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Figure S1. Cell sources, QC Statistics, and comparisons to previously published methods,
related to Figure 2. (A) Fragment number and quality for each cell source in the scATAC-seq
dataset. See Table S1 for mouse line details. N, number of cells collected. ‘Total fragments’ is
the count of all sequenced fragments for each cell. ‘Unique fragments’ is the number of uniquely-
mapped fragments and was used for the first QC cutoff of (> 10,000 unique fragments; QC1).
Fraction of fragments overlapping ENCODE DNase-seq peaks was computed for uniquely
mapped fragments and was used for the second QC cutoff (> 0.25; QC2). Fraction of fragments
with length > 250 bp was computed for unique fragments and was used for the third QC cutoff of
(> 0.1; QC3). (B) Flow chart showing how many samples were sequentially filtered by these three
QC criteria. (C) Set barplot showing how many cells were flagged with each combination of QC
criteria. (D-K) Comparison of FACS scATAC-seq libraries to those previously generated using
Fluidigm C1 (Buenrostro et al., 2015), sci-ATAC-seq (Cusanovich et al., 2015; Pliner et al., 2018),
or droplet-based indexing (10x Genomics) for which data using the common cell line of human
GM12878 cells is available. To use in these comparisons, we generated scATAC-seq data using
our FACS-based method for 60 GM12878 cells. For each published dataset, raw data was
obtained from GEO and was aligned and analyzed using the same methods. For 10x Genomics,
aligned fragment locations and metadata were obtained from the 10x genomics website for the
“5k 1:1 mixture of fresh frozen human (GM12878) and mouse (A20) cells” dataset. Only samples
labeled as GM12878 in sample metadata for each dataset were used for analysis. The color key
above panels (D-1) are used throughout the plots (D) Beeswarm plots showing the total reads per
cell. For all similar plots (A-F), each point represents a single cell, with bars showing the 25" and
75" percentiles, and central red dots showing the median values. (E) Number of uniquely mapped
fragments per cell for each dataset. (F) Percent uniquely mapped fragments for each dataset. A
high fraction of unique fragments (as in Pliner et al.) suggests that deeper sequencing will yield
additional useful data. (G) Median fragment length for each dataset. (H) Fraction of reads
overlapping ENCODE DNase-seq data generated for GM12878 cells. (I) Fraction of reads
overlapping RefSeq TSS regions (TSS * 5kb) for each dataset. (J) Two-axis QC criteria plot, as
in Fig. 2, showing the QC1 and QC2 cutoffs used for mouse cortical sScATAC-seq data. (K)
Aggregate fragment length frequency plots. Fragment length is shown on the x-axis, and the
fraction of reads with fragments of each bp size was calculated for each sample in each dataset.
For this analysis, the median fraction at each fragment size is shown as a solid line, with 25" and
75" percentiles shown as shaded regions.



Driver Line(s) Reporter Line
Cck-IRES—Cre;Vip-IRES-FIpO; Ai65
Chat-IRES-Cre-neo Ai14
Ctgf-T2A-dgCre Snap25-LSL-F2A-GFP
Cux2-CreERT2 Ail4
Gad2-IRES-Cre Ail4
Gng7-Cre_KH71 Ail4
Ndnf-IRES2-dgCre Ail4
Nkx2-CreERT2 Ail4

Nos1-CreERT2/wt;Sst-IRES-FIpO  Ai65

Nr5a1-Cre Ai14
Ntsr1-Cre Ai14
Penk-IRES2-Cre-neo Ai14
Pvalb-IRES-Cre Ai14
Pvalb-T2A-CreERT2 Ai139-hyg
Rbp4-Cre_KL100 Ai14
Scnnl1a-Tg2-Cre Ai14
Scnn1a-Tg3-Cre Ai139
Scnn1a-Tg3-Cre Ai14
Slc17a6-IRES-Cre (Layer 1) Ai14
Slc17a7-IRES2-Cre Ai14 (-)
Slc17a8-IRES2-Cre Ai14
Sst-IRES-Cre Ai14
Tac1-IRES-Cre-D Ai14
Vip-IRES-Cre Ai14

