segmented tissue region only. Following the protocol outlined in5 and used in1,6, tissue region in each WSI is 

divided into tiles of size 512×512, i.e. square tiles of 256 µm edge length at 20× magnification. Slides with less 
than ten tiles (three slides in total) were excluded in our experiments. For the subsequent downstream analysis 

through deep learning models, these tile images were resized to 1·14µm/pixel into square tiles of size 224×224, 
making input images of standard size for ResNet34. Before, training the IDaRS model, the color distribution of 
all tiles is normalized using structure preserving7 stain normalization.  

Tumor segmentation 
To perform the subsequent analysis in tumor regions of the slides, a deep neural network is trained on a 
balanced dataset of tumor and non-tumor tiles to extract tumor tiles from TCGA slides. Total of 35,436 tiles for 
the dataset are taken from seven TCGA slides and two publicly available datasets.1,8 Seventy percent of the data 
is used for training, fifteen percent for validation to fine tune for the best model and the remaining fifteen 

percent is held out to test the network performance with an unseen set of tiles. The test set contained 2,493 
(47.8%) and 2,720 (52.2%) images of normal and tumor tiles, respectively. The model achieved an accuracy and 
F1 score of 99% for the test tiles. This model is then used to extract tumor tiles (a total of nearly 450K tiles) 
from the entire TCGA-CRC-DX cohort. 

Neural architecture and training 
Our neural network model is a fine-tuned version of ResNet349, pre-trained on ImageNet, for the prediction of 

slide labels, i.e. the status of molecular pathway and genetic mutations. Training is performed for 30 iterations 
with a batch size of 256. In each iteration, the top 5 tiles are carried to the next training iteration along with 45 
randomly selected tiles from each slide. Thus, a training subset of only 50 image tiles from each slide was 
selected for each iteration. 

We use the symmetric cross entropy (SCE) loss10 during the training process to overcome the risk of training 

error associated with weak labels, mathematically shown as ℓ��� = �ℓ�� + �ℓ��� . The values of � and � are 

found empirically (� = 2 and � = 3) by trying different combinations between 0 and 5, as reported in original 

research.10 The SCE loss ℓ���  is a weighted sum of standard CE ℓ��  and reversed cross entropy ℓ���  losses. 

The SCE loss enforces a balance between learning and robustness to weakly labeled tile samples.  

The deep learning model trained using IDaRS gives a probability score to each tile. This score can be considered 
as the likelihood of a tile belonging to the positive class in the binary classification setting. Scores of all tiles in 
a WSI are considered for aggregating into a WSI score and the results are reported for average probability based 
aggregation after comparing different aggregation schemes – which included majority vote, average top ten 

probabilities in a WSI, maximum of probabilities, average of probabilities, geometric mean of probabilities, 
median of probabilities, and average of the probabilities which are greater than the median probability in a WSI 
– to obtain the best aggregation scheme for each prediction problem.  

The training procedure is guided by an Adam optimizer11 with learning rate and weight decay of 0·4×10-4. The 
PyTorch deep learning library12 was used for the implementation. A set of data augmentation including random 

rotation with maximum angle of 15 degrees, random horizontal and vertical flip transforms available in PyTorch 
applied on-the-fly. Additional data augmentations of center-crop, random resized crop, and random crop of 
image size 224×224 used on all input tiles (of size 256×256) to get multiple of it centered at different spatial 

locations in the tile. A validation set used for saving checkpoints as an early stopping criterion during the model 
training. All experiments performed on Nvidia DGX-2 Deep Learning System with 16× 32GB Tesla V100 
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Volta GPUs in a shared environment. The deep learning model is built on a single GPU equipped with dedicated 
RAM of 32 GB and 6 worker threads. 

Draw and rank sampling 

A major challenge in computational pathology lies in discovering and interpreting unknown patterns from the 
large amount of pixel data in WSIs, especially when only a slide-level label is provided. A typical WSI may 
contain 150,000×100,000 pixels or more, which is too large to feed into most deep neural networks directly. 
Therefore, a WSI is usually divided into square tiles (or image patches) before applying deep learning, resulting 
in a set of tiles with limited visual context. However, the available ground truth is often a high-level label of the 

WSI instead of well-informed annotations at the level of tissue or cellular regions. A WSI usually consists of 
tens of thousands of tiles, many with no relationship with the slide-level label, where a significant and 
meaningful pattern may comprise a small visual field, a tile, or a few of these. It is non-trivial to decide which 
tiles/patches in each WSI are to be used for training. In addition, having no specific regions annotated at the 
cellular level is another challenge for effective training of a model. 

