
GigaScience

CNVpytor: a tool for CNV/CNA detection and analysis from read depth and allele
imbalance in whole genome sequencing

--Manuscript Draft--

Manuscript Number: GIGA-D-21-00151

Full Title: CNVpytor: a tool for CNV/CNA detection and analysis from read depth and allele
imbalance in whole genome sequencing

Article Type: Technical Note

Funding Information: National Cancer Institute
(U24CA220242)

Dr. Alexej Abyzov

Abstract: Detecting copy number variations (CNVs) and copy number alterations (CNAs) based
on whole genome sequencing data is important for personalized genomics and
treatment. CNVnator is one of the most popular tools for CNV/CNA discovery and
analysis based on read depth (RD). Herein, we present an extension of CNVnator
developed in Python -- CNVpytor. CNVpytor inherits the reimplemented core engine of
its predecessor and extends visualization, modularization, performance, and
functionality. Additionally, CNVpytor uses B-allele frequency (BAF) likelihood
information from single nucleotide polymorphism and small indels data as additional
evidence for CNVs/CNAs and as primary information for copy number neutral losses of
heterozygosity. CNVpytor is significantly faster than CNVnator—particularly for parsing
alignment files (2 to 20 times faster)—and has (20-50 times) smaller intermediate files.
CNV calls can be filtered using several criteria, annotated, and merged over multiple
samples. Modular architecture allows it to be used in shared and cloud environments
such as Google Colab and Jupyter notebook. Data can be exported into JBrowse,
while a lightweight plugin version of CNVpytor for JBrowse enables nearly instant and
GUI-assisted analysis of CNVs by any user. CNVpytor release and the source code
are available on GitHub at https://github.com/abyzovlab/CNVpytor under the MIT
license.

Corresponding Author: Alexej Abyzov, Ph.D.
Mayo Clinic: Mayo Clinic Minnesota
Rochester, Minnesota UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Mayo Clinic: Mayo Clinic Minnesota

Corresponding Author's Secondary
Institution:

First Author: Milovan Šuvakov

First Author Secondary Information:

Order of Authors: Milovan Šuvakov

Arijit Panda

Colin Diesh

Ian Holmes

Alexej Abyzov

Order of Authors Secondary Information:

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

1

CNVpytor: a tool for CNV/CNA detection and analysis from read depth and

allele imbalance in whole genome sequencing

Milovan Suvakov1,2, Arijit Panda1,2, Colin Diesh3, Ian Holmes3, Alexej Abyzov1,2,*

1Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN

2Center for Individualized Medicine, Mayo Clinic, Rochester, MN

3Department of Bioengineering, University of California, Berkeley, USA

*Correspond author. Email: abyzov.alexej@mayo.edu

Keywords: copy number variations, copy number alternations, whole genome sequencing, Python

Abstract

Detecting copy number variations (CNVs) and copy number alterations (CNAs) based on whole genome

sequencing data is important for personalized genomics and treatment. CNVnator is one of the most popular

tools for CNV/CNA discovery and analysis based on read depth (RD). Herein, we present an extension of

CNVnator developed in Python -- CNVpytor. CNVpytor inherits the reimplemented core engine of its

predecessor and extends visualization, modularization, performance, and functionality. Additionally,

CNVpytor uses B-allele frequency (BAF) likelihood information from single nucleotide polymorphism and

small indels data as additional evidence for CNVs/CNAs and as primary information for copy number neutral

losses of heterozygosity. CNVpytor is significantly faster than CNVnator—particularly for parsing alignment

files (2 to 20 times faster)—and has (20-50 times) smaller intermediate files. CNV calls can be filtered using

several criteria, annotated, and merged over multiple samples. Modular architecture allows it to be used in

shared and cloud environments such as Google Colab and Jupyter notebook. Data can be exported into

JBrowse, while a lightweight plugin version of CNVpytor for JBrowse enables nearly instant and GUI-assisted

Manuscript Click here to
access/download;Manuscript;CNVpytor_manuscript.pdf

https://www.editorialmanager.com/giga/download.aspx?id=115086&guid=dcb71d3e-9c18-45cd-8186-87e73ee97956&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=115086&guid=dcb71d3e-9c18-45cd-8186-87e73ee97956&scheme=1

2

analysis of CNVs by any user. CNVpytor release and the source code are available on GitHub at

https://github.com/abyzovlab/CNVpytor under the MIT license.

Introduction	

Figure 1. Schematics of core algorithm and data processing steps. (A) Read depth analysis steps

include parsing alignment file, calculating and storing read depths in 100 bp intervals, binning using

user-specified bin size, correcting RD for GC bias, segmenting by mean-shift, and calling CNVs. (B)

B-allele frequency analysis steps include reading variant file storing the data about SNPs and small

indels, filtering variants using strict mask, calculating BAF for heterozygous variants (HETs), and

calculating likelihood function for bins. For CNVs, BAF signal splits away from value 0.5 expected for

HETs. (C) Distribution of the variant allele frequency for all variants and variants within strict mask as

defined by the 1000 Genomes Project. Black line shows fit by gaussian distribution. (D) An example

of RD depending on GC within bin. Statistics of RD signal within bins of the same percentage of GC

content is used to correct for GC bias in the signal. White line represents average RD level for bins

with given GC content. (E) An example of RD and BAF signals for a germline duplication in NA12878

sample (raw RD signal is in grey, GC-corrected RD signal is in black, brighter color of BAF likelihood

corresponds to higher values of the likelihood).

The continuous reduction of cost made the whole genome sequencing (WGS) to be widely used in

different research projects and clinical applications. Consequently, many approaches for processing,

analyzing, and visualizing WGS data have been developed and are being improved. Detection and analysis

of copy number variations (CNVs) based on WGS data is one of them. Research directions related to the

cancer genomics, single-cell sequencing, and somatic mosaicism create huge amounts of data and demands

for processing on the cloud that require further improvements of CNV callers, moving to parallel processing,

better compression, modular architecture, and new statistical methods.

CNVnator is a method for CNV analysis based on read depth (RD) of aligned reads. It was determined

to have high sensitivity (86%-96%), low false-discovery rate (3%-20%), and high genotyping accuracy (93%-

95%) for germline CNVs in a wide range of sizes from a few hundred base pairs to chromosome size events

3

[1-5]. Since its development a decade ago, the tool has been widely used in different scientific areas by

researchers around the world for detection of CNVs in a variety of species with different genome sizes:

bacteria [6], fungi [7], plants [8-10], insects [11], fish [12], birds [13], mammals [14-17] and humans [2, 18-

20]. It has been used to discover somatic variations in cancer and disease studies [21] and to find mosaic

variants in human cells [22]. Although CNVnator was developed to detect germline CNVs, it is well-suited to

discover copy number alteration (CNAs) present in a relatively high (>50%) fraction of cells, such as somatic

alteration found in cancers. It was not, however, designed for nor capable of aiding analysis of copy number

neutral changes.

Here we describe CNVpytor, a Python extension of CNVnator. CNVpytor inherits the reimplemented

core engine of CNVnator and extends visualization, modularization, performance, and functionality. Along

with RD data, it enables consideration of allele frequency of single nucleotide polymorphism (SNP) and small

indels as an additional source of information for the analysis of CNV/CNA and copy number neutral variations.

Along with RD data, this information can be used for genotyping genomic regions and visualization.

Results

Analysis of RD signal

CNVpytor inherits the RD analysis approach developed in CNVnator [1]. Briefly, it consists of the

following steps: reading alignment file and extracting RD signal, binning RD signal, correcting the signal for

GC bias, segmenting the signal using the mean-shift technique, and calling CNVs (Fig. 1). RD signal can be

parsed from BAM, SAM, or CRAM alignment files and is counted in 100 bp intervals, resulting in a small

footprint of intermediate .pytor files in HDF5 format (Table 1). Because of using the pysam [23] library for

parsing, this step (the most time-consuming one) is parallelized and can be conducted very efficiently,

particularly in comparison with the older tool (Table 1). The binning step integrates RD over larger bins that

are limited to multiples of initially stored 100 bp bins. Next, technical biases in the read depth signal that are

correlated with GC content (so-called GC biases) are removed using GC correction procedure. For the human

reference genomes GRCh37 and GRCh38 per bin, GC content is pre-calculated and supplied as a resource

with the CNVpytor package. For other genomes, GC content can be calculated during runtime from a

provided FASTA file or precalculated and added to the CNVpytor resource for future use. Once information

about read coverage (and variants, see below) is extracted from an alignment file, the following analysis

4

steps take place (i.e., read input and write output) with the same file. As a result, histograms for each

processed bin size and information about CNV calls, including coordinates, different statistics, and p-values

are all stored in one .pytor file and can be extracted into Excel (TSV file) or a VCF file.

