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Abstract 

Detecting copy number variations (CNVs) and copy number alterations (CNAs) based on whole genome 

sequencing data is important for personalized genomics and treatment. CNVnator is one of the most popular 

tools for CNV/CNA discovery and analysis based on read depth (RD). Herein, we present an extension of 

CNVnator developed in Python -- CNVpytor. CNVpytor inherits the reimplemented core engine of its 

predecessor and extends visualization, modularization, performance, and functionality. Additionally, 

CNVpytor uses B-allele frequency (BAF) likelihood information from single nucleotide polymorphism and 

small indels data as additional evidence for CNVs/CNAs and as primary information for copy number neutral 

losses of heterozygosity. CNVpytor is significantly faster than CNVnator—particularly for parsing alignment 

files (2 to 20 times faster)—and has (20-50 times) smaller intermediate files. CNV calls can be filtered using 

several criteria, annotated, and merged over multiple samples. Modular architecture allows it to be used in 

shared and cloud environments such as Google Colab and Jupyter notebook. Data can be exported into 

JBrowse, while a lightweight plugin version of CNVpytor for JBrowse enables nearly instant and GUI-assisted 
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analysis of CNVs by any user. CNVpytor release and the source code are available on GitHub at 

https://github.com/abyzovlab/CNVpytor under the MIT license. 

 

Introduction	

 

Figure 1. Schematics of core algorithm and data processing steps. (A) Read depth analysis steps 

include parsing alignment file, calculating and storing read depths in 100 bp intervals, binning using 

user-specified bin size, correcting RD for GC bias, segmenting by mean-shift, and calling CNVs. (B) 

B-allele frequency analysis steps include reading variant file storing the data about SNPs and small 

indels, filtering variants using strict mask, calculating BAF for heterozygous variants (HETs), and 

calculating likelihood function for bins. For CNVs, BAF signal splits away from value 0.5 expected for 

HETs. (C) Distribution of the variant allele frequency for all variants and variants within strict mask as 

defined by the 1000 Genomes Project. Black line shows fit by gaussian distribution. (D) An example 

of RD depending on GC within bin. Statistics of RD signal within bins of the same percentage of GC 

content is used to correct for GC bias in the signal. White line represents average RD level for bins 

with given GC content. (E) An example of RD and BAF signals for a germline duplication in NA12878 

sample (raw RD signal is in grey, GC-corrected RD signal is in black, brighter color of BAF likelihood 

corresponds to higher values of the likelihood). 

 

The continuous reduction of cost made the whole genome sequencing (WGS) to be widely used in 

different research projects and clinical applications. Consequently, many approaches for processing, 

analyzing, and visualizing WGS data have been developed and are being improved. Detection and analysis 

of copy number variations (CNVs) based on WGS data is one of them. Research directions related to the 

cancer genomics, single-cell sequencing, and somatic mosaicism create huge amounts of data and demands 

for processing on the cloud that require further improvements of CNV callers, moving to parallel processing, 

better compression, modular architecture, and new statistical methods. 

CNVnator is a method for CNV analysis based on read depth (RD) of aligned reads. It was determined 

to have high sensitivity (86%-96%), low false-discovery rate (3%-20%), and high genotyping accuracy (93%-

95%) for germline CNVs in a wide range of sizes from a few hundred base pairs to chromosome size events 
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[1-5]. Since its development a decade ago, the tool has been widely used in different scientific areas by 

researchers around the world for detection of CNVs in a variety of species with different genome sizes: 

bacteria [6], fungi [7], plants [8-10], insects [11], fish [12], birds [13], mammals [14-17] and humans [2, 18-

20]. It has been used to discover somatic variations in cancer and disease studies [21] and to find mosaic 

variants in human cells [22]. Although CNVnator was developed to detect germline CNVs, it is well-suited to 

discover copy number alteration (CNAs) present in a relatively high (>50%) fraction of cells, such as somatic 

alteration found in cancers. It was not, however, designed for nor capable of aiding analysis of copy number 

neutral changes. 

