Supporting Information

Molecular interactions in remdesivir-cyclodextrin systems

Bianka Várnai¹, Milo Malanga², Tamás Sohajda², Szabolcs Béni^{1*}

¹Semmelweis University, Department of Pharmacognosy, Üllői út. 26, H-1085 Budapest, Hungary

²CycloLab, Cyclodextrin R&D Ltd, Budapest, H-1097 Illatos út 7, Hungary.

*Corresponding author. E-mail address: <u>beni.szabolcs@pharma.semmelweis-univ.hu</u> Phone number: +36 1 317 2979 NMR measurements were carried out on a 600 and a 400 MHz Varian DDR NMR spectrometer (Agilent Technologies, Palo Alto, CA, USA), equipped with a 5 mm inverse-detection probehead and a gradient module at 298 K. Standard pulse sequences and processing routines available in VnmrJ 3.2C/Chempack 5.1 and MestreNova 14.2.0 were used.

1H NMR spectra for the Job's plot and the titration were recorded with 16 scans with a spectral window of 5.1 kHz and a 2 s relaxation delay. The complete resonance assignment of remdesivir were established from 1D¹H (16 scans, 2 s relaxation delay, 6 kHz spectral window) and ¹³C (30000 scans, 1 s relaxation delay, 33.8 kHz spectral width), 2D¹H-¹H gCOSY (4 scans were collected on 1024.512 data points, 1 s relaxation delay), NOESY (8 scans were collected on 1024.512 data points with a mixing time of 300 ms), ¹H-¹³C gHSQCAD (4 scans, 1 s relaxation delay, ${}^{1}J_{CH} = 140$ Hz, spectral width of F1 = 6 kHz, F2 = 27.1 kHz) and HMBC (4 scans, 1 s relaxation delay, ${}^{3}J_{CH} = 8$ Hz, spectral width of F1 = 6 kHz, F2 = 32.5 kHz) experiments, both in DMSO- d_6 (ref. $\delta = 2.50$) and D₂O, pH = 2.0 (ref. methyl singlet $\delta = 3.31$ ppm of internal CH₃OH). Complete resonance assignments of cyclodextrins were established from 1D¹H (64 scans, 1 s relaxation delay, 2.4 kHz spectral window) and 2D-2D¹H-¹H gCOSY (4 scans were collected on 1024.512 data points, 1 s relaxation delay), ¹H-¹³C gHSQCAD (4 scans, 1 s relaxation delay, ${}^{1}J_{CH} = 140$ Hz, spectral width of F1 = 2.4 kHz, F2 = 12 kHz) and HMBC (8 scans, 1 s relaxation delay, ${}^{3}J_{CH} = 8$ Hz, spectral width of F1 = 2.4 kHz, F2 = 19 kHz) experiments. To explore spatial proximity of the host-guest complexes 2D ROESY spectra were acquired with spectral width of 5.4 kHz collecting 16 and 32 scans on 1258.512 data points, applying mixing times of 300 and 400 ms.

No.	$^{1}\mathrm{H}$			
	DMSO-d ₆	D2O pH 2.0		
	(ref. DMSO $\delta_{\rm H}$ = 2.50 ppm)	(ref. MeOH $\delta_{\rm H}$ = 3.31 ppm)		
1	6.82 (d, <i>J</i> = 4.5 Hz, 1H)	7.00 (d, $J = 4.9$ Hz, 1H)		
2	6.88 (d, <i>J</i> = 4.5 Hz, 1H)	7.23 (d, $J = 4.9$ Hz, 1H)		
3	4.63 (m, 1H)	4.87 (m, 1H)		
4	3.94 (m, 1H)	4.42 (m, 1H)		
5	4.23 (m, 1H)	4.52 (m, 1H)		
6	4.08 (m, 1H)	4.24 (m 1H)		
6'	4.25 (m, 1H)	4.38 (m, 1H)		
7-8	7.34 (m, 2H)	6.88 (d, <i>J</i> = 8.0 Hz, 2H)		
9-10	7.18 (m, 2H)	7.28 (t, <i>J</i> =7.8 Hz, 2H)		
11	7.16 (m, 1H)	7.18 (t, <i>J</i> =7.5 Hz, 2H)		
12	3.81 (m, 1H)	3.69 (m, 1H)		
13	1.20 (d, <i>J</i> = 7.1 Hz, 3H)	1.26 (d, <i>J</i> = 7.4, 3H)		
14	3.86 (dd, <i>J</i> = 10.9 Hz, 5.7 Hz, 1H)	3.94 (dd, <i>J</i> = 10.8 Hz, 5.7 Hz, 1H)		
14'	3.95 (dd, <i>J</i> = 10.9 Hz, 5.7 Hz, 1H)	4.01 (dd, <i>J</i> = 10.8 Hz, 5.7 Hz, 1H)		
15	1.41 (m, 1H)	1.45 (m, 4H)		
16-17	1.24 (m, 4H)	1.25 (m, 4H)		
18-19	0.79 (t, <i>J</i> = 7.4 Hz, 6H)	0.80 (t, <i>J</i> = 7.5 Hz, 6H)		
20	7.92 (s, 1H)	7.95 (s, 1H)		

Table 1. Complete ¹ H NMR resonances assignment for remdesivir (in DMSO- <i>d</i> ₆ and in D ₂ O
at pH 2.0, 600 MHz).