Analysis of variant data

A novel feature of CNVpytor is the analysis of information from SNPs and small indels imported from

a VCF file. An imbalance in the number of haplotypes can be measured using allele frequencies traditionally

referred to as B-allele frequency (BAF) [24-27]. The main advantage of using BAF compared to RD is that

BAF values do not require normalization and are distributed around 0.5 by binomial distribution for

heterozygous variants (HETs). Additionally, BAF is complementary to RD signal, as it changes for copy

number neutral events such as loss of heterozygosity. However, BAF dispersion can be measured incorrectly

due to systematic misalignment particularly in repeat regions, incomplete reference genome, or site-specific

noise in sequencing data. To mitigate this issue, we filtered out HETs in the fraction of genome that is

inaccessible to short read technologies, as defined by the strict mask from the 1000 Genomes Project [28].

Such filtering removes almost all HETs with outlier values of BAF, while values for the retained variants

closely follow binomial distribution (Fig. 1C). To integrate BAF information within bins, CNVpytor calculates

the likelihood function that describes an imbalance between haplotypes (see Methods). Currently, BAF

information is used when genotyping a specific genomic region where, along with estimated copy number,

the output contains the average BAF level and two independent p-values calculated from RD and BAF signal.

Table 1. Efficiency of parsing alignment file on modern computers in relation to sequencing coverage and

engaged number of CPU cores.

Sequencing

coverage of

the human

genome

Parsing time File size

CNVnator

CNVpytor

CNVnator

CNVpytor

4 cores 8 cores 23 cores RD

parsing

BAF

parsing

With 1 & 10

kbp bins

5X 10 min 5 min 3 min <2 min 1 Gb 18 Mb 20 Mb 250 Mb

30X 1 h 28 min 18 min 10 min 1.5 Gb 19 Mb 20 Mb 250 Mb

100X 3.3 h 1.5 h 1 h 33 min 2 Gb 20 Mb 20 Mb 250 Mb

5

Variant data can also be plotted in parallel with RD signal (Fig. 2). Same as for RD signal, binned information

calculated from variants is stored in and can be extracted from .pytor file.

Figure 2. BAF signal corroborates and complements RD signal. Example of CNVpytor region

plots produced for deletion (left), duplication (middle), and CNN-LOH (right) for NA12878 sample.

Within the coordinates of heterozygous deletion, there is a 50% drop in RD signal and a loss in

heterozygosity in BAF signal (i.e., no heterozygous SNPs in the region). Duplication of one haplotype

results in the increase of RD signal by 50% and in a split in VAF distribution of SNPs and a split in

BAF likelihood function. In the CNN-LOH region, few reliable heterozygous SNPs are detected while

RD signal does not change. Likelihood function values are normalized to maximal across the range.

Figure 3. CNVpytor workflow. Steps used in data processing. On the left: reading RD data from

alignment file, creating histograms, segmentation, calling CNVs. On the right: reading SNP and indel

data from VCF file, filtering variants using strict mask, calculating histograms and likelihood function.

In the middle: alternatively, if alignment file is not available RD signals can be calculated from variant

data (green arrows). Visualization using both RD and/or BAF data can be done from an interactive

command line interface or automatically by running script file.

Running CNVpytor

CNVpytor is to be run in a series of steps (Fig. 3). For enhanced flexibility, RD and BAF processing

workflows proceed in parallel. In this way each workflow can be run at different times or even on different

computers. For example, data parsing steps can be run on a cloud where data (i.e., alignment files) is

accessible, resulting in less than 25 Mb .pytor files that then can be copied to local computer/cluster where

the remaining calculation steps will be performed. If necessary, a user can run additional calculations (e.g.,

conduct processing with different bin size) using the same .pytor file in the future, allowing for further flexibility

in data analysis.

Routine processing steps can be followed by CNV visualization and analysis in the Viewer session,

which can be interactive or hands-off. Implementation of interactive mode is inspired by a Linux shell with tab

completion and with a help page similar to the man pages. In this mode a user can instantly make various

6

visualizations, preview and filter CNV calls, annotate calls, create joint calls across multiple samples, and

genotype specified regions. The viewer does not save results into the .pytor file, and outputs are printed and

plotted on the screen or exported to an output file(s). Hands-off mode executes user-written script(s) with

CNVpytor commands. Such scripts can be used as part of the processing pipeline where, for example,

images of signals around called CNVs are generated and stored for possible future inspection. Through the

viewer interface, it is possible to directly access Python and run code. This allows user to access some

standard features of underlying libraries, e.g., matplotlib library can be used to customize plots.

CNVpytor can be used as the Python module. All functionalities, like reading and editing CNVpytor

data files, and all calculation steps and visualizations can be performed by calling functions or classes. This

way CNVpytor can be easily integrated in different platforms and computing environments; for example,

CNVpytor can be run from Jupyter Notebook on a local machine or in cloud services, e.g., Google Colab.

CNVpytor is also integrated into OmniTier’s “Compstor Novos” variant calling workflow [29].

Figure 4. Novel features of visualization using data for HepG2 cell line. Genome-wide

visualizations can be useful in some cases, like cancer studies or clinical applications like screening

for chromosomal abnormalities. They also can be useful for quick insight in sequencing or single-cell

amplification quality. To demonstrate genome-wide plot types, HapG2 immortal cell line sample is

used. A) Manhattan and B) circular style plot of RD signal. Large CNVs and chromosome copy

number changes are apparent. One can also judge about dispersion of the RD signal. The inner circle

in B shows RD signal while outer shows minor allele frequency (MAF). Regions where we can see

loss of MAF signal with normal RD, e.g., chromosome 14 or 22, are chromosomal CNN-LOH. C)

Examples of smaller CNVs not apparent in the global view. Each CNV is about 15 Mbp. The displayed

regions with multiple CNVs (that are possibly complex events) were hardly visible on the circular plot.

Data visualization and result curation

Visualization of multiple tracks/signals can be done interactively by mouse and by typing relevant

commands as well as by running scripts with CNVpytor commands provided as inputs to CNVpytor. CNVpytor

has extended visualization capabilities with multiple novel features as compared to CNVnator. For each

sample (i.e., input file) multiple data tracks such as RD signal, BAF of SNPs, and binned BAF likelihood can

7

be displayed in an adjustable grid layout as specified by a user. Specifically, multiple regions across multiple

samples can be plotted in parallel, facilitating comparison across samples and different genomic loci (Fig. 2).

To get a global view, a user can visualize an entire genome in a linear or circular fashion (Fig. 4, S1, S2).

Such a view can be useful in judging the quality of samples and in visually checking for aneuploidies.

Some additional features include GC-bias curve plot and 2D histogram (Fig. 1D), allele frequency

distribution per region (Fig. 1C), and comparing RD distributions between two regions (Fig. S3). Figure

resolution, layout grid, colors, marker size, titles, and plotting style are adjustable by the user.

Integration with JBrowse

CNVpytor also has implemented functionality to export data into formats that can be embedded into

JBrowse, a web-based genome browser used to visualize multiple related data tracks (Fig. S4). The export

enables users to utilize JBrowse capabilities to visualize, compare, and cross-reference CNV calls with other

data types (such as CHiP-seq, RNA-seq, ATAC-seq, etc.) and annotations across genome. Exported data

provide 3 resolutions of RD and BAF tracks (1 kbp, 10 kbp, and 100 kbp bins) while the appropriate resolution

is chosen automatically by JBrowse depending on the size of the visualized genomic region. Multiple .pytor

files can be exported at once.

