Supplementary Information

Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection

Niclas Nordholt^{a#}, Orestis Kanaris^a, Selina B.I. Schmidt^a, Frank Schreiber^{a#}

^aDivision of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany

[#]Address correspondence to Niclas Nordholt and Frank Schreiber, niclas.nordholt@bam.de and frank.schreiber@bam.de; Tel.: +49-30-8104-1414

Figure S1: a) BAC persisters are not resistant mutants. *E. coli* was exposed to 60 μ M BAC. Per biological replicate, two colonies of surviving cells after 15 minutes of BAC treatment were picked and the MIC of BAC was determined. **b)** Concentration dependence of persisters after 20 minutes of BAC treatment (Spearman correlation coefficient -0.958, p = 2×10⁻⁷, n = 3 biological replicates. Data points show the geometric mean ± 95% confidence intervals. Significance of correlation: two-sided test with t-distribution of the test statistic). This figure accompanies figure 1. Source data are provided as a Source Data file.

Figure S2: Time-kill curves of evolved clones. Blue symbols represent individual replicates of the surviving fraction (n=2 biological replicates). For the wild-type (WT), the symbol represents the geometric mean and the shaded area represents the 95% confidence interval (n=6 biological replicates). The red curve is the same as in figure 1 A in the main text. This figure accompanies figure 2. Source data are provided as a Source Data file.

Figure S3: Simulations of the population dynamics during evolution for all evolved clones. Simulations of survival fraction during the serial passage experiment with alternating growth and kill cycles (lines) quantitatively reproduce the experimental data (circles). The parameters for growth rate and survival fraction are the same as in figure 2 C. Yield was inferred from cfu to OD₆₀₀ conversion factors of the individual strains. Initial number of ancestor and mutant cells: 10⁵ and 1 respectively. This figure accompanies figure 2. Source data are provided as a Source Data file.

Figure S4: Motility and biofilm formation are affected int the evolved clones. a) Motility is decreased in all evolved clones. Boxes denote the interquartile range (IQR) between the first and third quartile, with the line showing the median. Whiskers indicate the minima and maxima of the data or have a length of 1.5 IQR if data fall outside the 1.5 IQR. n = 4 biological replicates. Significance of motility area against ancestor: *, p < 0.05; **, p < 0.01 (one-tailed t-test of motility area in mm²). **b)** Evolved BAC tolerance affects biofilm formation. Boxes denote the IQR, with the line showing the median. Whiskers indicate the minima and maxima of the data or have a length of 1.5 IQR if data fall outside the 1.5 IQR. n = 20 biological replicates. Significance of biofilm formation against the ancestor is indicated by asterisks: *, p < 0.05; **, p < 0.01 (two-tailed t-test of optical density at 570 nm). Exact p-values are indicated above the asterisks. Source data are provided as a Source Data file.

Figure S5: Simulations of competition experiments in the absence and presence of sub-inhibitory antibiotic concentrations. A) When competing in the absence of antibiotics, the wild-type wins over the evolved clones due to the costs of tolerance. **B)** In the presence of ciprofloxacin, four of the evolved clones outcompete the ancestor within 7 – 12 growth cycles. **C)** S5 outcompetes the wild-type in sub-inhibitory levels of colistin. Simulations are shown for strains with a growth-rate significantly different from the wild-type (see Figure 2C and Figure 5B in the main text). This figure accompanies figure 5 in the main text.

Strain	Genomic position	Mutation	Amino acid substitution	Gene(s)	Annotation	
S1c1 S1c2	1,094,727	Δ26,518 bp	n.a.	ymdE, ycdU, serX, ghrA, ycdX, ycdY, ycdZ, csgG, csgF, csgE, csgD, csgB, csgA, csgC, ymdA, ymdB, clsC, opgC, opgG, opgH, yceK, msyB, mdtG, lpxL, yceA, ycel, yceJ, yceO, solA, bssS, dinl, [pyrC]	IS3-mediated See Table S2 for details	
	1,939,467	G→A	intergenic (-50/+70)	<i>lpxM</i> ← / ← mepM	myristoyl-acyl carrier protein-dependent acyltransferase/peptidoglycan DD-endopeptidase MepM	
S2c1 S2c2	1,115,520	G→T	A96E	lpxL ←	lauroyl acyltransferase	
	1,971,413	Δ6,314 bp	n.a.	[tar], cheW, cheA, motB, motA, flhC, flhD	IS1-mediated See Table S2 for details	
\$3c1	1,289,634	т→с	C57R	rssB →	regulator of RpoS	
	1,938,693	G→T	A242E	lpxM ←	myristoyl-acyl carrier protein-dependent acyltransferase	
S3c2	1,938,874	C→T	G182S	lpxM ←	myristoyl-acyl carrier protein-dependent acyltransferase	
	1,967,842	∆9,885 bp	n.a.	[cheR], tap, tar, cheW, cheA, motB, motA, flhC, flhD	IS1-mediated See Table S2 for details	
S4c1	1,290,339	C→T	Q292*	$rssB \rightarrow$	regulator of RpoS	
	1,938,979	C→A	A147S	lpxM ←	myristoyl-acyl carrier protein-dependent acyltransferase	
S4c2	1,290,339	C→T	Q292*	rssB →	regulator of RpoS	
	1,938,975	A→C	M148R	lpxM ←	myristoyl-acyl carrier protein-dependent acyltransferase	
S5c1 S5c2	1,108,517	+9 bp	intergenic (-352/-34)	opgC ← / → opgG	protein required for succinyl modification of osmoregulated periplasmic glucans/osmoregulated periplasmic glucans (OPGs) biosynthesis protein G	