No.	βCD	γCD	per-6-SBE-βCD	Sugammadex
1	5.03 (d, <i>J</i> = 3.7 Hz, 1H)	5.07 (d, <i>J</i> = 3.9 Hz, 1H)	5.01 (d, <i>J</i> = 3.7 Hz, 1H)	5.12 (d, <i>J</i> = 3.8 Hz, 1H)
2	3.61 (dd, <i>J</i> = 9.9, 3.6 Hz, 1H)	3.61 (dd, <i>J</i> = 9.8, 3.8 Hz, 1H)	3.60 (m, 1H)	3.63 (dd, <i>J</i> = 9.9, 3.7 Hz, 1H)
3	3.93 (t, <i>J</i> = 9.5 Hz, 1H)	3.90 (t, <i>J</i> = 9.6 Hz, 1H)	3.91 (m, 1H)	3.88 (t, <i>J</i> = 9.5 Hz, 1H)
4	3.55 (t, <i>J</i> = 9.3 Hz, 1H)	3.55 (t, <i>J</i> = 9.4 Hz, 1H)	3.62 (m, 1H)	3.52 (t, <i>J</i> = 9.3 Hz, 1H)
5	3.82 (m, 1H)	3.82 (m, 1H)	3.90 (m, 1H)	3.97 (t, <i>J</i> = 9.1 Hz, 1H)
6	3.84 (m, 2H)	3.83 (m, 2H)	3.71 (m, 1H)	3.23 (m, 1H)
6'			3.80 (m, 1H)	2.91 (m, 1H)
7	-	-	3.60 (m, 1H)	$2.80 (t I - 7.2 H_7.2 H)$
7'	-	-	3.52 (m, 1H)	$2.09 (I, J - 7.2 \Pi Z, 2\Pi)$
8	-	-	1.69 (m, 2H)	2.70 (t, <i>J</i> = 7.2 Hz, 2H)
8'	-	-		
9	-	-	176 (m. 2H)	-
9'	-	-	1.70 (11, 211)	-
10	-	-	2.00 (m, 2H)	-
10'	-	2.90 (m, 211)	2.70 (111, 211)	-

Table 2. Complete ¹H NMR resonance assignment for cyclodextrins (D₂O at pH 2.0, ref. MeOH $\delta_{\rm H}$ = 3.31 ppm, 400 MHz).

Figure S1. ¹H and ¹³C NMR spectra of remdesivir (DMSO-*d*₆, 600 MHz).

Figure S2. COSY spectrum of remdesivir (DMSO-*d*₆, 600 MHz).

Figure S3. DEPT-edited HSQC spectrum of remdesivir (DMSO-*d*₆, 600 MHz).

Figure S4. HMBC spectrum of remdesivir (DMSO-*d*₆, 600 MHz).

Figure S5. ¹H and ¹³C NMR spectra of remdesivir (D₂O, pH 2.0, 600 MHz).

Figure S6. COSY spectrum of remdesivir (D₂O, pH 2.0, 600 MHz).

Figure S7. DEPT-edited HSQC spectrum of remdesivir (D₂O, pH 2.0, 600 MHz).

Figure S8. ¹H NMR spectrum of β CD (D₂O, pH 2.0, 400 MHz).

Figure S9. ¹H NMR spectrum pf γ CD (D₂O, pH 2.0, 400 MHz).

Figure S10. ¹H NMR spectrum of per-6-SBE β CD (D₂O, pH 2.0, 400 MHz,).

Figure S11. ¹H NMR spectrum of sugammadex (D₂O, pH 2.0, 400 MHz).

Figure S12. Job's plot for the selected ¹H resonances of REM (left) and β CD (right) both showing maximum at 0.5, that suggest 1:1 molar ratio for the complex in aqueous solution at pH 2.0.

Figure S13. Representative ¹H NMR chemical shift changes of REM upon titration with per-6-SBE β CD.

Figure S14. Representative 1 H NMR chemical shift changes of REM upon titration with SBE β CD.

Figure S15. Representative ¹H NMR chemical shift changes of REM upon titration with γ CD.

Figure S16. Representative ¹H NMR chemical shift changes of REM upon titration with SBEγCD.

Figure S17. Representative ¹H NMR chemical shift changes of REM upon titration with sugammadex.

Figure S18. 2D ROESY spectrum of the 1:1 REM:per-6-SBEβCD molar ratio sample.

Figure S19. Partial 2D ROESY spectrum of the 1:3 REM:SBEβCD molar ratio sample.

Figure S20. Partial 2D ROESY spectra of the 1:3 REM:γCD molar ratio sample.

Figure S21. Partial 2D ROESY spectra of the 1:3 REM:SBEyCD molar ratio sample.

Figure S22. Partial 2D ROESY spectra of the 1:2 REM:sugammadex molar ratio sample.