Alternatively, a user can utilize a lightweight CNVpytor plugin for JBrowse. The plugin takes

information about coverage from a relatively small (as compared to BAM) VCF file and on the fly performs

the read depth and BAF estimation, segmentation, and calling. For read depth analysis, the plugin fetches

the information from the DP field in the VCF field and uses it as a proxy for actual coverage. Since for large

bin sizes such an estimate corresponds well to the actual value (Fig. S5), the plugin enables quick and easy

review of large copy number changes in a genome. For BAF analysis, the plugin conducts analyses the same

way as a stand-alone application. All temporary values are stored in the browser cache for fast and interactive

visualization of a genomic segment. As well as improving responsiveness by eliminating the network lag of a

client-server application, this ensures that no information about a personal genome is transferred to external

servers. Once the analyses are complete, the results are instantly visualized using JBrowse’s native

capabilities. Usage cases of the plugin are: 1) quick and visual cross-referencing of copy number profiles

between multiple samples and in relation to other data types, and 2) a review of a personal genome(s) for

large CNVs in a simple user-friendly environment.

8

Conclusion

Development of new, maintenance, and improvement of existing bioinformatics tools are driven by

changing data types, demands for newer and user-verifiable analyses, necessity for processing larger

datasets, and the evolving nature of computational infrastructures and platforms. CNVpytor brings the

functionality of its predecessor CNVnator to a new level and significantly expands it. CNVpytor is faster and

virtually effortless to install, requires minimum space for storage, enables analysis of BAF for call confirmation

and genotyping, provides users with instant and extended visualization and convenient functionality for result

curation (including merging over multiple samples), and is equipped for integration with other tools.

Lightweight plugin for JBrowse enables on-the-fly visualization and analysis convenient for wide categories

of users. Overall, CNVpytor establishes a framework for discovering and analyzing copy number changes

from whole genome sequencing data either by an individual researcher or clinician or in a collaborative and

shared environment.

Materials and Methods

RD analysis

Calculations for RD binning, mean-shift algorithm, partitioning and calling CNVs are explained in details in

CNVnator paper [1]. The only difference in CNVpytor implementation is how information about GC content is

obtained. For two versions GRCh37 (hg19) and GRCh38 of the human reference genome information about

GC and AT content for each 100 base pair bins is provided as resource data within CNVpytor package. This

way user does not need to have reference genome FASTA for GC correction. In spite of slightly different

implementation called regions by CNVnator and CNVpytor overlap by over 99%. Additionally, CNVpytor can

calculate read depth from coverage of imported variants (Fig. 3). This is an approximate but rather precise

solution to cases when alignment file is not available (Fig. S5).

Variant data

CNVpytor imports information about SNPs and single letter indels form variant (VCF) file. All other

variants are ignored. For each variant following data is stored in CNVpytor file: chromosome, position,

9

reference base, alternative base, reference count (𝑟𝑒𝑓!), alternative count (𝑎𝑙𝑡!), quality, and genotype (0/1

or 1/1).

In the normal case with one copy of each haplotype, heterozygous SNPs are visible in half of the reads

coming from that haplotype. In other words, B-allele frequency distributes around 1/2. Contrarily, in the

regions with constitutional duplication of one haplotype, heterozygous SNPs are expected with frequency

equals 2/3 or 1/3 depending are they located on duplicated haplotype or not. This split from value 1/2 can be

visible in plot of BAFs vs position of variants as shown in the right panel of Figure 1. Similarly, for homozygous

deletion complete loss of heterozygous SNPs is expected. In the case of somatic sub clonal CNA (e.g.,

frequently observed in cancer genomes), the ratio between haplotypes can be an arbitrary number depending

on cell frequencies with the CNA. Consequently, the split in BAF plot varies from 0 through 1. Measuring the

level of this split can provide useful information about type of CNV. Moreover, copy number neutral loss of

heterozygosity (CNN-LOH) can be detected this way.

For each stored variant we can calculate two frequencies defined in following way:

• B-allele frequency (BAF): 𝐵𝐴𝐹 = "#$!
%&'!("#$!

• Minor allele frequency: 𝑀𝐴𝐹 = min/ "#$!
%&'!("#$!

, %&'!
%&'!("#$!

	2 = min(𝐵𝐴𝐹, 1 − 𝐵𝐴𝐹)

One of next generation sequencing features is that some bases are not accessible for variant discovery

using short reads, due to repetitive nature of the human genome. In the 1000 Genomes Project, genome

mask is created to tabulate bases for variant discovery. There are about 74% of bases marked passed (P),

what correspond to about 77% of non-N bases (1000 Genomes Project Consortium, 2015). We use that

mask to filter out variants called in non-P regions. This way we eliminate around 22% of variants but there is

benefit because with less false-positive heterozygous SNPs statistics is improved (Fig. 1C) and this improves

quality of further calculations. The same way as GC content, information about strict mask P regions for two

versions of human reference genome are stored in resource files that are part of CNVpytor package.

Calculating BAF likelihood function

The ratio between reads coming from one or another haplotype is distributed following binomial

distribution. If counts are known then one can calculate likelihood function for that ratio:

𝐿(𝑝!|𝑎𝑙𝑡! , 𝑟𝑒𝑓!) = 	𝐵(𝑥; 𝑎𝑙𝑡! + 1, 𝑟𝑒𝑓! + 1) =
)

*("#$!,%&'!)
𝑝!"#$!(1 − 𝑝!)%&'!,

10

where 𝑝! is allele frequency for variant 𝑖 and 𝐵(𝑎𝑙𝑡! , 𝑟𝑒𝑓!) is normalization constant.

By multiplying likelihood functions of individual variants in a bin one can obtain likelihood for each bin.

This is true only if real value of that ratio does not change within a that bin. However, we are using non-

phased variant counts, what means that there is 50% of chance that variant is coming from one or another

haplotype. Frequency of a fixed haplotype is sometimes described by either BAF and 1 - BAF distributions.

In that case we have to use symmetrized beta function for likelihood:

𝐿(𝑝!|𝑎𝑙𝑡! , 𝑟𝑒𝑓!) = 	
𝐵(𝑥; 𝑎𝑙𝑡! + 1, 𝑟𝑒𝑓! + 1) + 𝐵(𝑥; 𝑟𝑒𝑓! + 1, 𝑎𝑙𝑡! + 1)

2
=
𝑝!"#$!(1 − 𝑝!)%&'! + 𝑝!%&'!(1 − 𝑝!)"#$!

2𝐵(𝑎𝑙𝑡! , 𝑟𝑒𝑓!)

Likelihood function for each bin is calculated as a product of individual likelihood functions of variants within

that bin:

𝐿(𝑝.)	~∏ 𝐿(𝑝!|𝑎𝑙𝑡! , 𝑟𝑒𝑓!)	~!∈.!0(.) ∏ (𝑝!"#$!(1 − 𝑝!)%&'! + 𝑝!%&'!(1 − 𝑝!)"#$!!),

where 𝑝. is allele frequency for bin 𝑏. To calculate likelihood functions we use discretization. Interval [0,0.5]

is discretized using some resolution (default is 101 point) and for each point function is calculated by

multiplying values of symmetrized beta functions for each variant. Position of maximum likelihood represents

most probable BAF value in particular bin. Along with likelihood function average values of variant BAF and

MAF are calculated per bin and stored in CNVpytor file together with counts of homozygous and

heterozygous variants.

Filtering CNV calls

For each CNV call following values are calculated: (1) event type: “deletion” or “duplication”; (2)

coordinates in the reference genome; (3) CNV size; (4) RD normalized to 1; (5) e-val1 – p value calculated

using t-test statistics between RD difference in the region and global (i.e. across whole genome) mean; (6)

e-val2 – p value from the probability of RD values within the region to be in the tails of a gaussian distribution

of binned RD; (7) e-val3 – same as e-val1 but without first and last bin; (8) e-val4 – same as e-val2 but without

first and last bin; (9) q0 – fraction of reads mapped with zero quality within call region; (10) pN – fraction of N

11

bases (i.e., unassembled reference genome) within call region; (11) dG – distance to nearest gap in reference

genome.

There are five parameters in viewer mode used for filtering calls: CNV size, e-val1, q0, pN and dG.