Conventionally, a deep neural network is trained on all tiles of the training set1, assuming the ground truth is 
strongly labeled at the tile level. This is not expedient with only a slide-level label available, as there may be 
redundant and irrelevant tiles in the WSI resulting in a less than optimal training of the model. Besides, each 

WSI contributes different number of tiles, between ten to five thousand in our case, potentially introducing 
training bias to particular samples. The slides which produce a large number of tiles can have a greater influence 

on the trained model as compared to those which produce a small number of tiles. A random selection of tiles 
from each WSI may solve the training bias and inefficiency but may not improve the prediction accuracy. In 
fact, selecting tiles that are most predictive of a given WSI label in a brute force manner is a computationally 

intractable problem. 

In order to reduce the undesirable impact of the aforementioned issues on training, the learning problem of 

training a deep neural network model �(. ; �) with trainable weights � can be modeled as a weakly-supervised 

machine learning problem with the following empirical error formulation: 

min
�

1

|�|
�

1

|��|
� ℓ��� , �(�� ;�)�

��∈����∈�

(1)

Here, � denotes the WSI training set with �� ∈ � representing the set of tiles �� ∈ �� in the tumor region of a 

given WSI I with WSI-level label �� ∈ {−1,+1}.  This formulation allows choosing the most representative 

sub-images from each slide by minimizing the loss function ℓ(�� , �(��; �)) between the slide level label �� and 

the tile-level output �(��; �). However, as mentioned above, calculating the loss over all tiles in a given WSI is 
computationally intractable. Consequently, we propose a draw-and-rank strategy that samples a set of random 

tiles in a given WSI using the decision function �(��; �) while maintaining the most representative tiles in an 

iterative manner across the training epochs. Fig1b shows the concept diagram of the proposed IDaRS method. A 

more detailed description of IDaRS training is given in Algorithm 1. 

The proposed algorithm uses a quasi Monte-Carlo sampling method for selection of tumor tiles from each slide 
in each training iteration. Specifically, for a given WSI, a representative subset of tumor tiles is obtained based 

on a minimum loss criterion. This also helps cope with the information density and training bias because of the 
varied number of image tiles from each WSI. Since random tiles are chosen in a training set, which may or may 
not contain discriminative tiles in each iteration, each training iteration concludes by carrying the top k tiles 
from the current iteration as a part of the training set through to the next iteration. We choose top k tiles from 
each slide ranked by the maximum probability of a tile for every class label. 

IDaRS Training Algorithm 

In IDaRS training algorithm (next page), the set � and � represents the input and validation sets of WSIs for 

IDaRS, respectively, and t and � represent a given iteration and slide. The parameters �, �, and � represent 

maximum training iterations, number of randomly drawn tiles and number of top tiles obtained from each slide 

per iteration. For our experiments, we set � =30, � =45, and � =5, however, tunning these parameters might be 

desirable for different weakly-supervised WSI classification problems. 

Existing state-of-the-art results 
To the best of our knowledge, Kather et al.1 were the first to propose a deep learning based automated prediction 
of MSI status from H&E images. They use the same deep learning pipeline with more data and multiple cohorts 

in2 to predict MSI status from H&E images. The authors used standard fully supervised image classification by 
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transfer learning the ResNet18 model9 pre-trained on ImageNet. Standard CE loss was used to train the model 
with Adam optimizer with learning rate and weight decay of 0·4×10-4.  

Algorithm 1: IDaRS training algorithm.
INPUT: A WSI training set �={S1,S2,…,SN} 
A validation set of � WSIs  
OUTPUT: The trained IDaRS deep neural network model �
PARAMETERS: 
�, �, �

STEPS: 
1. For each WSI �, initialize ��

� with � + � tiles drawn from �uniformly at random 
2. For t= 1 : �
    3. For � = 1 : |�|
        4. Update weights of � based on loss over ��

�

        5. Sort tiles in ��
�  according to the maximum prediction score of each tile in ascending order 

        6. Initialize ��
��� with top � tiles from sorted ��

� and � randomly drawn tiles from SI

    7. Calculate AUROC over �
8. Save checkpoint � if validation AUROC improves

The training dataset of color normalized tiles was balanced by under sampling of the majority class (MSS). Tile 
scores obtained from the deep learning models are aggregated into slide score using average or majority voting. 
Again to the best of our knowledge, the study by Kather et al.6 was the first and only one that reports automatic 
BRAF, KRAS, and TP53 prediction results, which considered mutation prediction as a fully supervised deep 

learning problem. To overcome the bias resulting from some WSIs having a large number of tiles, each WSI 
was allowed to contribute a maximum of 1,000 tiles. No color normalization method was used. The Shufflenet13

model pre-trained on ImageNet was used for transfer learning, with the CE loss and an Adam optimizer with 
learning rate and weight decay of 0·4×10-4. 

Data splits 
In 4-fold cross-validation experiments, we used two folds for training, one fold as a validation set for keeping 

the best performing model and another one held-out for measuring the performance of the model on an unseen 
test set in a blinded way. In case there were multiple slides of the same patient, we ensure that they were 
grouped in the same fold. Considering the stochastic element of IDaRS, each fold is executed three times to get 
average AUROC and standard deviation per fold, which is further averaged over each fold to get average 
AUROC and standard deviation of multi-fold cross validation. For four-fold cross validation experiments, we 

have made the splits stratified keeping the same ratios of class imbalance in train and validation sets. Table S2
shows the number of positive, negative, and total slides per fold.

Problem 
Number 
of slides

Fold1 Fold2 Fold3 Fold4 

HM 
HMD 17 18 18 14
LMD 90 90 91 92
Total 107 108 109 106

MSI 

MSI 15 17 16 14
MSS 92 92 95 87
Total 107 109 111 101 

CIN 

CIN 80 79 77 77 

GS 30 30 29 28 

Total 110 109 106 105 

CIMP 

CIMP-H 14 14 14 13 

CIMP-L 48 46 42 48 

Total 62 60 56 61 

BRAF 

MUT 14 14 15 16 

WT 109 112 109 113 

Total 123 126 124 129 

TP53 

MUT 71 76 75 72 

WT 50 52 52 54 

Total 121 128 127 126 

Table S2. Cross-validation splits across the positive and negative classes 
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Supplementary results 

Added value by IDaRS 
To verify the added value of IDaRS, we have conducted ablation experiments using MSI prediction as a 
benchmark problem using train/test split Kather et al1 and 4-fold cross-validation on TCGA cohort used in 
Kather et al2, and results are provided in Table S3 and Table S4, respectively. We have also conducted few 

experiments of IDaRS with varying number of maximum training iterations (T). By continuing the training of 
IDaRS to T=100, we did not see improvement in the test set or average cross-validation accuracies. 

Experiments AUROC

Standard image classification, Kather et al.1 0.77
Standard image classification with early stopping (T=30) 0.81

IDaRS, r=50 and k=0 0.82
IDaRS, r=45 and k=5, tumour tiles from Kather et al.6 0.84

IDaRS, r=45 and k=5, CE loss 0.88
IDaRS, r=45 and k=5, T=100, SCE loss 0.86
IDaRS, r=45 and k=5, T=50, SCE loss 0.88

IDaRS, r=45 and k=5, T=30, SCE loss 0.90

Table S3. Verifying added value of IDaRS. MSI prediction with train/test split used in Kather et al1 is considered as a 
benchmark problem for these results. Experiments on IDaRS with k=0, different set of tumor tiles from Kather et al., cross 
entropy, symmetric cross entropy vs standard image classification with early stopping. 

IDaRS (r=50, k=0) AUROC

CE Loss, T=30 0.8497 (±0.03)
SCE Loss, T=30 0.8594 (±0.04)
CE Loss, T=100 0.8597 (±0.03) 

Table S4. Ablation experiments with 4-fold cross-validation of IDaRS (r=50, k=0) on TCGA cohort.2

CRC pathway prediction in tumors grouped into different stages 
Clinical staging of CRC, as in many other cancers, is used to establish the extent of disease spread to help in 
determining suitable treatment strategies. Knowing the status of MSI is important for the choice of adjuvant 
chemotherapy and immunotherapy for CRC.14 Immunotherapy is usually recommended as the first-line 

treatment for early stage MSI CRCs15 and second-line treatment for stage IV16 MSI CRCs due to evidence for its 
significantly better disease-free survival and overall survival. Patients with stage III MSI-L/MSS CRC have 
better overall survival with adjuvant chemotherapy.16 CIN and BRAF mutation have been associated with poor 
overall survival while the jury is still out for CIMP.17–23 We consider the accurate prediction of MSI status for 
CRC tumors to be a strength of IDaRS based digital MSI scores.  