Here we describe CNVpytor, a Python extension of CNVnator. CNVpytor inherits the reimplemented 

core engine of CNVnator and extends visualization, modularization, performance, and functionality. Along 

with RD data, it enables consideration of allele frequency of single nucleotide polymorphism (SNP) and small 

indels as an additional source of information for the analysis of CNV/CNA and copy number neutral variations. 

Along with RD data, this information can be used for genotyping genomic regions and visualization. 

 

Results 

Analysis of RD signal 

CNVpytor inherits the RD analysis approach developed in CNVnator [1]. Briefly, it consists of the 

following steps: reading alignment file and extracting RD signal, binning RD signal, correcting the signal for 

GC bias, segmenting the signal using the mean-shift technique, and calling CNVs (Fig. 1). RD signal can be 

parsed from BAM, SAM, or CRAM alignment files and is counted in 100 bp intervals, resulting in a small 

footprint of intermediate .pytor files in HDF5 format (Table 1). Because of using the pysam [23] library for 

parsing, this step (the most time-consuming one) is parallelized and can be conducted very efficiently, 

particularly in comparison with the older tool (Table 1). The binning step integrates RD over larger bins that 

are limited to multiples of initially stored 100 bp bins. Next, technical biases in the read depth signal that are 

correlated with GC content (so-called GC biases) are removed using GC correction procedure. For the human 

reference genomes GRCh37 and GRCh38 per bin, GC content is pre-calculated and supplied as a resource 

with the CNVpytor package. For other genomes, GC content can be calculated during runtime from a 

provided FASTA file or precalculated and added to the CNVpytor resource for future use. Once information 

about read coverage (and variants, see below) is extracted from an alignment file, the following analysis 
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steps take place (i.e., read input and write output) with the same file. As a result, histograms for each 

processed bin size and information about CNV calls, including coordinates, different statistics, and p-values 

are all stored in one .pytor file and can be extracted into Excel (TSV file) or a VCF file. 

 

 

Analysis of variant data 

A novel feature of CNVpytor is the analysis of information from SNPs and small indels imported from 

a VCF file. An imbalance in the number of haplotypes can be measured using allele frequencies traditionally 

referred to as B-allele frequency (BAF) [24-27]. The main advantage of using BAF compared to RD is that 

BAF values do not require normalization and are distributed around 0.5 by binomial distribution for 

heterozygous variants (HETs). Additionally, BAF is complementary to RD signal, as it changes for copy 

number neutral events such as loss of heterozygosity. However, BAF dispersion can be measured incorrectly 

due to systematic misalignment particularly in repeat regions, incomplete reference genome, or site-specific 

noise in sequencing data. To mitigate this issue, we filtered out HETs in the fraction of genome that is 

inaccessible to short read technologies, as defined by the strict mask from the 1000 Genomes Project [28]. 

Such filtering removes almost all HETs with outlier values of BAF, while values for the retained variants 

closely follow binomial distribution (Fig. 1C). To integrate BAF information within bins, CNVpytor calculates 

the likelihood function that describes an imbalance between haplotypes (see Methods). Currently, BAF 

information is used when genotyping a specific genomic region where, along with estimated copy number, 

the output contains the average BAF level and two independent p-values calculated from RD and BAF signal. 

Table 1. Efficiency of parsing alignment file on modern computers in relation to sequencing coverage and 

engaged number of CPU cores. 

Sequencing 

coverage of 

the human 

genome 

Parsing time File size 

CNVnator 

CNVpytor 

CNVnator 

CNVpytor 

4 cores 8 cores 23 cores RD 

parsing 

BAF 

parsing   

With 1 & 10 

kbp bins 

5X 10 min 5 min 3 min <2 min 1 Gb 18 Mb 20 Mb 250 Mb 

30X 1 h 28 min 18 min 10 min 1.5 Gb 19 Mb 20 Mb 250 Mb 

100X 3.3 h 1.5 h 1 h 33 min 2 Gb 20 Mb 20 Mb 250 Mb 
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Variant data can also be plotted in parallel with RD signal (Fig. 2). Same as for RD signal, binned information 

calculated from variants is stored in and can be extracted from .pytor file.  