Those parameters will define which calls CNVpytor will plot or print out. When calls are printed or exported

CNVpytor optionally can generate graphical file(s) with plot of CNV call region containing user specified

tracks.

Annotating CNV calls

To annotate called regions we use Ensembl REST API (overlap/region resource). It is an optional

step requires web connection and is executed when calls are previewed by user or exported to an output file.

The annotation is added in an additional column in the output and contains string with gene names, Ensembl

gene IDs and with information about position of genes relative to CNV (i.e., inside, covering, or intersecting

left/right breakpoints of CNV region).

Genotyping

Copy number of a provided genomic region is calculated as a mean RD within the region divided by

mean autosomal RD scaled by 2. To achieve better precision, first and last bin content are weighted by the

fraction of overlap with the provided region. Optionally CNVpytor can provide additional values: (1) e-value

from the probability of RD values within the region to be in the tails of a gaussian distribution of binned RD

(analogous to e-val2); (2) q0 – fraction of reads mapped with q0 quality within call region; (3) pN – fraction of

reference genome gaps (Ns) within call region; (4) BAF level estimated using maximum likelihood method;

(5) number of homozygous variants within the region; (6) number of heterozygous variants within the region;

(7) p-value based on BAF signal.

Merging calls over multiple regions

To make joint call set for multiple samples CNVpytor procceds in the following way:

1. Filter calls using user defined ranges for size, p-val, q0, pN and dG;

2. Sort all calls for all samples by start coordinate;

12

3. Select first call in that list that is not already processed and select calls from other samples with the

reciprocal overlap larger than 50%;

4. For selected calls, calculate genotypes within the region of intersection and, optionally, annotate with

overlapping genes.

If specified, for each joint CNV call CNVpytor will create graphical file with plot of call region containing user

specified tracks.

Data format and compression

For data storage and compression, we used HDF5 file format and h5py python library. Additional

compression is obtained by storing RD signal using 100 base pair bins. The same bin size is used for storing

reference genome AT, GC and N content. Data organization within .pytor file is implemented in IO module

which can be used to open and read different datasets from an external application. Python library xlwt is

used to generate spreadsheet files compatible with Microsoft Excel.

Visualizations

Matplotlib [30] python library is used for creating and storing visualizations. Different plotting styles

available within matplotlib. Derived installed libraries can be used as well as variety of file formats for storing

graphical data.

Module dependences

CNVpytor depends on several widely used python packages: requests 2.0 or higher, gnureadline,

pathlib 1.0 or higher, pysam 0.15 or higher, numpy 1.16 or higher, scipy 1.1 or higher, matplotlib 2.2 or higher,

h5py 2.9 or higher, xlwt 1.3 or higher. All dependences are available through pip installer that makes

installation of CNVpytor straightforward.

Supplementary Information

Additional file: Figs. S1-S5

13

Acknowledgements

We thank Abyzov lab members for useful discussions and suggestions. We are grateful to users on

the GitHub for useful suggestions and bug reports.

Authors’ contributions

A.A. conceived and supervised this study. M.S. designed and developed CNVpytor software. A.P.

and M.S. tested the software. A.P. and C.D developed plugin for JBrowse. I.H. co-supervised the

development of plugin for JBrowse. M.S., A.P. and A.A. wrote the manuscript. All authors read and approved

the final manuscript.

Funding

This study is supported by NCI grant U24CA220242 and funds from the Center for Individualized Medicine

at Mayo Clinic.

Availability of software, data and materials

Straightforward installation with Pip, Conda tool makes CNVpytor available on different operating

systems. As python module, CNVpytor is ready to embed in different platforms and computing environments.

CNVpytor source code is available on the GitHub (https://github.com/abyzovlab/CNVpytor) and can be

installed via pip tool (https://pypi.org/project/CNVpytor) or the BioConda Project. It is released under MIT

license. The user guide with API documentation is available on the project’s GitHub page.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

14

Competing interests

The authors declare that they have no competing interests.

References	

1. Abyzov, A., et al., CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs

from family and population genome sequencing. Genome Res, 2011. 21(6): p. 974-84.

2. Mills, R.E., et al., Mapping copy number variation by population-scale genome sequencing. Nature, 2011.

470(7332): p. 59-65.

3. Duan, J., et al., Comparative studies of copy number variation detection methods for next-generation

sequencing technologies. PLoS One, 2013. 8(3): p. e59128.

4. Legault, M.A., et al., Comparison of sequencing based CNV discovery methods using monozygotic twin

quartets. PLoS One, 2015. 10(3): p. e0122287.

5. Trost, B., et al., A Comprehensive Workflow for Read Depth-Based Identification of Copy-Number Variation

from Whole-Genome Sequence Data. Am J Hum Genet, 2018. 102(1): p. 142-155.

6. Coll, F., et al., PolyTB: a genomic variation map for Mycobacterium tuberculosis. Tuberculosis (Edinb), 2014.

94(3): p. 346-54.

7. Cabañes, F.J., et al., Rapid genome resequencing of an atoxigenic strain of Aspergillus carbonarius. Sci Rep,

2015. 5: p. 9086.

8. Fuentes, R.R., et al., Structural variants in 3000 rice genomes. Genome Res, 2019. 29(5): p. 870-880.

9. Gordon, S.P., et al., Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred

lines. Plant J, 2014. 79(3): p. 361-74.

10. Wallace, J.G., et al., Association mapping across numerous traits reveals patterns of functional variation in

maize. PLoS Genet, 2014. 10(12): p. e1004845.

11. Choi, J.Y., J.E. Bubnell, and C.F. Aquadro, Population Genomics of Infectious and Integrated Wolbachia

pipientis Genomes in Drosophila ananassae. Genome Biol Evol, 2015. 7(8): p. 2362-82.

12. Chain, F.J., et al., Extensive copy-number variation of young genes across stickleback populations. PLoS

Genet, 2014. 10(12): p. e1004830.

15

13. Yi, G., et al., Genome-wide patterns of copy number variation in the diversified chicken genomes using next-

generation sequencing. BMC Genomics, 2014. 15(1): p. 962.

14. Hermsen, R., et al., Genomic landscape of rat strain and substrain variation. BMC Genomics, 2015. 16(1): p.

357.

15. Wang, H., et al., Genome Wide Distributions and Functional Characterization of Copy Number Variations

between Chinese and Western Pigs. PLoS One, 2015. 10(7): p. e0131522.

16. Gokcumen, O., et al., Primate genome architecture influences structural variation mechanisms and functional

consequences. Proc Natl Acad Sci U S A, 2013. 110(39): p. 15764-9.

17. Pezer, Ž., et al., Divergence patterns of genic copy number variation in natural populations of the house

mouse (Mus musculus domesticus) reveal three conserved genes with major population-specific expansions.

Genome Res, 2015. 25(8): p. 1114-24.

18. Abel, H.J., et al., Mapping and characterization of structural variation in 17,795 human genomes. Nature,

2020. 583(7814): p. 83-89.

19. Sudmant, P.H., et al., An integrated map of structural variation in 2,504 human genomes. Nature, 2015.

526(7571): p. 75-81.

20. Nagasaki, M., et al., Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals.

Nat Commun, 2015. 6: p. 8018.

21. Han, L., et al., Functional annotation of rare structural variation in the human brain. Nat Commun, 2020.

11(1): p. 2990.

22. Guo, H., et al., Genome sequencing identifies multiple deleterious variants in autism patients with more

severe phenotypes. Genet Med, 2019. 21(7): p. 1611-1620.

23. Gilman, P., et al., PySAM (Python Wrapper for System Advisor Model" SAM"). 2019, National Renewable

Energy Lab.(NREL), Golden, CO (United States).

24. Peiffer, D.A., et al., High-resolution genomic profiling of chromosomal aberrations using Infinium whole-

genome genotyping. Genome Res, 2006. 16(9): p. 1136-48.

25. Loh, P.R., et al., Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature,

2018. 559(7714): p. 350-355.

16

26. Boeva, V., et al., Control-FREEC: a tool for assessing copy number and allelic content using next-generation

sequencing data. Bioinformatics, 2012. 28(3): p. 423-425.

27. Zhu, M., et al., Using ERDS to infer copy-number variants in high-coverage genomes. The American Journal of

Human Genetics, 2012. 91(3): p. 408-421.