Vipr2-IRES2-Cre;Slc32a1-T2A-FIpO Ai65

Fraction of cells assigned to subclass

N modalityO 0.25 0.50 0.75 1.00

192  scATAC
0 scRNA
14 scATAC
45 SCRNA
111 scATAC
192 SCRNA
190  scATAC
0 SCRNA
48  scATAC
1411 ScRNA
83  scATAC
99 scRNA
192  scATAC
108  scRNA
288  scATAC
51 scRNA
170  scATAC
23 scRNA
96  scATAC
145  scRNA
192  scATAC
97 scRNA
56  SCATAC
128 SCRNA
96  scATAC
532 SCRNA
55  scATAC
0 SCRNA
192  scATAC
772 SCRNA
56  ScATAC
23 SCRNA
95  scATAC
0 SCRNA
17 scATAC
117 scRNA
192  scATAC
31 SCRNA
192 scATAC
0 SCRNA
160  scATAC
52 scRNA
115 scATAC
356 ScRNA
96  scATAC
139  scRNA
96  scATAC
345  scRNA
386  sCATAC

scRNA

I S S S

[NA ‘ : : |

[NA : i ; |

Subclass
. Lamp5
I Lamps Lhxe
B snco
B v
B sst
| RS
B veis2
L2317
| [T
B
M
Wser
Pwsct
[
[cr
M Astro
B oiigo
B vime
B endo
. Peri
. Macro