 

Figure 2. BAF signal corroborates and complements RD signal. Example of CNVpytor region 

plots produced for deletion (left), duplication (middle), and CNN-LOH (right) for NA12878 sample. 

Within the coordinates of heterozygous deletion, there is a 50% drop in RD signal and a loss in 

heterozygosity in BAF signal (i.e., no heterozygous SNPs in the region). Duplication of one haplotype 

results in the increase of RD signal by 50% and in a split in VAF distribution of SNPs and a split in 

BAF likelihood function. In the CNN-LOH region, few reliable heterozygous SNPs are detected while 

RD signal does not change. Likelihood function values are normalized to maximal across the range.  

 

Figure 3. CNVpytor workflow. Steps used in data processing. On the left: reading RD data from 

alignment file, creating histograms, segmentation, calling CNVs. On the right: reading SNP and indel 

data from VCF file, filtering variants using strict mask, calculating histograms and likelihood function. 

In the middle: alternatively, if alignment file is not available RD signals can be calculated from variant 

data (green arrows). Visualization using both RD and/or BAF data can be done from an interactive 

command line interface or automatically by running script file. 

 

Running CNVpytor 

CNVpytor is to be run in a series of steps (Fig. 3). For enhanced flexibility, RD and BAF processing 

workflows proceed in parallel. In this way each workflow can be run at different times or even on different 

computers. For example, data parsing steps can be run on a cloud where data (i.e., alignment files) is 

accessible, resulting in less than 25 Mb .pytor files that then can be copied to local computer/cluster where 

the remaining calculation steps will be performed. If necessary, a user can run additional calculations (e.g., 

conduct processing with different bin size) using the same .pytor file in the future, allowing for further flexibility 

in data analysis.  

Routine processing steps can be followed by CNV visualization and analysis in the Viewer session, 

which can be interactive or hands-off. Implementation of interactive mode is inspired by a Linux shell with tab 

completion and with a help page similar to the man pages. In this mode a user can instantly make various 
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visualizations, preview and filter CNV calls, annotate calls, create joint calls across multiple samples, and 

genotype specified regions. The viewer does not save results into the .pytor file, and outputs are printed and 

plotted on the screen or exported to an output file(s). Hands-off mode executes user-written script(s) with 

CNVpytor commands. Such scripts can be used as part of the processing pipeline where, for example, 

images of signals around called CNVs are generated and stored for possible future inspection. Through the 

viewer interface, it is possible to directly access Python and run code. This allows user to access some 

standard features of underlying libraries, e.g., matplotlib library can be used to customize plots. 

CNVpytor can be used as the Python module. All functionalities, like reading and editing CNVpytor 

data files, and all calculation steps and visualizations can be performed by calling functions or classes. This 

way CNVpytor can be easily integrated in different platforms and computing environments; for example, 

CNVpytor can be run from Jupyter Notebook on a local machine or in cloud services, e.g., Google Colab. 

CNVpytor is also integrated into OmniTier’s “Compstor Novos” variant calling workflow [29].  

 

Figure 4. Novel features of visualization using data for HepG2 cell line. Genome-wide 

visualizations can be useful in some cases, like cancer studies or clinical applications like screening 

for chromosomal abnormalities. They also can be useful for quick insight in sequencing or single-cell 

amplification quality. To demonstrate genome-wide plot types, HapG2 immortal cell line sample is 

used. A) Manhattan and B) circular style plot of RD signal. Large CNVs and chromosome copy 

number changes are apparent. One can also judge about dispersion of the RD signal. The inner circle 

in B shows RD signal while outer shows minor allele frequency (MAF). Regions where we can see 

loss of MAF signal with normal RD, e.g., chromosome 14 or 22, are chromosomal CNN-LOH. C) 

Examples of smaller CNVs not apparent in the global view. Each CNV is about 15 Mbp. The displayed 

regions with multiple CNVs (that are possibly complex events) were hardly visible on the circular plot. 