28. Auton, A., et al., A global reference for human genetic variation. Nature, 2015. 526(7571): p. 68-74.

29. OmniTier. Available from: https://www.omnitier.com/compstor-novos.

30. Hunter, J.D., Matplotlib: A 2D graphics environment. Computing in science & engineering, 2007. 9(3): p. 90-

95.

1

CNVpytor: a tool for CNV/CNA detection and analysis from read depth and
allele imbalance in whole genome sequencing

Milovan Suvakov1,2, Arijit Panda1,2, Colin Diesh3, Ian Holmes3, Alexej Abyzov1,2,*

1Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
2Center for Individualized Medicine, Mayo Clinic, Rochester, MN
3Department of Bioengineering, University of California, Berkeley, USA

*Correspond author. Email: abyzov.alexej@mayo.edu

Keywords: copy number variations, copy number alternations, whole genome sequencing, Python

Abstract
Detecting copy number variations (CNVs) and copy number alterations (CNAs) based on whole genome
sequencing data is important for personalized genomics and treatment. CNVnator is one of the most popular
tools for CNV/CNA discovery and analysis based on read depth (RD). Herein, we present an extension of
CNVnator developed in Python -- CNVpytor. CNVpytor inherits the reimplemented core engine of its
predecessor and extends visualization, modularization, performance, and functionality. Additionally,
CNVpytor uses B-allele frequency (BAF) likelihood information from single nucleotide polymorphism and
small indels data as additional evidence for CNVs/CNAs and as primary information for copy number neutral
losses of heterozygosity. CNVpytor is significantly faster than CNVnator—particularly for parsing alignment
files (2 to 20 times faster)—and has (20-50 times) smaller intermediate files. CNV calls can be filtered using
several criteria, annotated, and merged over multiple samples. Modular architecture allows it to be used in
shared and cloud environments such as Google Colab and Jupyter notebook. Data can be exported into
JBrowse, while a lightweight plugin version of CNVpytor for JBrowse enables nearly instant and GUI-assisted
analysis of CNVs by any user. CNVpytor release and the source code are available on GitHub at
https://github.com/abyzovlab/CNVpytor under the MIT license.

	 	

Manuscript with figures Click here to
access/download;Manuscript;CNVpytor_manuscript_with_figur

https://www.editorialmanager.com/giga/download.aspx?id=115087&guid=5442040e-174d-44d6-a0bc-daf7ac174f1e&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=115087&guid=5442040e-174d-44d6-a0bc-daf7ac174f1e&scheme=1

2

Introduction
The continuous reduction of cost made the whole genome sequencing (WGS) to be widely used in

different research projects and clinical applications. Consequently, many approaches for processing,
analyzing, and visualizing WGS data have been developed and are being improved. Detection and analysis
of copy number variations (CNVs) based on WGS data is one of them. Research directions related to the
cancer genomics, single-cell sequencing, and somatic mosaicism create huge amounts of data and demands
for processing on the cloud that require further improvements of CNV callers, moving to parallel processing,
better compression, modular architecture, and new statistical methods.

CNVnator is a method for CNV analysis based on read depth (RD) of aligned reads. It was determined
to have high sensitivity (86%-96%), low false-discovery rate (3%-20%), and high genotyping accuracy (93%-
95%) for germline CNVs in a wide range of sizes from a few hundred base pairs to chromosome size events
[1-5]. Since its development a decade ago, the tool has been widely used in different scientific areas by
researchers around the world for detection of CNVs in a variety of species with different genome sizes:
bacteria [6], fungi [7], plants [8-10], insects [11], fish [12], birds [13], mammals [14-17] and humans [2, 18-
20]. It has been used to discover somatic variations in cancer and disease studies [21] and to find mosaic
variants in human cells [22]. Although CNVnator was developed to detect germline CNVs, it is well-suited to
discover copy number alteration (CNAs) present in a relatively high (>50%) fraction of cells, such as somatic
alteration found in cancers. It was not, however, designed for nor capable of aiding analysis of copy number
neutral changes.

Here we describe CNVpytor, a Python extension of CNVnator. CNVpytor inherits the reimplemented
core engine of CNVnator and extends visualization, modularization, performance, and functionality. Along
with RD data, it enables consideration of allele frequency of single nucleotide polymorphism (SNP) and small
indels as an additional source of information for the analysis of CNV/CNA and copy number neutral variations.
Along with RD data, this information can be used for genotyping genomic regions and visualization.

Results
Analysis of RD signal

CNVpytor inherits the RD analysis approach developed in CNVnator [1]. Briefly, it consists of the
following steps: reading alignment file and extracting RD signal, binning RD signal, correcting the signal for
GC bias, segmenting the signal using the mean-shift technique, and calling CNVs (Fig. 1). RD signal can be
parsed from BAM, SAM, or CRAM alignment files and is counted in 100 bp intervals, resulting in a small
footprint of intermediate .pytor files in HDF5 format (Table 1). Because of using the pysam [23] library for
parsing, this step (the most time-consuming one) is parallelized and can be conducted very efficiently,
particularly in comparison with the older tool (Table 1). The binning step integrates RD over larger bins that
are limited to multiples of initially stored 100 bp bins. Next, technical biases in the read depth signal that are
correlated with GC content (so-called GC biases) are removed using GC correction procedure. For the human
reference genomes GRCh37 and GRCh38 per bin, GC content is pre-calculated and supplied as a resource
with the CNVpytor package. For other genomes, GC content can be calculated during runtime from a
provided FASTA file or precalculated and added to the CNVpytor resource for future use. Once information
about read coverage (and variants, see below) is extracted from an alignment file, the following analysis
steps take place (i.e., read input and write output) with the same file. As a result, histograms for each
processed bin size and information about CNV calls, including coordinates, different statistics, and p-values
are all stored in one .pytor file and can be extracted into Excel (TSV file) or a VCF file.

3

Table 1. Efficiency of parsing alignment file on modern computers in relation to sequencing coverage and
engaged number of CPU cores.
Sequencing
coverage of
the human
genome

Parsing time File size

CNVnator
CNVpytor

CNVnator
CNVpytor

4 cores 8 cores 23 cores RD
parsing

BAF
parsing

With 1 & 10
kbp bins

5X 10 min 5 min 3 min <2 min 1 Gb 18 Mb 20 Mb 250 Mb
30X 1 h 28 min 18 min 10 min 1.5 Gb 19 Mb 20 Mb 250 Mb
100X 3.3 h 1.5 h 1 h 33 min 2 Gb 20 Mb 20 Mb 250 Mb

Figure 1. Schematics of core algorithm and data processing steps. (A) Read depth analysis steps include parsing
alignment file, calculating and storing read depths in 100 bp intervals, binning using user-specified bin size, correcting
RD for GC bias, segmenting by mean-shift, and calling CNVs. (B) B-allele frequency analysis steps include reading
variant file storing the data about SNPs and small indels, filtering variants using strict mask, calculating BAF for
heterozygous variants (HETs), and calculating likelihood function for bins. For CNVs, BAF signal splits away from
value 0.5 expected for HETs. (C) Distribution of the variant allele frequency for all variants and variants within strict
mask as defined by the 1000 Genomes Project. Black line shows fit by gaussian distribution. (D) An example of RD
depending on GC within bin. Statistics of RD signal within bins of the same percentage of GC content is used to
correct for GC bias in the signal. White line represents average RD level for bins with given GC content. (E) An
example of RD and BAF signals for a germline duplication in NA12878 sample (raw RD signal is in grey, GC-corrected
RD signal is in black, brighter color of BAF likelihood corresponds to higher values of the likelihood).
a

4

Analysis of variant data
A novel feature of CNVpytor is the analysis of information from SNPs and small indels imported from

a VCF file. An imbalance in the number of haplotypes can be measured using allele frequencies traditionally
referred to as B-allele frequency (BAF) [24-27]. The main advantage of using BAF compared to RD is that
BAF values do not require normalization and are distributed around 0.5 by binomial distribution for
heterozygous variants (HETs). Additionally, BAF is complementary to RD signal, as it changes for copy
number neutral events such as loss of heterozygosity. However, BAF dispersion can be measured incorrectly
due to systematic misalignment particularly in repeat regions, incomplete reference genome, or site-specific
noise in sequencing data. To mitigate this issue, we filtered out HETs in the fraction of genome that is
inaccessible to short read technologies, as defined by the strict mask from the 1000 Genomes Project [28].
Such filtering removes almost all HETs with outlier values of BAF, while values for the retained variants
closely follow binomial distribution (Fig. 1C). To integrate BAF information within bins, CNVpytor calculates
the likelihood function that describes an imbalance between haplotypes (see Methods). Currently, BAF
information is used when genotyping a specific genomic region where, along with estimated copy number,
the output contains the average BAF level and two independent p-values calculated from RD and BAF signal.
Variant data can also be plotted in parallel with RD signal (Fig. 2). Same as for RD signal, binned information
calculated from variants is stored in and can be extracted from .pytor file.