Fig S2. IDaRS predictions for pathways and mutation different stage groups. AUROC on y-axis and pathways and 
mutations on the x-axis. Entire cohort refers to the whole TCGA-CRC-DX cohort considering patients of all stages as one 
group. For each stage, AUROC is computed for a subgroup of patients belonging to the same stage while leaving out the 
patients belonging to other stages.
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Considering importance of clinical stage in routine histopathology and CRC pathways and mutations, we 
divided the entire TCGA-CRC-DX cohort into four groups of patients, one group per stage, and computed 

AUROC for each stage group separately. We used the IDaRS scores obtained using the models trained during 
the cross-validation. In Fig S2 we plot the AUROC of corresponding molecular type, pathway, and mutation 
prediction for four different stage groups. A stagewise breakdown of the cases is provided in Table S1. The 

prediction performance of same type, pathway, and mutation varies for different stages. Moreover, the number 
of cases and class ratio also varies for each pathway and mutation in each stage. Among the individual stage 

groups, HM, CIN, and BRAF are predicted with the highest AUROC in stage IV, whereas digital IDaRS based 
MSI score gives the highest accuracy for stage I and II. Prediction accuracy of the MSI status for Stage I and II 
groups is higher than that for Stage III and IV groups. For Stage IV cases, our method produces the highest HM, 
CIN, and BRAF prediction accuracy of 0·98, 0·94, and 0·90, respectively. CIMP-H and CIMP-L are much 
better differentiable by our method for stage I to stage III cases than for stage IV cases.  

Histological feature discovery of CRC pathways 

The pretrained HoVer-Net24 model processed each of the top predictive IDaRS tiles for nucleus segmentation 
and classification of nuclei into one of the following five categories: neoplastic and non-neoplastic epithelial, 

inflammatory, mesenchymal, and necrotic cells, few examples are shown in Fig S3.  

Fig S3. Nuclear segmentation and classification by HoVer-Net. Examples of a. top predicted MSS tile (left) with its 
HoVer-Net output (right) and b. top predicted MSI tile (left) with its HoVer-Net output (left) for tumor microenvironment 
analysis. Detected nuclei of different types are circled with different colors: red: NEP1, green: inflammatory, blue: 

mesenchymal, yellow: necrotic, and orange: NEP2. 
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The cell segmentation and classification results of HoVer-Net were visually examined and agreed by expert 
pathologists for all cell types. Non-neoplastic epithelial cells identified by the network were found to be 

different from those identified as neoplastic cells, but all of those were categorized as tumor cells by the experts. 
Neoplastic cells identified by HoVer-Net are termed as neoplastic epithelial type 1 (NEP1). Since only the 
tumor tiles were used, non-neoplastic epithelial identified by the network are termed as neoplastic epithelial type 
2 (NEP2) cells, few examples are shown in Fig S4 and Fig S5. 

Fig S4. An example top tile of a CIN case with NEP2 type of tumor cells. Other similar tiles selected from CIN cases 
illustrating differential cellular composition of CIN tiles are included in a PDF file that can be downloaded from necessary 
additional data attached as (Tiles-CIN-Analysis.pdf).

Fig S5. An example top tile of a GS case with NEP1 type of tumor cells. Other similar tiles selected from GS cases 
illustrating differential cellular composition of GS tiles are included in a PDF file that can be downloaded from necessary 
additional data attached as (Tiles-GS-Analysis.pdf). 

Differential cellular composition analysis 
Analysis of the cellular composition is performed on the top ten most predictive tiles in each WSI of the unseen 
test set (99 WSIs) as predicted by the IDaRS algorithm. For cellular composition analysis, we first employed in-

house nucleus segmentation and classification method HoVer-Net24 to localize, segment and classify different 
types of cells in a tile into NEP1, NEP2, inflammatory, mesenchymal, and necrosis as shown for some example 

images in Fig S3. We then used the counts of individual cell types in the tile, henceforth termed as its cellular 
composition profile, as features to differentiate between most predictive tiles from corresponding different CRC 
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pathways (MSI vs MSS, CIMP-High vs CIMP-Low and CIN vs GS) and HM tumors (HMD vs LMD) through 
four separate linear Support Vector Machine (SVM) predictors. 

