1	Supplemental Online Content
2	
3 4	Jabagi MJ, Botton J, Bertrand M, et al. Myocardial infarction stroke and pulmonary embolism after BNT162b2 mRNA COVID-19 vaccine in peope aged 75 and older. <i>JAMA</i> . doi:10.1001/jama.2021.21699
5	
6	eMethods.
7	eTable. ICD-10 codes used to define severe cardiovascular events of interest
8	eReferences
9	
10 11	This supplemental material has been provided by the authors to give readers additional information about their work.
12	
13	

14 eMethods

15

16 Self-controlled case series analysis

Since vaccinated and unvaccinated subjects may vary by characteristics such as frailty and risk 17 18 factors for cardiovascular events that are difficult to measure and control for, we undertook 19 within-person comparisons using the self-controlled case-series method. The advantages of this 20 method are that only cases are needed, and it is self-matched so that time-invariant 21 multiplicative confounders are necessarily adjusted. The method¹ was initially described in 1995 by Paddy Farrington and has been frequently adopted for vaccine safety evaluation.^{2,3,4,5,6} 22 However, in order to take into consideration that the occurrence of severe cardiovascular events 23 24 may delay or cancel post-event vaccination and the fact that these events may increase short-25 term mortality, we used an adaptation of the self-controlled case-series method: the SCCS 26 model for event-dependent exposures.⁷ In this approach, only exposures preceding the event's 27 occurrence are considered to model the risk. In addition, the observation period of every case 28 ended on April 30, 2021, irrespective of whether they died. 29 The observation period extended from December 15, 2020, to April 30, 2021, and included all 30 four events of interest (acute myocardial infarction, hemorrhagic stroke, ischemic stroke, or 31 pulmonary embolism) occurring in vaccinated and unvaccinated individuals of 75 years and 32 over. Diagnoses were identified in the database using the ICD-10 codes (etable 1). Subjects vaccinated with a Covid-19 vaccine other than the BNT162b2 mRNA vaccine were excluded 33 34 from the analysis. The inclusion of the unvaccinated individuals is required for this specific 35 SCCS approach. Lack of vaccination may indicate cancellation of vaccination and may tend to 36 occur more often for earlier events. Thus, to obtain the correct temporal effect and avoid bias in

37 the relative incidence, unvaccinated cases must be included.

38	The exposure risk intervals, defined as the 15 days following each of the 1st and second doses
39	of the vaccine, were subdivided into two sub-periods: a specific sub-interval corresponding to the
40	same day of vaccination (day 0) and a sub-interval extending from 1 to 14 days after
41	vaccination. The exposure risk interval was further subdivided into three sub-intervals: day 0;
42	days 1 through 7; and 8 through 14. Day 0 was defined as a separate risk period to ensure it is
43	not included in the control periods or the primary interest risk period (since a case is unlikely to
44	be vaccinated when admitted to the hospital for an acute event). Unbiased estimating equations
45	are used to calculate the relative incidence at each dose by comparing the incidence in the risk
46	interval (1 to 14 days after each of the two vaccine doses) with the incidence in other post-
47	exposure periods (non–risk periods), as required for the SCCS model for event-dependent
48	exposure. In this model, all exposures that occur after an event are disregarded and treated as
49	missing because their timing may depend on the event. Additional unbiased estimating
50	equations using all observation time contribute to estimating the temporal effects. The estimating
51	equations are derived under a counterfactual in which no exposures can occur after an event.
52	Measures of the relative incidence were derived using R software (package SCCS) ⁸ adjusted for
53	seasonality (in 7-days increments) to take into account any temporal changes in background
54	rates.
55	
56	
57	
58	
50	
59	
60	eTable. ICD-10 codes used to define severe cardiovascular events of interest

ICD - 10 codes							
Acute myocardial infarction							
121	Acute myocardial infarction						
Ischemic stroke							
163	Cerebral infarction						
164	54 Stroke, not specified as hemorrhagic or infarction						
Hemorrhagic stroke							
160	Subarachnoid hemorrhage						
161	Intracerebral hemorrhage						
62 Other non-traumatic intracranial hemorrhages							
Pulmonary embolism							
126	Pulmonary embolism						

61

62

63 eReferences

64

Farrington, C. P. Relative incidence estimation from case series for vaccine safety
 evaluation. *Biometrics* 51, 228–235 (1995).

Reddy, S. N. *et al.* Intussusception after Rotavirus Vaccine Introduction in India. *N. Engl. J. Med.* 383, 1932–1940 (2020).

Tate, J. E. *et al.* Evaluation of Intussusception after Monovalent Rotavirus Vaccination in
Africa. *N. Engl. J. Med.* **378**, 1521–1528 (2018).

4. Hanf, M. *et al.* Validation of the French national health insurance information system as a
tool in vaccine safety assessment: application to febrile convulsions after pediatric
measles/mumps/rubella immunization. *Vaccine* **31**, 5856–5862 (2013).

5. Stowe, J., Andrews, N., Ladhani, S. & Miller, E. The risk of intussusception following
monovalent rotavirus vaccination in England: A self-controlled case-series evaluation. *Vaccine*34, 3684–3689 (2016).

6. Grave, C. *et al.* Seasonal influenza vaccine and Guillain-Barré syndrome: A selfcontrolled case series study. *Neurology* **94**, e2168–e2179 (2020).

79 7. Farrington, C. P., Whitaker, H. J. & Hocine, M. N. Case series analysis for censored,
80 perturbed, or curtailed post-event exposures. *Biostatistics* 10, 3–16 (2009).

8. Farrington, P., Whitaker, H. & Weldeselassie, Y. G. Self-Controlled Case Series Studies:
 A Modelling Guide with R. (Chapman and Hall/CRC, 2018).

83

84