Figure 2. BAF signal corroborates and complements RD signal. Example of CNVpytor region plots produced for
deletion (left), duplication (middle), and CNN-LOH (right) for NA12878 sample. Within the coordinates of heterozygous
deletion, there is a 50% drop in RD signal and a loss in heterozygosity in BAF signal (i.e., no heterozygous SNPs in the
region). Duplication of one haplotype results in the increase of RD signal by 50% and in a split in VAF distribution of
SNPs and a split in BAF likelihood function. In the CNN-LOH region, few reliable heterozygous SNPs are detected while
RD signal does not change. Likelihood function values are normalized to maximal across the range.

5

Figure 3. CNVpytor workflow. Steps used in data processing. On the left: reading RD data from alignment file, creating
histograms, segmentation, calling CNVs. On the right: reading SNP and indel data from VCF file, filtering variants using
strict mask, calculating histograms and likelihood function. In the middle: alternatively, if alignment file is not available
RD signals can be calculated from variant data (green arrows). Visualization using both RD and/or BAF data can be
done from an interactive command line interface or automatically by running script file.

Running CNVpytor

CNVpytor is to be run in a series of steps (Fig. 3). For enhanced flexibility, RD and BAF processing
workflows proceed in parallel. In this way each workflow can be run at different times or even on different
computers. For example, data parsing steps can be run on a cloud where data (i.e., alignment files) is
accessible, resulting in less than 25 Mb .pytor files that then can be copied to local computer/cluster where
the remaining calculation steps will be performed. If necessary, a user can run additional calculations (e.g.,
conduct processing with different bin size) using the same .pytor file in the future, allowing for further flexibility
in data analysis.

Routine processing steps can be followed by CNV visualization and analysis in the Viewer session,
which can be interactive or hands-off. Implementation of interactive mode is inspired by a Linux shell with tab

6

completion and with a help page similar to the man pages. In this mode a user can instantly make various
visualizations, preview and filter CNV calls, annotate calls, create joint calls across multiple samples, and
genotype specified regions. The viewer does not save results into the .pytor file, and outputs are printed and
plotted on the screen or exported to an output file(s). Hands-off mode executes user-written script(s) with
CNVpytor commands. Such scripts can be used as part of the processing pipeline where, for example,
images of signals around called CNVs are generated and stored for possible future inspection. Through the
viewer interface, it is possible to directly access Python and run code. This allows user to access some
standard features of underlying libraries, e.g., matplotlib library can be used to customize plots.

CNVpytor can be used as the Python module. All functionalities, like reading and editing CNVpytor
data files, and all calculation steps and visualizations can be performed by calling functions or classes. This
way CNVpytor can be easily integrated in different platforms and computing environments; for example,
CNVpytor can be run from Jupyter Notebook on a local machine or in cloud services, e.g., Google Colab.
CNVpytor is also integrated into OmniTier’s “Compstor Novos” variant calling workflow [29].

Figure 4. Novel features of visualization using data for HepG2 cell line. Genome-wide visualizations can be
useful in some cases, like cancer studies or clinical applications like screening for chromosomal
abnormalities. They also can be useful for quick insight in sequencing or single-cell amplification quality. To
demonstrate genome-wide plot types, HapG2 immortal cell line sample is used. A) Manhattan and B) circular
style plot of RD signal. Large CNVs and chromosome copy number changes are apparent. One can also
judge about dispersion of the RD signal. The inner circle in B shows RD signal while outer shows minor allele
frequency (MAF). Regions where we can see loss of MAF signal with normal RD, e.g., chromosome 14 or
22, are chromosomal CNN-LOH. C) Examples of smaller CNVs not apparent in the global view. Each CNV
is about 15 Mbp. The displayed regions with multiple CNVs (that are possibly complex events) were hardly
visible on the circular plot.

7

Data visualization and result curation
Visualization of multiple tracks/signals can be done interactively by mouse and by typing relevant

commands as well as by running scripts with CNVpytor commands provided as inputs to CNVpytor. CNVpytor
has extended visualization capabilities with multiple novel features as compared to CNVnator. For each
sample (i.e., input file) multiple data tracks such as RD signal, BAF of SNPs, and binned BAF likelihood can
be displayed in an adjustable grid layout as specified by a user. Specifically, multiple regions across multiple
samples can be plotted in parallel, facilitating comparison across samples and different genomic loci (Fig. 2).
To get a global view, a user can visualize an entire genome in a linear or circular fashion (Fig. 4, S1, S2).
Such a view can be useful in judging the quality of samples and in visually checking for aneuploidies.

Some additional features include GC-bias curve plot and 2D histogram (Fig. 1D), allele frequency
distribution per region (Fig. 1C), and comparing RD distributions between two regions (Fig. S3). Figure
resolution, layout grid, colors, marker size, titles, and plotting style are adjustable by the user.

Integration with JBrowse

CNVpytor also has implemented functionality to export data into formats that can be embedded into
JBrowse, a web-based genome browser used to visualize multiple related data tracks (Fig. S4). The export
enables users to utilize JBrowse capabilities to visualize, compare, and cross-reference CNV calls with other
data types (such as CHiP-seq, RNA-seq, ATAC-seq, etc.) and annotations across genome. Exported data
provide 3 resolutions of RD and BAF tracks (1 kbp, 10 kbp, and 100 kbp bins) while the appropriate resolution
is chosen automatically by JBrowse depending on the size of the visualized genomic region. Multiple .pytor
files can be exported at once.

Alternatively, a user can utilize a lightweight CNVpytor plugin for JBrowse. The plugin takes
information about coverage from a relatively small (as compared to BAM) VCF file and on the fly performs
the read depth and BAF estimation, segmentation, and calling. For read depth analysis, the plugin fetches
the information from the DP field in the VCF field and uses it as a proxy for actual coverage. Since for large
bin sizes such an estimate corresponds well to the actual value (Fig. S5), the plugin enables quick and easy
review of large copy number changes in a genome. For BAF analysis, the plugin conducts analyses the same
way as a stand-alone application. All temporary values are stored in the browser cache for fast and interactive
visualization of a genomic segment. As well as improving responsiveness by eliminating the network lag of a
client-server application, this ensures that no information about a personal genome is transferred to external
servers. Once the analyses are complete, the results are instantly visualized using JBrowse’s native
capabilities. Usage cases of the plugin are: 1) quick and visual cross-referencing of copy number profiles
between multiple samples and in relation to other data types, and 2) a review of a personal genome(s) for
large CNVs in a simple user-friendly environment.

Conclusion

Development of new, maintenance, and improvement of existing bioinformatics tools are driven by
changing data types, demands for newer and user-verifiable analyses, necessity for processing larger
datasets, and the evolving nature of computational infrastructures and platforms. CNVpytor brings the
functionality of its predecessor CNVnator to a new level and significantly expands it. CNVpytor is faster and
virtually effortless to install, requires minimum space for storage, enables analysis of BAF for call confirmation
and genotyping, provides users with instant and extended visualization and convenient functionality for result
curation (including merging over multiple samples), and is equipped for integration with other tools.
Lightweight plugin for JBrowse enables on-the-fly visualization and analysis convenient for wide categories
of users. Overall, CNVpytor establishes a framework for discovering and analyzing copy number changes
from whole genome sequencing data either by an individual researcher or clinician or in a collaborative and
shared environment.