Fig S6 Differential cellular composition as histological features of CRC pathways. Box and Whisker plots of the above 
data. Normalized weights show the feature significance (y-axis) for HM tumors and three CRC pathways (MSI, CIMP and 
CIN) on x-axis. The text labels to each box show the medians (interquartile range). 

Fig S7 IDaRS discovered most representative visual fields. Examples of IDaRS predicted visual fields from different 
slides associated to a. HMD, b. LMD, c. MSI, d. MSS, e. CIMP-H, f. CIMP-L, g. GS, and h. CIN classes. 

The weight vector of a linear SVM allows an estimation of the relative importance of different cell types in 
predictions of the CRC pathways.25–27 Specifically, we analyzed the bootstrap averages of SVM weights across 

100 runs over top tiles to get estimates of their relative contribution to the prediction of CRC pathways. The 
magnitude of different components of the resulting weight vectors as an indication of the feature importance, as 
shown in Fig S6 , can be interpreted as the relative degree to which the over- or under- representation of 

different types of cells (NEP1, NEP2, inflammatory, mesenchymal, and dead) in the top ten tiles is predictive of 
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the corresponding class label (HMD vs. LMD, MSI vs. MSS, CIMP-High vs. Low and CIN vs. GS). For 
illustration, few examples of IDaRS predicted most representative tiles for each molecular label are shown in 

Fig S7.

Fig S8. Quantifying TILs in HMD, MSI, CIMP-H, GS, MSS, CIMP-L and CIN. TIL abundance score (y-axis) and CRC 
pathways (x-axis). In IDaRS predicted top ten tiles, HMD and MSI samples got the highest TIL score. CIMP-H and GS 

sample also got higher TIL scores than CIMP-L and CIN. 

The prognostic significance of TILs in general and its association with MSI has already been established in 
existing literature.28,29 Cellular composition analysis also suggests infiltration by inflammatory cells as a key 
discriminating histological feature in MSI and HM tumors. Therefore, we quantified TILs of the two subclasses 

in each pathway and HM tumors graphically shown in Fig S8 computed from the top ten IDaRS tiles per WSI 
using a TIL abundance score.30 A paired t-test found TIL scores to be statistically significant for the MSI 

pathway (p<0·0024) and HM tumors (p<0·024) but not for the CIMP (p<0·09) and the CIN (p<0·157) 
pathways.

Overlay visualizations of prediction heatmaps  

We overlay local prediction heatmaps on top of WSIs in order to further analyze the relationship of HM tumors 
and three CRC pathways with spatial features of the tumor microenvironment. We trained three deep learning 
models separately using the same patient-wise splits of training, validation and testing datasets. Each patient has 
multiple slide-level ground truths of being HMD/LMD, MSI/MSS, CIN/GS, and CIMP-H/CIMP-L available. A 
heatmap of one test set sample is shown in Fig S9 for the visual illustration of different spatial features of the 

tumor microenvironment predictive in different molecular labels. A heatmap of another test set sample is shown 
in Fig S10 for visual illustration. 

Fig S9 IDaRS tile prediction heatmaps-1. A test set slide labeled as HMD, MSI, GS and CIMP-H, WT for BRAF, TP53 
and KRAS mutations. IDaRS assigned tile probabilities of being (HMD, MSI, CIN, CIMP-H) are used to generate a heatmap 
overlay. In the heatmap, the red color corresponds to the positive class and green to the negative class; a. Overlay heatmap of 
HMD prediction, HMD: Red. b. Overlay heatmap of MSI prediction, MSI: Red. c. Overlay heatmap of CIN prediction, GS: 
Green. d. Overlay heatmap of CIMP-H prediction, CIMP-H: Red. An IDaRS predicted top tile is also shown for each label. 