 

Data visualization and result curation 

Visualization of multiple tracks/signals can be done interactively by mouse and by typing relevant 

commands as well as by running scripts with CNVpytor commands provided as inputs to CNVpytor. CNVpytor 

has extended visualization capabilities with multiple novel features as compared to CNVnator. For each 

sample (i.e., input file) multiple data tracks such as RD signal, BAF of SNPs, and binned BAF likelihood can 
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be displayed in an adjustable grid layout as specified by a user. Specifically, multiple regions across multiple 

samples can be plotted in parallel, facilitating comparison across samples and different genomic loci (Fig. 2). 

To get a global view, a user can visualize an entire genome in a linear or circular fashion (Fig. 4, S1, S2). 

Such a view can be useful in judging the quality of samples and in visually checking for aneuploidies.  

Some additional features include GC-bias curve plot and 2D histogram (Fig. 1D), allele frequency 

distribution per region (Fig. 1C), and comparing RD distributions between two regions (Fig. S3). Figure 

resolution, layout grid, colors, marker size, titles, and plotting style are adjustable by the user. 

 

Integration with JBrowse 

CNVpytor also has implemented functionality to export data into formats that can be embedded into 

JBrowse, a web-based genome browser used to visualize multiple related data tracks (Fig. S4). The export 

enables users to utilize JBrowse capabilities to visualize, compare, and cross-reference CNV calls with other 

data types (such as CHiP-seq, RNA-seq, ATAC-seq, etc.) and annotations across genome. Exported data 

provide 3 resolutions of RD and BAF tracks (1 kbp, 10 kbp, and 100 kbp bins) while the appropriate resolution 

is chosen automatically by JBrowse depending on the size of the visualized genomic region. Multiple .pytor 

files can be exported at once. 

Alternatively, a user can utilize a lightweight CNVpytor plugin for JBrowse. The plugin takes 

information about coverage from a relatively small (as compared to BAM) VCF file and on the fly performs 

the read depth and BAF estimation, segmentation, and calling. For read depth analysis, the plugin fetches 

the information from the DP field in the VCF field and uses it as a proxy for actual coverage. Since for large 

bin sizes such an estimate corresponds well to the actual value (Fig. S5), the plugin enables quick and easy 

review of large copy number changes in a genome. For BAF analysis, the plugin conducts analyses the same 

way as a stand-alone application. All temporary values are stored in the browser cache for fast and interactive 

visualization of a genomic segment. As well as improving responsiveness by eliminating the network lag of a 

client-server application, this ensures that no information about a personal genome is transferred to external 

servers. Once the analyses are complete, the results are instantly visualized using JBrowse’s native 

capabilities. Usage cases of the plugin are: 1) quick and visual cross-referencing of copy number profiles 

between multiple samples and in relation to other data types, and 2) a review of a personal genome(s) for 

large CNVs in a simple user-friendly environment. 
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Conclusion 

Development of new, maintenance, and improvement of existing bioinformatics tools are driven by 

changing data types, demands for newer and user-verifiable analyses, necessity for processing larger 

datasets, and the evolving nature of computational infrastructures and platforms. CNVpytor brings the 

functionality of its predecessor CNVnator to a new level and significantly expands it. CNVpytor is faster and 

virtually effortless to install, requires minimum space for storage, enables analysis of BAF for call confirmation 

and genotyping, provides users with instant and extended visualization and convenient functionality for result 

curation (including merging over multiple samples), and is equipped for integration with other tools. 

Lightweight plugin for JBrowse enables on-the-fly visualization and analysis convenient for wide categories 

of users. Overall, CNVpytor establishes a framework for discovering and analyzing copy number changes 

from whole genome sequencing data either by an individual researcher or clinician or in a collaborative and 

shared environment.  

 

Materials and Methods 

RD analysis  

Calculations for RD binning, mean-shift algorithm, partitioning and calling CNVs are explained in details in 

CNVnator paper [1]. The only difference in CNVpytor implementation is how information about GC content is 

obtained. For two versions GRCh37 (hg19) and GRCh38 of the human reference genome information about 

GC and AT content for each 100 base pair bins is provided as resource data within CNVpytor package. This 

way user does not need to have reference genome FASTA for GC correction. In spite of slightly different 

implementation called regions by CNVnator and CNVpytor overlap by over 99%. Additionally, CNVpytor can 

calculate read depth from coverage of imported variants (Fig. 3). This is an approximate but rather precise 

solution to cases when alignment file is not available (Fig. S5). 

