
Pulse arrival time as a surrogate of blood pressure -
Supplementary material
Eoin Finnegan1,*, Shaun Davidson1, Mirae Harford1,2, João Jorge1, Peter Watkinson2,
Duncan Young2, Lionel Tarassenko1, and Mauricio Villarroel1

1Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
2Critical Care Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford
*eoin.finnegan@eng.ox.ac.uk

Supplementary material A
Frequency spectrum of PAT
Figure 1 shows the frequency spectrum, computed by the fast Fourier transform (FFT), of the PAT signal for a typical volunteer.
(a) shows the overall FFT which is dominated by a component close to DC. This component is thought to be driven by the slow
changes in arterial stiffness due to the phenylephrine infusion. (b) shows the FFT zoomed in on the less dominant components.
There are two frequency ranges of interest. The first is 0.083 Hz to 0.1 Hz, frequencies in this range are above the Nyquist limit
of the cuff and so cannot be explained by the BP reference. The most likely explanation for power in this range may be the
Traube-Hering-Mayer (THM) waves, often known as Mayer waves1. Mayer waves are oscillations in BP, with a frequency of
around 0.1 Hz, thought to be due to oscillations of the sympathetic vasomotor tone of arterial blood vessels. The amplitude
of the Mayer waves have been shown to be an indicator of sympathetic nervous activity1. The second component is 0.17 Hz
to 0.35 Hz. This range is thought to be driven by respiration. Figure 2 shows the spectrogram of a PAT signal that has been
high-pass filtered with a 0.1 Hz cut-off frequency. The reference RR from the nasal cannula is superimposed in red. Figure 2
shows that there is a clear respiratory component in the PAT signal which explains this second frequency range of interest.

Figure 1. Frequency spectrum of PAT signal. (a) shows dominant component close to DC which is thought to be driven by
changes in BP. (b) is zoomed in on less dominant components showing two frequency ranges of interest: (1) 0.083 - 0.1 Hz
whose origin may be due to the Mayer waves1, (2) 0.17 - 0.35 Hz which is thought to be driven by respiratory rate.



Figure 2. Spectrogram of a PAT signal that has been high-pass filtered with a 0.1 Hz cut-off frequency. The reference RR
from the nasal cannula is superimposed in red.
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Supplementary material B
MAP results
Figures 3, 4 and 5 shows the relationship between MAP and PAT, PEP and PTT respectively for all the volunteers in the study.
The 95% confidence intervals are shown by the shaded region for each volunteer with the individual linear regression line.

Figure 3. Individual relationships for between MAP (mmHg) and PAT (s) for all volunteers in the study. The 95% confidence
intervals are shown by the shaded region for each volunteer. Please note again the wide variation in y-axis scaling.
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Figure 4. Individual relationships between MAP (mmHg) and PEP (s) for all volunteers in the study. The 95% confidence
intervals are shown by the shaded region for each volunteer. Please note again the wide variation in y-axis scaling.

Figure 5. Individual relationships between MAP (mmHg) and PTT (s) for all volunteers in the study. The 95% confidence
intervals are shown by the shaded region for each volunteer. Please note again the wide variation in y-axis scaling.
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DBP results
Figures 6, 7 and 8 shows the relationship between MAP and PAT, PEP and PTT respectively for all the volunteers in the study.
The 95% confidence intervals are shown by the shaded region for each volunteer with the individual linear regression line.

Figure 6. Individual relationships between DBP (mmHg) and PAT (s) for all volunteers in the study. The 95% confidence
intervals are shown by the shaded region for each volunteer. Please note again the wide variation in y-axis scaling.
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Figure 7. Individual relationships between DBP (mmHg) and PEP (s) for all volunteers in the study. The 95% confidence
intervals are shown by the shaded region for each volunteer. Please note again the wide variation in y-axis scaling.