8

Materials and Methods

RD analysis
Calculations for RD binning, mean-shift algorithm, partitioning and calling CNVs are explained in details in
CNVnator paper [1]. The only difference in CNVpytor implementation is how information about GC content is
obtained. For two versions GRCh37 (hg19) and GRCh38 of the human reference genome information about
GC and AT content for each 100 base pair bins is provided as resource data within CNVpytor package. This
way user does not need to have reference genome FASTA for GC correction. In spite of slightly different
implementation called regions by CNVnator and CNVpytor overlap by over 99%. Additionally, CNVpytor can
calculate read depth from coverage of imported variants (Fig. 3). This is an approximate but rather precise
solution to cases when alignment file is not available (Fig. S5).

Variant data

CNVpytor imports information about SNPs and single letter indels form variant (VCF) file. All other
variants are ignored. For each variant following data is stored in CNVpytor file: chromosome, position,
reference base, alternative base, reference count (𝑟𝑒𝑓!), alternative count (𝑎𝑙𝑡!), quality, and genotype (0/1
or 1/1).

In the normal case with one copy of each haplotype, heterozygous SNPs are visible in half of the reads
coming from that haplotype. In other words, B-allele frequency distributes around 1/2. Contrarily, in the
regions with constitutional duplication of one haplotype, heterozygous SNPs are expected with frequency
equals 2/3 or 1/3 depending are they located on duplicated haplotype or not. This split from value 1/2 can be
visible in plot of BAFs vs position of variants as shown in the right panel of Figure 1. Similarly, for homozygous
deletion complete loss of heterozygous SNPs is expected. In the case of somatic sub clonal CNA (e.g.,
frequently observed in cancer genomes), the ratio between haplotypes can be an arbitrary number depending
on cell frequencies with the CNA. Consequently, the split in BAF plot varies from 0 through 1. Measuring the
level of this split can provide useful information about type of CNV. Moreover, copy number neutral loss of
heterozygosity (CNN-LOH) can be detected this way.

For each stored variant we can calculate two frequencies defined in following way:
• B-allele frequency (BAF): 𝐵𝐴𝐹 = "#$!

%&'!("#$!

• Minor allele frequency: 𝑀𝐴𝐹 = min/ "#$!
%&'!("#$!

, %&'!
%&'!("#$!

	2 = min(𝐵𝐴𝐹, 1 − 𝐵𝐴𝐹)
One of next generation sequencing features is that some bases are not accessible for variant discovery

using short reads, due to repetitive nature of the human genome. In the 1000 Genomes Project, genome
mask is created to tabulate bases for variant discovery. There are about 74% of bases marked passed (P),
what correspond to about 77% of non-N bases (1000 Genomes Project Consortium, 2015). We use that
mask to filter out variants called in non-P regions. This way we eliminate around 22% of variants but there is
benefit because with less false-positive heterozygous SNPs statistics is improved (Fig. 1C) and this improves
quality of further calculations. The same way as GC content, information about strict mask P regions for two
versions of human reference genome are stored in resource files that are part of CNVpytor package.

Calculating BAF likelihood function

The ratio between reads coming from one or another haplotype is distributed following binomial
distribution. If counts are known then one can calculate likelihood function for that ratio:

𝐿(𝑝!|𝑎𝑙𝑡! , 𝑟𝑒𝑓!) = 	𝐵(𝑥; 𝑎𝑙𝑡! + 1, 𝑟𝑒𝑓! + 1) =
)

*("#$!,%&'!)
𝑝!"#$!(1 − 𝑝!)%&'!,

where 𝑝! is allele frequency for variant 𝑖 and 𝐵(𝑎𝑙𝑡! , 𝑟𝑒𝑓!) is normalization constant.
By multiplying likelihood functions of individual variants in a bin one can obtain likelihood for each bin.

This is true only if real value of that ratio does not change within a that bin. However, we are using non-
phased variant counts, what means that there is 50% of chance that variant is coming from one or another
haplotype. Frequency of a fixed haplotype is sometimes described by either BAF and 1 - BAF distributions.

In that case we have to use symmetrized beta function for likelihood:

𝐿(𝑝!|𝑎𝑙𝑡! , 𝑟𝑒𝑓!) = 	
𝐵(𝑥; 𝑎𝑙𝑡! + 1, 𝑟𝑒𝑓! + 1) + 𝐵(𝑥; 𝑟𝑒𝑓! + 1, 𝑎𝑙𝑡! + 1)

2
=
𝑝!"#$!(1 − 𝑝!)%&'! + 𝑝!%&'!(1 − 𝑝!)"#$!

2𝐵(𝑎𝑙𝑡! , 𝑟𝑒𝑓!)

9

Likelihood function for each bin is calculated as a product of individual likelihood functions of variants within
that bin:

𝐿(𝑝.)	~∏ 𝐿(𝑝!|𝑎𝑙𝑡! , 𝑟𝑒𝑓!)	~!∈.!0(.) ∏ (𝑝!"#$!(1 − 𝑝!)%&'! + 𝑝!%&'!(1 − 𝑝!)"#$!!),

where 𝑝. is allele frequency for bin 𝑏. To calculate likelihood functions we use discretization. Interval [0,0.5]
is discretized using some resolution (default is 101 point) and for each point function is calculated by
multiplying values of symmetrized beta functions for each variant. Position of maximum likelihood represents
most probable BAF value in particular bin. Along with likelihood function average values of variant BAF and
MAF are calculated per bin and stored in CNVpytor file together with counts of homozygous and
heterozygous variants.

Filtering CNV calls

For each CNV call following values are calculated: (1) event type: “deletion” or “duplication”; (2)
coordinates in the reference genome; (3) CNV size; (4) RD normalized to 1; (5) e-val1 – p value calculated
using t-test statistics between RD difference in the region and global (i.e. across whole genome) mean; (6)
e-val2 – p value from the probability of RD values within the region to be in the tails of a gaussian distribution
of binned RD; (7) e-val3 – same as e-val1 but without first and last bin; (8) e-val4 – same as e-val2 but without
first and last bin; (9) q0 – fraction of reads mapped with zero quality within call region; (10) pN – fraction of N
bases (i.e., unassembled reference genome) within call region; (11) dG – distance to nearest gap in reference
genome.

There are five parameters in viewer mode used for filtering calls: CNV size, e-val1, q0, pN and dG.
Those parameters will define which calls CNVpytor will plot or print out. When calls are printed or exported
CNVpytor optionally can generate graphical file(s) with plot of CNV call region containing user specified
tracks.

Annotating CNV calls

To annotate called regions we use Ensembl REST API (overlap/region resource). It is an optional
step requires web connection and is executed when calls are previewed by user or exported to an output file.
The annotation is added in an additional column in the output and contains string with gene names, Ensembl
gene IDs and with information about position of genes relative to CNV (i.e., inside, covering, or intersecting
left/right breakpoints of CNV region).

Genotyping

Copy number of a provided genomic region is calculated as a mean RD within the region divided by
mean autosomal RD scaled by 2. To achieve better precision, first and last bin content are weighted by the
fraction of overlap with the provided region. Optionally CNVpytor can provide additional values: (1) e-value
from the probability of RD values within the region to be in the tails of a gaussian distribution of binned RD
(analogous to e-val2); (2) q0 – fraction of reads mapped with q0 quality within call region; (3) pN – fraction of
reference genome gaps (Ns) within call region; (4) BAF level estimated using maximum likelihood method;
(5) number of homozygous variants within the region; (6) number of heterozygous variants within the region;
(7) p-value based on BAF signal.

Merging calls over multiple regions
To make joint call set for multiple samples CNVpytor procceds in the following way:

1. Filter calls using user defined ranges for size, p-val, q0, pN and dG;
2. Sort all calls for all samples by start coordinate;
3. Select first call in that list that is not already processed and select calls from other samples with the

reciprocal overlap larger than 50%;
4. For selected calls, calculate genotypes within the region of intersection and, optionally, annotate with

overlapping genes.
If specified, for each joint CNV call CNVpytor will create graphical file with plot of call region containing user
specified tracks.