Figure S2. Comparison of scATAC-seq with scRNA-seq for same transgenic lines, related
to Figure 2. To assess the accuracy of our scATAC-seq mapping to transcriptomic subclasses,
we examined driver lines for which we collected both scATAC-seq and scRNA-seq data (the latter
from Tasic et al. (Tasic et al., 2018)). For each combination of driver and reporter mouse line, we
show the number of samples obtained for each method (scATAC-seq or scRNA-seq) and plot the
fraction of cells assigned to each group used in Fig. 2 as colored bars for each method.
Differences in proportions may be due to differences in dissection and region sampling strategies.
Gray hashed bars indicate that no cells were assessed by scRNA-seq for specific driver and
reporter line combinations.
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Figure S3. Comparison of our dataset with existing datasets and all mscREs (16 total)
examined in this study, related to Figure 3. (A) Pairwise correlations between select cell
classes, subclasses, and types defined by clustering scATAC-seq data in this study using the
DiffBind package for R (Stark and Brown, 2011) (STAR Methods) show expected grouping of
GABAergic and glutamatergic cell subclasses and types. The heatmap shows weighted pairwise
correlations between each pair of aggregated scATAC-seq cell populations. (B) Approach in (A)
was used to compare scATAC-seq clusters with population ATAC-seq datasets generated by Mo
et al. (Mo et al., 2015), Gray et al., (Gray et al., 2017), or in this study (Sst pop. — “pop.” indicates
that the data were experimentally obtained from a population of cells, and not from single cells).
Expected divisions and groupings are observed. (C) Chromatin accessibility in clusters based on
single cell ATAC-seq data for select genomic regions containing mscREs defined and examined
in this study.
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Figure S4. Initial screening of mscREs driving SYFP2 or EGFP, related to Figure 4. (A)
Candidate enhancers were first tested by retro-orbital injection of direct fluorophore-expressing
viruses. Epifluorescence images are shown of native fluorescence or antibody-enhanced (anti-
GFP) fluorescence from VISp of C57BL/6J animals infected with virus. Dashed lines indicate the
cortical layer expected to contain virus-labeled cells. mscRE1-4 were screened using self-
complementary AAVs (scAAV) driving SYFP2 delivered at 1.0E+11 GC into P62 mice, whereas
mscRE75-79 were screened using rAAVs driving SYFP2 delivered at 6.0-9.0E+11 GC into P36
mice. Enhancer viruses that exhibited no fluorescence (native or antibody-enhanced) in the initial
screen were not included. (B) Summary of the results from the primary enhancer virus screen.
Success rates were calculated based on the efficiency of labeling for each data modality (layer
enrichment, morphology, and transcriptomics) and were grouped by subclass or type. The overall
success rates are based on the labeling results obtained from either all three or at least two data
modalities (yellow column). For more detailed descriptions of viral constructs, see Table S5 and
the Key Resources Table. For a general summary of all results, see Table S8.
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Figure S5. Enhancer virus labeling by stereotaxic injection, related to Figure 4. (A) For
stereotaxic injection, enhancer-driven fluorophore viruses were generated by cloning mscRE
sequences in rAAV (EGFP viruses) or scAAV (SYFP2 virus) constructs. After packaging,
purification, and titering, viruses were stereotaxically targeted to VISp into wild-type mice. (B-C)
Native fluorescence imaging of animals with stereotaxic injection of mscRE4-EGFP in VISp at two
injection volumes (50 nL and 250 nL). Enhancer-driven viruses were co-injected with a
constitutively expressed dTomato virus, rAAVDJ-EF1a-dTomato, at 0.1X of the volumes of the
mscRE viruses, to provide injection site location (red outlines). (D-E) Native fluorescence imaging
of animals with stereotaxic injection of mscRE4-SYFP2 into primary visual cortex at two injection
volumes (50 nL and 250 nL). The same injection site labeling strategy used in (A) was also utilized
for these experiments. (F-G) Native fluorescence imaging of stereotaxic injections into the primary
visual cortex using mscRE4-EGFP at 25 nL and 50 nL volumes injected into the left and right
hemisphere, respectively. (H-1) as in (E-F) using mscRE16-EGFP at 50 nL and 250 nL volumes.
(J-M) scRNA-seq mapping results for cells collected from panels above each river plot (e.g., cells
in (I) were collected from the injections matching the conditions shown in (E) scRNA-seq data
were mapped to a VISp cell type reference from Tasic et al. (Tasic et al., 2018). using a centroid
classifier, and only cells that mapped to a single cluster in =2 80 of 100 bootstrapped classifications
were retained for figures: (J) n = 92 of 96; (K) n = 82 of 96; (L) n = 89 of 96; and (M) n = 89 of 96.
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Figure S6. Labeling of retro-orbitally delivered mscRE viruses, related to Figure 5. Native
fluorescence of tdTomato imaged in reporter mice injected retro-orbitally with enhancer-driven
recombinase or tTA2; 1 x10'° genome copies (GC) or 1x10" GC of virus was delivered. Each
enhancer is shown in a row, and each driver/reporter/dose combination is shown in a column.
Reporter mouse lines used: Ai65F for FIpO, Ai14 for iCre, and Ai63 for tTA2. All scale bars (white)
are 500 pm.
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Figure S7. Differential gene expression induced by viral labeling, related to Figure 4 and
S5. For each set of scRNA-seq data collected from virally labeled cells (A-l), we selected all cell
types to which at least 10 cells were mapped. For each selected cell type, we performed pairwise
differential gene expression analysis between virally labeled cells and cells labeled by transgenic
recombinase driver mouse lines from Tasic et al. (Tasic et al., 2018) (STAR Methods). A volcano
plot is shown for each comparison. Each gene is represented by a point. Logz(fold change) is
displayed on the x-axis, with genes higher in virally-labeled cells on the left and higher in
transgenic mouse lines on the right. Logio(adjusted p-value) is displayed on the y-axis.
Significantly differentially expressed genes (adjusted p-value < 0.01) are highlighted in blue
(higher in virally-labeled cells) and orange (higher in transgenic mouse lines). Differentially
expressed innate immunity-related genes are highlighted in magenta. Counts for the number of
cells in each group and the number of differentially expressed genes and immune-related genes
are shown in each plot. The legend below panel (H) applies to all plots.
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Figure S8. Increased labeling efficiency achieved with ICV injection of viruses or all
transgenic strategy and new vector to target forebrain GABAergic neurons, related to
Figure 7. (A-C) Ai213/wt animals at postnatal day 3 (P3) were injected with a mixture of the three
pan-neuronal recombinase viruses each at 2.1 X 10" GC into the right cerebral ventricle and
reporter expression in the brain was analyzed two-weeks post-injection. (D) The labeled cells for
each fluorophore alone or the combination of all three were counted in confocal images collected
from primary visual cortex of ICV injected animals (n = 2). Quantification from both hemispheres
is presented and shows a similar number of labeled cells in all groups between both regions. (E)
Representative confocal images from VISp of a Gad2-IRES-Cre/wt;Slc32a1-T2A-
FIpO/wt; Ai213/wt triple-transgenic animal. Pan-inhibitory labeling patterns were observed for both
fluorophores with near perfect overlap of EGFP and mOrange2 when quantified (F). Data in bar
graphs are mean + S.E.M. (G) Diagram of AAV vector designs. Top vector: DLX hl56i enhancer
driving a histone 2B-tagged SYFP2 fluorophore, Bottom left vector: hl56i enhancer driving iCre,
Bottom right vector: hi56i enhancer driving iCre with 3° 4X2C mAGNET sequence to suppress
excitatory neuron labeling (Sayeg et al., 2015). (H) Viruses were co-delivered (RO) into Ai14 mice
at the doses indicated and native tdTomato (red) and SYFP2 (green) fluorescence was evaluated
in micrographs from adult mouse neocortex. Labeling of both excitatory and inhibitory populations
was observed with hl56i-iCre virus (left panel), compared to exclusively GABAergic cell type
labeling with hI56i-iCre-4X2C virus (right panel). Scale bars,100 microns.
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