Figure 8. Individual relationships between DBP (mmHg) and PTT (s) for all volunteers in the study. The 95% confidence
intervals are shown by the shaded region for each volunteer. Please note again the wide variation in y-axis scaling.
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Supplementary material C
Number of cuff inflations required for accurate performance of a posteriori models
A posteriori model parameters (slope and intercept) could be estimated by two cuff inflations; however, more accurate estimates
are made by using more cuff inflations. In this work we used all cuff inflations available for each individual to estimate the
slope and intercept. Figures 9 and 10 shows improvements in the a posteriori inverse square model for estimating BP using
PAT and PTT estimates respectively as more cuff inflations are used to estimate model parameters, starting from the first
two cuff inflations. Dashed lines show the thresholds for standard requirements for blood pressure measuring devices set by
Advancement of Medical Instrumentation (AAMI), European Society of Hypertension (ESH) and International Organisation
for Standardisation (ISO)2. As can be seen, model performance plateaus once around 60 % of cuff inflations have are used.
This can be approximated as around the point of maximum infusion demonstrating that to get an accurate assessment of an
individuals calibration curve, a wide range of blood pressure values is required.

Figure 9. Improvements in performance metrics as more cuff inflations are used to compute the a posteriori model parameters
(slope and intercept) using PAT estimates. Median values across all volunteers in the study are shown with interquartile ranges
shown by the shaded region. Performance metrics are given as: (a) RMSE, (b) correlation coefficient, (c) MAE, (d) mean error,
(e) standard deviation of error.
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Figure 10. Improvements in performance metrics as more cuff inflations are used to compute the a posteriori model
parameters (slope and intercept) using PTT estimates. Median values across all volunteers in the study are shown with
interquartile ranges shown by the shaded region. Performance metrics are given as: (a) RMSE, (b) correlation coefficient, (c)
MAE, (d) mean error, (e) standard deviation of error.
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Supplementary material D
ECG SQI
For both PAT and PEP estimation, an assessment of the quality of the ECG waveform was required to remove periods where
the ECG signal was affected by noise and motion artefacts. A signal quality index (SQI) is a beat-by-beat assessment of certain
features of the ECG waveform. The SQI is a number between 0 and 1 (inclusive), representing a poor-quality or good-quality
ECG beat respectively. The SQI of the ECG follows the work of Li et al3. The overall SQI was computed by combining
the following metrics: The agreement of R-peaks detected between two beat detectors (SQIb) ; the kurtosis of the waveform
(SQIk); the instantaneous heart rate (IHR) computed using the interval between adjacent R-peaks (SQIf); the analysis of the
signal-to-noise ratio of the ECG signal (SQISNR). All quality metrics were applied to a 10-second sliding window centred on
each beat. The metrics were later combined to compute a single signal quality metric, SQIECG, for each ECG beat.

Beat detection agreement (SQIb)
bSQI employed two beat detectors: the Pan-Tompkins4 and Wei Zong5 QRS detector. The agreement between the two detectors
was used to estimate the level of noise in the ECG signal. bSQI for the kth beat centred around a window w was defined as:

SQIb(k) =
Nmatched(k,w)

Nall(k,w)
(1)

where Nmatched is the number of beats for which both methods agree, within 150 ms as recommended by the Association for
the Advancement of Medical Instrumentation (AAMI)6, and Nall is the number of all beats that both algorithms detected minus
Nmatched.

Kurtosis (SQIk)
From the central limit theorem, random uncorrelated processes, such as thermal noise, tend to have Gaussian distributions.
Kurtosis measures the sharpness of the peak of a distribution and therefore provided a measure of how Gaussian the distribution
is. The kurtosis of the ECG data x in a window w centred around the kth beat was defined as:

ˆK(k) =
1
N

∑
N
i=1(x(i)−µ)4

σ4 (2)

where N, µ and σ are the length, mean and standard deviation of the data x respectively. The kurtosis of a Gaussian-like
distribution is approximately 3, and ECG contaminated with noise and artefacts usually has a kurtosis lower than 53. Therefore,
kSQI was defined as:

SQIk(k) =

{
0 if K(k)≤ 5
1 otherwise

(3)

Low kSQI indicates low frequency noise such as baseline wonder, Gaussian (thermal observation) noise and high frequency
sinusoidal noise (power-line interference)3.