Appendix 

11 

Fig S10. IDaRS tile prediction heatmaps-2. A test set slide with known KRAS mutation and wild type BRAF showing 
IDaRS derived overlay heat map labeled as LMD, MSS, CIN and CIMP-L. In the heatmap, the red color corresponds to the 
positive class and green to the negative class; a. Overlay heatmap of LMD prediction, LMD: Green. b. Overlay heatmap of 
MSS prediction, MSS: Green. c. overlay heatmap of CIN prediction, CIN: Red. d. overlay heatmap of CIMP-L prediction, 
CIMP-L: Green. An IDaRS predicted top tile is also shown for each label. 

As can be observed in Fig S9 and Fig S10, similar tissue regions appear to be predictive of the positive or 

negative status of the four CRC molecular pathways. For each pathway, both positive and negative tiles are 
predicted in the corresponding slide. However, tiles associated with the ground truth label are more in number in 
Fig S9 whereas fewer in number in Fig S10. This could be linked to the difficulty of MSI prediction especially 

when the immunogenic response of an MSS identified cases is similar to the MSI histomorphology.31 It may 
also indicate that a more sophisticated aggregation method than a simple average or majority voting may be 

needed to correctly classify the case presented in Fig S10.

Correlation analysis of the digital IDaRS based scores 
We conducted an investigation into correlating the IDaRS based digital scores of HM, MSI, CIN, CIMP, BRAF 

and TP53 for each slide of the TCGA-CRC-DX test set used in1 obtained by applying separately trained models 

on the same training set. Fig S11Fig S11a and Fig S11b show scatterplots of our IDaRS based digital scores 

for HM and MSI, and HM and CIMP pathways, respectively. These plots demonstrate strong positive 
correlation (using the Pearson correlation coefficient r) between the digital scores of HM and MSI (r=0·81, 

p<10-23) and also between the digital scores of HM and CIMP (r=0.65, p<10-12).  

Fig S11c shows the scatterplot of our IDaRS based digital scores for MSI and CIMP, again demonstrating 
strong positive correlation between the two digital scores (r=0·68, p<10-14) in line with existing literature20,22,23

and showing that most of the MSI samples are also predicted as CIMP-H and MSS as CIMP-L. Among the 

single labels, MSS shows highest positive correlation of 0·96 (p<10-40) with CIMP-L and MSI shows positive 
correlation of 0·49 with CIMP-H (p<0·07). Our digital scores of MSI and CIN also show strong negative 

correlation (r=−0·75, p<10-18) though it did not necessarily endorse mutual exclusivity for all MSI with CIN 
cases. Most MSS cases and few MSI cases also got high CIN score, which is in line with previous findings 

about MSI and CIN (and as can also be observed in the Venn diagrams of Fig S1).17,32 The IDaRS based digital 
scores of CIN and CIMP also show negative correlation (r=−0·67, p<10-13), with high CIN scoring cases being 
scored low in CIMP and with overlapping GS cases. MSI have highest negative correlation of -0·68 (p<0·0005) 

with GS whereas CIMP-L has negative correlation of −0·76 with CIN (p<10-12). IDaRS predictions also suggest 
MSI and CIMP are positively correlated to BRAF mutation with correlation coefficients of 0·68 (p<10-14) and 

0·93 (p<10-42) whereas CIN has highest positive correlation of 0·60 (p<10-10) to TP53 mutation. 
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Fig S11. Correlations in pathways and mutations. Digital IDaRS scores for HM, MSI, CIN, CIMP, BRAF and TP53 of 
each slide of the test set obtained by applying separately trained models on the training set of the same slides: a. HMD and 
MSI, positively correlated. b. HMD and CIMP, positively correlated. a. b. Points are colored using HM ground truth labels. 
c. MSI and CIMP, positively correlated. IDaRS predicted MSI score on x-axis and CIMP score on y-axis. d. MSI and CIN, 
negatively correlated. MSI score on x-axis and CIN score on y-axis. c.d. Points are colored using MSI ground truth labels. e. 
CIMP and CIN, negatively correlated. MSI score on x-axis and CIN score on y-axis. Points are colored using CIN ground 
truth labels. f. MSI and BRAF, positively correlated. MSI score on x-axis and BRAF score on y-axis. Points are colored 
using MSI or MSS ground truth label. g. CIMP and BRAF, positively correlated. CIMP score on x-axis and BRAF score on 
y-axis. Points are colored using CIMP ground truth labels. h. CIN and TP53, positively correlated. CIN score on x-axis and 
TP53 score on y-axis. Points are colored using CIN ground truth labels. 
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