10

Data format and compression
For data storage and compression, we used HDF5 file format and h5py python library. Additional

compression is obtained by storing RD signal using 100 base pair bins. The same bin size is used for storing
reference genome AT, GC and N content. Data organization within .pytor file is implemented in IO module
which can be used to open and read different datasets from an external application. Python library xlwt is
used to generate spreadsheet files compatible with Microsoft Excel.

Visualizations

Matplotlib [30] python library is used for creating and storing visualizations. Different plotting styles
available within matplotlib. Derived installed libraries can be used as well as variety of file formats for storing
graphical data.

Module dependences

CNVpytor depends on several widely used python packages: requests 2.0 or higher, gnureadline,
pathlib 1.0 or higher, pysam 0.15 or higher, numpy 1.16 or higher, scipy 1.1 or higher, matplotlib 2.2 or higher,
h5py 2.9 or higher, xlwt 1.3 or higher. All dependences are available through pip installer that makes
installation of CNVpytor straightforward.

Supplementary Information
Additional file: Figs. S1-S5

Acknowledgements

We thank Abyzov lab members for useful discussions and suggestions. We are grateful to users on
the GitHub for useful suggestions and bug reports.

Authors’ contributions

A.A. conceived and supervised this study. M.S. designed and developed CNVpytor software. A.P.
and M.S. tested the software. A.P. and C.D developed plugin for JBrowse. I.H. co-supervised the
development of plugin for JBrowse. M.S., A.P. and A.A. wrote the manuscript. All authors read and approved
the final manuscript.

Funding
This study is supported by NCI grant U24CA220242 and funds from the Center for Individualized Medicine
at Mayo Clinic.

Availability of software, data and materials

Straightforward installation with Pip, Conda tool makes CNVpytor available on different operating
systems. As python module, CNVpytor is ready to embed in different platforms and computing environments.
CNVpytor source code is available on the GitHub (https://github.com/abyzovlab/CNVpytor) and can be
installed via pip tool (https://pypi.org/project/CNVpytor) or the BioConda Project. It is released under MIT
license. The user guide with API documentation is available on the project’s GitHub page.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

11

References	

1. Abyzov, A., et al., CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs

from family and population genome sequencing. Genome Res, 2011. 21(6): p. 974-84.
2. Mills, R.E., et al., Mapping copy number variation by population-scale genome sequencing. Nature, 2011.

470(7332): p. 59-65.
3. Duan, J., et al., Comparative studies of copy number variation detection methods for next-generation

sequencing technologies. PLoS One, 2013. 8(3): p. e59128.
4. Legault, M.A., et al., Comparison of sequencing based CNV discovery methods using monozygotic twin

quartets. PLoS One, 2015. 10(3): p. e0122287.
5. Trost, B., et al., A Comprehensive Workflow for Read Depth-Based Identification of Copy-Number Variation

from Whole-Genome Sequence Data. Am J Hum Genet, 2018. 102(1): p. 142-155.
6. Coll, F., et al., PolyTB: a genomic variation map for Mycobacterium tuberculosis. Tuberculosis (Edinb), 2014.

94(3): p. 346-54.
7. Cabañes, F.J., et al., Rapid genome resequencing of an atoxigenic strain of Aspergillus carbonarius. Sci Rep,

2015. 5: p. 9086.
8. Fuentes, R.R., et al., Structural variants in 3000 rice genomes. Genome Res, 2019. 29(5): p. 870-880.
9. Gordon, S.P., et al., Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred

lines. Plant J, 2014. 79(3): p. 361-74.
10. Wallace, J.G., et al., Association mapping across numerous traits reveals patterns of functional variation in

maize. PLoS Genet, 2014. 10(12): p. e1004845.
11. Choi, J.Y., J.E. Bubnell, and C.F. Aquadro, Population Genomics of Infectious and Integrated Wolbachia

pipientis Genomes in Drosophila ananassae. Genome Biol Evol, 2015. 7(8): p. 2362-82.
12. Chain, F.J., et al., Extensive copy-number variation of young genes across stickleback populations. PLoS

Genet, 2014. 10(12): p. e1004830.
13. Yi, G., et al., Genome-wide patterns of copy number variation in the diversified chicken genomes using next-

generation sequencing. BMC Genomics, 2014. 15(1): p. 962.
14. Hermsen, R., et al., Genomic landscape of rat strain and substrain variation. BMC Genomics, 2015. 16(1): p.

357.
15. Wang, H., et al., Genome Wide Distributions and Functional Characterization of Copy Number Variations

between Chinese and Western Pigs. PLoS One, 2015. 10(7): p. e0131522.
16. Gokcumen, O., et al., Primate genome architecture influences structural variation mechanisms and functional

consequences. Proc Natl Acad Sci U S A, 2013. 110(39): p. 15764-9.
17. Pezer, Ž., et al., Divergence patterns of genic copy number variation in natural populations of the house

mouse (Mus musculus domesticus) reveal three conserved genes with major population-specific expansions.
Genome Res, 2015. 25(8): p. 1114-24.

18. Abel, H.J., et al., Mapping and characterization of structural variation in 17,795 human genomes. Nature,
2020. 583(7814): p. 83-89.

19. Sudmant, P.H., et al., An integrated map of structural variation in 2,504 human genomes. Nature, 2015.
526(7571): p. 75-81.

20. Nagasaki, M., et al., Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals.
Nat Commun, 2015. 6: p. 8018.

21. Han, L., et al., Functional annotation of rare structural variation in the human brain. Nat Commun, 2020.
11(1): p. 2990.

22. Guo, H., et al., Genome sequencing identifies multiple deleterious variants in autism patients with more
severe phenotypes. Genet Med, 2019. 21(7): p. 1611-1620.

23. Gilman, P., et al., PySAM (Python Wrapper for System Advisor Model" SAM"). 2019, National Renewable
Energy Lab.(NREL), Golden, CO (United States).

24. Peiffer, D.A., et al., High-resolution genomic profiling of chromosomal aberrations using Infinium whole-
genome genotyping. Genome Res, 2006. 16(9): p. 1136-48.

25. Loh, P.R., et al., Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature,
2018. 559(7714): p. 350-355.

12

26. Boeva, V., et al., Control-FREEC: a tool for assessing copy number and allelic content using next-generation
sequencing data. Bioinformatics, 2012. 28(3): p. 423-425.

27. Zhu, M., et al., Using ERDS to infer copy-number variants in high-coverage genomes. The American Journal of
Human Genetics, 2012. 91(3): p. 408-421.

28. Auton, A., et al., A global reference for human genetic variation. Nature, 2015. 526(7571): p. 68-74.
29. OmniTier. Available from: https://www.omnitier.com/compstor-novos.
30. Hunter, J.D., Matplotlib: A 2D graphics environment. Computing in science & engineering, 2007. 9(3): p. 90-

95.

Figure 1 Click here to access/download;Figure;Figure1.png

https://www.editorialmanager.com/giga/download.aspx?id=115089&guid=3fab58a9-3cc1-4f03-99dc-82c2dfdbf898&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=115089&guid=3fab58a9-3cc1-4f03-99dc-82c2dfdbf898&scheme=1

Figure 2 Click here to access/download;Figure;Figure2.png

https://www.editorialmanager.com/giga/download.aspx?id=115090&guid=9de1fb5f-0e6f-4ec2-8ff4-3b3e1fb62ca8&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=115090&guid=9de1fb5f-0e6f-4ec2-8ff4-3b3e1fb62ca8&scheme=1

Figure 3 Click here to access/download;Figure;Figure3.png

https://www.editorialmanager.com/giga/download.aspx?id=115091&guid=1ac1e876-3c17-4ab3-842e-23ad2f419bdf&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=115091&guid=1ac1e876-3c17-4ab3-842e-23ad2f419bdf&scheme=1

Figure 4 Click here to access/download;Figure;Figure4.png

https://www.editorialmanager.com/giga/download.aspx?id=115092&guid=9e651290-a4da-419f-8be0-677baebd000f&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=115092&guid=9e651290-a4da-419f-8be0-677baebd000f&scheme=1

Supplementary material

Click here to access/download
Supplementary Material

CNVpytor_Supplemental_Figures.pdf

https://www.editorialmanager.com/giga/download.aspx?id=115088&guid=c510bde9-0bad-4653-9b3f-8bef5c5ba587&scheme=1