Frequency bounding (SQIf)
fSQI measured whether the instantaneous heart rate fell within a valid physiological range, taken to be between 30 to 90
beats/min (see ?? (a), (b) and (c)). Instantaneous heart rate was estimated by the time difference between consecutive R-peaks
detected using the Pan-Tompkins QRS detector. Given IHRi as the instantaneous heart rate of the kth beat, fSQI was defined as:

SQIf(k) =

{
1 if 30≤ IHRi(k)≤ 90
0 otherwise

(4)

Signal to noise ratio (SQISNR)
snrSQI measured the strength of the signal carrying cardiac information. Given x as an ECG signal in a window w centred
around the kth beat and xfilt is the ECG signal x filtered with a band-pass filter with cut-off frequencies of 0.5 and 14 Hz, the
signal-to-noise ratio was defined as:

SNR(k) = 10log10
VAR(xfilt)

VAR(x− xfilt)
(5)
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where Var(x) computes the variance of x. A high SNR implies a good quality for the signal. Therefore, snrSQI was defined as:

SQISNR(k) =


1 if SNR(k)≥ 10
SNR(k)

10 if 0≤ SNR(k)≤ 10
0 otherwise

(6)

Combined SQI (SQIECG)
The combined ECG SQI, SQIECG, of the kth beat was calculated as:

SQIECG(k) =

{
SQIb(k)×SQIf(k)×SQISNR(k) if SQIk(k) = 1
SQIb(k)×SQIf(k)×SQISNR(k)×η if SQIk(k) = 0

(7)

where η was a coefficient denoting the presence of statistical noise which was determined to be present whenever the
kurtosis of the signal was lower that 5. The value of η was chosen to be 0.9.
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Supplementary material E
PPG SQI
For PAT estimation, an evaluation of the signal quality of the PPG waveform was required. To assess the signal quality of
the PPG, we followed the work of Villarroel7. Four different signal quality metrics were employed and combined together
to provide a beat-by-beat SQI value. These metrics included: An assessment of clipping in the signal (SQIc); sharp changes
in amplitude (SQIa); IHR outside of the physiological bounds (SQIf); the deviation of beats from running-average window
template (SQIDTW). All quality metrics were combined to compute a signal quality estimate, (SQIPPG), for each distal fiducial
point.

Clipping detection (SQIc)
Clipping generally occurs as a result of motion artefacts. Signal clipping can be detected when the derivative crosses a given
threshold. Given that Nlength(k) is the length of the kth beat and Nclipped(k) is the amount of the derivative of the kth beat that
crosses a clipping threshold of 0.1, the cSQI of the kth beat was set to 0 when more than one-third of the derivative was clipped:

SQIc(k) =

{
0 if Nclipped(k)/Nlength(k)> 1/3
1 otherwise

(8)

Amplitude thresholding (SQIa)
Amplitude thresholding was performed to determine whether the amplitude of each beat remained within three standard
deviations, σw, from the mean µw of the window w. The statistics were calculated locally for each moving window w. The
aSQI of the kth beat was set to 0 if part of the beat was outside the valid range:

SQIa(k) =

{
0 if ∃i ∈ bk µw−3×σw < PPG(i) > µw +3×σw or
1 otherwise

(9)

where bk is the location of the entire kth beat (i.e. not just the fiducial point).