Table S1: Mutations in all evolved clones generated in this study.

	1,938,799	A→T	L2071		myristoyl-acyl carrier	
				lpxM ←	protein-dependent	
					acyltransferase	
S6c1	1,111,908	∆2 bp	coding		osmoregulated periplasmic	
			(1822-1823/	opgH \rightarrow	glucans (OPGs) biosynthesis	
			2544 nt)		protein H	
	1,938,526	A→C	W298G		myristoyl-acyl carrier	
				$lpxM \leftarrow$	protein-dependent	
					acyltransferase	
	4,123,417	Δ13 bp	intergenic (-78/+2)	$ftsN \leftarrow / \leftarrow cytR$	cell division protein	
					FtsN/DNA-binding	
					transcriptional repressor CytR	
S6c2	1,111,908	∆2 bp	coding		osmoregulated periplasmic	
			(1822-1823/	opgH $ ightarrow$	glucans (OPGs) biosynthesis	
			2544 nt)		protein H	
	1,938,526	A→C	W298G		myristoyl-acyl carrier	
				$lpxM \leftarrow$	protein-dependent	
					acyltransferase	

n.a., not applicable; bold typeface indicates clones selected for further analyses in the main text; italic font indicates rare mutations that were not present in the population sequencing approach

Clone	Gene	Annotation				
	ymdE	Uncharacterized protein YmdE				
	ycdU	Uncharacterized protein YcdU				
	serX	tRNA-Ser				
	ghrA	glyoxylate/hydroxypyruvate reductase A				
	ycdX	zinc-binding phosphatase				
	ycdY	chaperone protein YcdY				
	ycdZ	putative inner membrane protein				
	csgG	curli secretion channel				
	csgF	curli assembly component				
	csgE	curli transport specificity factor				
	csgD	DNA-binding transcriptional dual regulator CsgD				
	csgB	curlin minor subunit				
	csgA	curlin major subunit				
	csgC	inhibitor of CsgA amyloid formation				
	ymdA	uncharacterized protein YmdA				
C1	ymdB	2'-O-acetyl-ADP-ribose deacetylase regulator of RNase III activity				
21	clsC	cardiolipin synthase C				
	opgC	protein required for succinyl modification of osmoregulated periplasmic glucans				
	opgG	osmoregulated periplasmic glucans (OPGs) biosynthesis protein G				
	ордН	osmoregulated periplasmic glucans (OPGs) biosynthesis protein H				
	усеК	DUF1375 domain-containing lipoprotein YceK				
	тsyB	acidic protein that suppresses heat sensitivity of a secY mutant				
	mdtG	efflux pump MdtG				
	lpxL	lauroyl acyltransferase				
	усеА	UPF0176 protein YceA				
	ycel	Uncharacterized protein Ycel				
	усеЈ	putative cytochrome b561				
	усеО	DUF2770 domain-containing protein YceO				
	solA	N-methyl-L-tryptophan oxidase				
	bssS	regulator of biofilm formation				
	dinI	DNA damage-inducible protein I				
	pyrC	dihydroorotase				
	tar	methyl-accepting chemotaxis protein Tar				
	cheW	chemotaxis protein CheW				
	cheA	chemotaxis protein CheA				
S2	motB	motility protein B				
	motA	motility protein A				
	flhC	DNA-binding transcriptional dual regulator FlhC				
	flhD	DNA-binding transcriptional dual regulator FlhD				
S3c2	cheR	chemotaxis protein methyltransferase				
	tap	methyl-accepting chemotaxis protein Tap				
	tar	methyl-accepting chemotaxis protein Tar				
	cheW	chemotaxis protein CheW				
	cheA	chemotaxis protein CheA				
	motB	motility protein B				
	motA	motility protein A				
	flhC	DNA-binding transcriptional dual regulator FlhC				
	flhD	DNA-binding transcriptional dual regulator FlhD				

Table S2: Genes affected by large IS-mediated deletions.

