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1 Parameters used in the model

Convolutional nerual network
Filter size [3, 7, 11, 15]
no. of convolutional layer 1
no. of dense layer (hidden unit) 2 (512, 256)
learning rate 0.01
Graph convolutional nerual network
no. of convolutional layer 2
no. of dense layer (hidden unit) 1 (32)
learning rate 0.01

Table S1: Parameters used for training CNN and GCN

Table S1 shows the default parameters used for training CNN and GCN. Because

the number of hidden units in the first dense layer of CNN is 512, the encoded node

feature will be 512-dimensional vectors.

Detail description of skip-gram model For each position i on the segment, the 3-

mer at position i will be used as input and its’ neighboring 3-mer in range [i − j,

i + j] will be utilized as output. j is a hyperparameter that can be adjusted for

the skip-gram model. Since we employ 100 hidden units in the embedding layer to

encode each 3-mer, 3-mers on the segments will be converted into 100-dimension

vectors. Thus, each 2kbp segment will be converted into a matrix X ∈ R1,998×100.

2 Elapsed time

Program HostG PHP WIsH VHM-net BLASTN HoPhage VPF-Class RaFaH vHULK
Elapsed time (min/100 phages) 11 3 2 8 7 8 10 10 17

Table S2: Elapsed time for each tool. All the methods were run on Intel® Xeon®

Gold 6258R CPU with 8 cores.

HostG has longer running time than other tools as shown in Table S2. The bot-

tleneck of HostG is the calculation of the alignment similarities. We will explore

whether the alignment step can be replaced by a more efficient method to save

computational resources.

3 10-fold cross validation on VHM dataset
In this experiment, we applied 10-fold cross-validation to split the training and

validation sets on the VHM dataset. We randomly separate the VHM dataset into
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10 subsets. Then we trained HostG on 9 subsets and validate the results on 1 subset

iteratively. Finally, we keep the model with the highest accuracy.

4 Prediction results of BLASTN

Figure S1: Prediction performance of BLASTN at the order, family, and genus

level. X-axis: taxonomic level. Y-axis: Accuracy.

As shown in Fig. S1, The majority vote strategy assigns the most common align-

ment host to the virus. The best alignment strategy predicts the host with the

best alignment. The results show that predicting with the best alignment is better

than the majority vote method. This might because the numbers of hosts in each

taxonomic group are unbalance and the majority vote tend to predict a taxonomic

group with more genomes. Thus, the performance of this method highly depends

on the distribution of the reference database.

5 Prediction results of RaFAH and vHULK using their
pre-trained models

Figure S2: Prediction performance of RaFAH and vHULK with pre-trained pa-

rameters. X-axis: taxonomic level. Y-axis: Accuracy.

Fig. S2 shows the results of RaFAH and vHULK using their pre-trained models.

The difference between Fig. S2 and Fig. 6 in the main article is likely caused by

the overlap between the TEST dataset and the data used for training the latest

RaFAH and vHULK models. For example, according to the description of RaFAH,

the model was built using genomes before Oct. 2019, indicating a large overlap with

the TEST dataset.
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6 Impact of the sequence similarity between the training and
testing samples on the prediction performance

Figure S3: Associations between accuracy and similarity at the genus level. X-

axis: Mash distance. Left Y-axis: Accuracy. Right Y-axis: number of testing

viruses.

First, we used Mash [1] to calculate the distance between sequences in training

and testing sets. For each virus in the testing set, we recorded its smallest distance

to the training phages. The results show that the smallest distance of 27% phages is

1, which means they are significantly different from all training phages. The average

distance is 0.54, and no virus got a 0 distance. Then, we sorted the host prediction

by the Mash distance and reported the results in Fig. S3. X-axis stands for the

upper-bound cutoff of the distance between genomes in the training set and testing

set. For example, when the X-axis value is 0.2, this means that all the genomes

in the test and train have mash distance ≤0.2. With the increase of the distance,

more testing genomes with lower similarities are included, and the accuracy (Y-axis)

decreases as expected. We also showed the number of testing viruses satisfying the

distance cutoff.

7 Improvement of GCN with ECE
We first sorted the prediction according to the SoftMax value and then showed the

results in Fig. S4. As expected, the accuracy tends to decrease with the increase of

the prediction rate. In addition, HostG achieves 100% accuracy at the order, family,

and genus level when the SoftMax thresholds are 0.88, 0.89, and 0.94, respectively.

We also record the trend of F1-score in Fig. S5. The prediction rate represents

the number of viruses which have predictions and it is the same as the definition of

recall in other methods. As shown in Fig. S5, with the increases of the prediction

rate (recall), the F1-score increases, and HostG can achieve higher F1-score than

most of the existing tools under the same prediction rate.
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Figure S4: Prediction performance of HostG at the order, family, and genus level.

X-axis: Prediction rate. Y-axis: Accuracy.

Figure S5: Comparison of the F1-score and prediction rate (recall) for the

learning-based tools at the rank of genus. Each data point on a line corresponds

to a different confidence threshold. X-axis: prediction rate (recall). Y-axis: F1-

score.

8 The commands and parameters of running other tools
All the parameters used in the command are default parameters suggested by their

guidelines.

8.1 HoPhage

python predict.py -q test_phages.fa -c phage_cds.fna -o output_example
-w 0.5 -g candidate_host_genera.csv --all

8.2 VPF-Class

stack exec -- vpf -class --data -index ../ data/index.yaml -i ../ data/
test_phages.fa -o test -classified
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8.3 VHM-net

python VirHostMatcher -Net.py -q test_phage/ -o output -i tmp -n 1 -t 8

8.4 PHP

python countKmer.py -f ./ HostGenome -d ./ Output -n HostKmer -c -1
python PHP.py -v ./ test_phage/ -o ./ Output -d ./ Output -n HostKmer

8.5 WIsH

./WIsH -c build -g ./ HostGenome/ -m modelDir

./WIsH -c predict -g ./ test_phage/ -m modelDir -r outputResultDir -b 1

8.6 RaFAH

perl RaFAH.pl --train --genomes_dir train/ --extension .fasta --
true_host Genomes_Hosts.tsv --file_prefix Custom_Model_1 --threads
32

perl RaFAH.pl --predict --genomes_dir test/ --extension .fasta --
file_prefix test

8.7 vHULK

python vHULK.py -i test_input -o test_output -t 4
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