Frequency bounding (SQIf)
Frequency bounding determined whether the instantaneous heart rate fell within a valid physiological range, taken to be between
30 to 90 beats/min. Instantaneous heart rate was estimated by the time difference between beat peaks detected using the BSSF
algorithm. Given IHRi as the instantaneous heart rate of the kth beat, fSQI was defined as:

SQIf(k) =

{
1 if 30≤ IHRi(k)≤ 90
0 otherwise

(10)

Dynamic Time Warping (SQIDTW)
Dynamic time warping (DTW) is a time series technique used to determine a distance (or a degree of similarity) between two
given time series based on the best possible alignment between the two. Importantly, DTW is able to compute a metric of
similarity for a time series whose period changes over time. As a result, DTW is ideal for computing how similar PPG beats are
even when the heart rate changes. The algorithm starts by constructing a beat template over a 20 second window by averaging
the beats within the window7. Once a template has been computed for a given window, DTW is computed between each beat
within the time window and the template.

Given a PPG beat X = {x1,x2, ...,xN} of length N within the current window and the template Y = {y1,y2, ...,yM} of length
M. DTW finds the optimum warping path, p = {p1, p2, ..., pL} of length L, between the beat and the template. To do this a
cost function, c(xi,y j) is constructed defining the local distance between the current beat X at location i and the template Y at
location j. The cost has a small value if xi and yi are similar to each other, and a large value if they are different. The DTW can
then be computed by determining the path, p that minimises this cost as:

DTW (X ,Y ) = argmin
p

L

∑
l=1

c(xnl ,yml) (11)

The classical DTW algorithm is computationally expensive as it needs to evaluate every possible warping path in order to
obtain an optimal alignment. Therefore, multi-scale dynamic time warping for pulsatile signals was performed to refine the
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search space for the optimum alignment between the two time series. Multi-scale DTW is described in more detail together
with its mathematical derivations in7.

A good-quality beat will have a low value of DTW such that it has a similar shape to the average beat in the time window.
dtwSQI was defined as:

SQIDTW(k) = 1− DTW (Xk,Yk)

100
(12)

Combined SQI (SQIPPG)
The combined PPG SQI, SQIPPG, of the kth beat was derived by multiplying all the SQI metrics together:

SQIPPG(k) = SQIc(k)×SQIa(k)×SQIf(k)×SQIDTW(k) (13)
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Supplementary material F
Resampling of ICG to 1kHz
An ICG signal recorded at 200 Hz provides a time resolution of 5 ms for detection of the B-point (point of aortic valve opening)
or C-point (maximum of ICG pulse). This may lead to considerable errors in PEP estimates in this dataset. Many bioimpedance
monitors will sample at 1 kHz to reduce this error8. This section compares the PEP estimates used in this paper (from the
original 200 Hz ICG signal) to PEP estimates from an upsampled ICG at 1 kHz via cubic spline interpolation. Figure 11 shows
the difference in PEP values from the two ICG signals for all volunteers in the dataset. Figure 12 compares the two signals
across the entire dataset. The differences were low (mean difference = 3 ms), there was a bias towards the 200 Hz ICG over
estimating the PEP signal compared to the 1 kHz ICG. In general, the trends are consistent across the two signals. We conclude,
therefore, that PEP estimates from the 200 Hz ICG were not a significant limitation to the results in this study.

Figure 11. PEP estimates from the original 200 Hz ICG signal (blue) compared to PEP estimates from the 1 kHz upsampled
ICG signal (red) for all volunteers in the dataset.
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Figure 12. Comparison of PEP estimates from the two ICG signals (original 200 Hz ICG and upsampled 1 kHz ICG). The
errors were low with a slight bias where PEP estimates from the 200 Hz signal were generally higher.
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Supplementary material G
Changes in the PPG morphology
Figure 13 shows the PPG morphology from the same volunteer for typical pulses at (a) rest, (b) max phenylephrine infusion,
and (c) washout. Wave reflections from points of impedance mismatch cause significant changes in the PPG morphology
especially at the peak, making the peak an unreliable marker of arrival of the primary pressure wave in this dataset. As a result
the foot of the PPG was used to define the point of arrival, this was defined using the intersecting tangents method.

(a) Rest period (b) Max infusion (c) Washout period

Figure 13. Typical PPG morphology from the same volunteer at (a) rest, (b) max infusion, (c) washout.
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