Designation in	Designation in	Description	Conotyno	Source Citation
main text	original publication	Description	Genotype	Source, Citation
MG1655 (wild- type)	K-12 MG1655	Wild type	$\Delta 776$ bp insB9–[crl], +8 bp bamD \rightarrow / \rightarrow raiA, +GC gltP \rightarrow / \leftarrow yjcO compared to NC_000913.3	R. Mutzel lab ¹
ΔtolC	TB283	Knock-out of the multi- drug efflux channel <i>tolC</i>	MG1655 attP21::PR- mCherry::frt ΔtolC::FRT	C. Guet lab ²
ΔrelAspoT	ΔrelA ΔspoT	Double knockout of the (p)ppGpp synthase/hydrolase <i>relA spoT</i>	MG 1655 ΔrelA::frt ΔspoT::frt	K. Lewis lab ³
P _{lac} -marA	MarA-CFP	Multi-antibiotic resistance transcription factor <i>marA</i> under control of an IPTG- inducible promoter	MG1655 pBbA5k <i>marA</i> -CFP	M. Dunlop lab ⁴
ΔmarRAB	ΔmarRAB	Knockout of the <i>marRAB</i> operon. Contains a low copy plasmid with CFP under the control of the <i>marA</i> promoter.	MG1655 <i>∆marRAB</i> pBbSVk-P _{marA} -CFP	M. Dunlop lab ⁴
P _{lac} -tisB	pZS*24 <i>tisB</i>	Persistence-inducing toxin <i>tisB</i> under control of an IPTG-inducible promoter	MG1655 pZS*24 <i>tisB</i>	K. Lewis lab ⁵
P _{BAD} -hokB	PBAD/HisA-hokB	Persistence-inducing toxin <i>hokB</i> under control of an arabinose- inducible promoter	MG1655 PBAD/HisA- hokB	J. Michiels lab ⁶
∆fliC	ТВ205	Knock-out of the flagellin gene <i>fliC</i>	MG1655 attP21::PR- mCherry::FRT ΔfliC::FRT	C. Guet lab ²
P _{lac} - <i>lpxM</i>	JW1844-AM	Lipid A biosynthesis myristoyltransferase <i>lpxM</i> under control of an IPTG-inducible promoter	MG1655 pCA24N- Plac/T5_6His- <i>lpxM</i>	ASKA collection
P _{lac} - <i>rpoE</i>	JW2557-AM	Envelope-stress sigma factor <i>rpoE</i> under control of an IPTG- inducible promoter	MG1655 pCA24N- Plac/T5_6His- <i>rpoE</i>	ASKA collection
ΔΙρχΜ	BW25113 lpxM::FRT- Kan-FRT	Knock-out of lipid A biosynthesis myristoyltransferase <i>IpxM</i>	BW25113 lpxM::FRT- Kan-FRT	Keio collection ⁸

Table S3: Bacterial strains used in this study.

Designation in	Designation in	Description	Genotype	Source, Citation
main text	original publication			
BW25113 (wild-	BW25113		rrnB3 ∆lacZ4787	Keio collection ⁸
type)			hsdR514	
			Δ(araBAD)567	
			∆(rhaBAD)568 rph-1.	

Table S3: Bacterial strains used in this study.

References

1. Blattner, F. R. *et al.* The complete genome sequence of Escherichia coli K-12. *Science* **277**, 1453–1462 (1997).

2. Bergmiller, T. *et al.* Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity. *Science* **356**, 311–315 (2017).

3. Shan, Y. *et al.* ATP-Dependent persister formation in Escherichia coli. *mBio* **8**, e02267-16 (2017).

4. Meouche, I. E., Siu, Y. & Dunlop, M. J. Stochastic expression of a multiple antibiotic resistance activator confers transient resistance in single cells. *Sci. Rep.* **6**, 1–9 (2016).

5. Dörr, T., Vulić, M. & Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. *PLoS Biol.* **8**, e1000317 (2010).

6. Verstraeten, N. *et al.* Obg and Membrane Depolarization Are Part of a Microbial Bet-Hedging Strategy that Leads to Antibiotic Tolerance. *Mol. Cell* **59**, 9–21 (2015).

7. Kitagawa, M. *et al.* Complete set of ORF clones of Escherichia coli ASKA library (A Complete S et of E. coli K -12 ORF A rchive): Unique Resources for Biological Research. *DNA Res.* **12**, 291–299 (2005).

8. Baba, T. *et al.* Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol. Syst. Biol.* **2**, 2006.0008 (2006).