 

Variant data 

CNVpytor imports information about SNPs and single letter indels form variant (VCF) file. All other 

variants are ignored. For each variant following data is stored in CNVpytor file: chromosome, position, 
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reference base, alternative base, reference count (𝑟𝑒𝑓!), alternative count (𝑎𝑙𝑡!), quality, and genotype (0/1 

or 1/1). 

In the normal case with one copy of each haplotype, heterozygous SNPs are visible in half of the reads 

coming from that haplotype. In other words, B-allele frequency distributes around 1/2. Contrarily, in the 

regions with constitutional duplication of one haplotype, heterozygous SNPs are expected with frequency 

equals 2/3 or 1/3 depending are they located on duplicated haplotype or not. This split from value 1/2 can be 

visible in plot of BAFs vs position of variants as shown in the right panel of Figure 1. Similarly, for homozygous 

deletion complete loss of heterozygous SNPs is expected. In the case of somatic sub clonal CNA (e.g., 

frequently observed in cancer genomes), the ratio between haplotypes can be an arbitrary number depending 

on cell frequencies with the CNA. Consequently, the split in BAF plot varies from 0 through 1. Measuring the 

level of this split can provide useful information about type of CNV. Moreover, copy number neutral loss of 

heterozygosity (CNN-LOH) can be detected this way. 

For each stored variant we can calculate two frequencies defined in following way: 

• B-allele frequency (BAF): 𝐵𝐴𝐹 = "#$!
%&'!("#$!

 

• Minor allele frequency: 𝑀𝐴𝐹 = min/ "#$!
%&'!("#$!

, %&'!
%&'!("#$!

	2 = min(𝐵𝐴𝐹, 1 − 𝐵𝐴𝐹) 

One of next generation sequencing features is that some bases are not accessible for variant discovery 

using short reads, due to repetitive nature of the human genome. In the 1000 Genomes Project, genome 

mask is created to tabulate bases for variant discovery. There are about 74% of bases marked passed (P), 

what correspond to about 77% of non-N bases (1000 Genomes Project Consortium, 2015). We use that 

mask to filter out variants called in non-P regions. This way we eliminate around 22% of variants but there is 

benefit because with less false-positive heterozygous SNPs statistics is improved (Fig. 1C) and this improves 

quality of further calculations. The same way as GC content, information about strict mask P regions for two 

versions of human reference genome are stored in resource files that are part of CNVpytor package. 

 

Calculating BAF likelihood function 

The ratio between reads coming from one or another haplotype is distributed following binomial 

distribution. If counts are known then one can calculate likelihood function for that ratio: 

𝐿(𝑝!|𝑎𝑙𝑡! , 𝑟𝑒𝑓!) = 	𝐵(𝑥; 𝑎𝑙𝑡! + 1, 𝑟𝑒𝑓! + 1) =
)

*("#$!,%&'!)
𝑝!"#$!(1 − 𝑝!)%&'!, 
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where 𝑝! is allele frequency for variant 𝑖 and 𝐵(𝑎𝑙𝑡! , 𝑟𝑒𝑓!) is normalization constant. 

By multiplying likelihood functions of individual variants in a bin one can obtain likelihood for each bin. 

This is true only if real value of that ratio does not change within a that bin. However, we are using non-

phased variant counts, what means that there is 50% of chance that variant is coming from one or another 

haplotype. Frequency of a fixed haplotype is sometimes described by either BAF and 1 - BAF distributions. 

In that case we have to use symmetrized beta function for likelihood: 

 

𝐿(𝑝!|𝑎𝑙𝑡! , 𝑟𝑒𝑓!) = 	
𝐵(𝑥; 𝑎𝑙𝑡! + 1, 𝑟𝑒𝑓! + 1) + 𝐵(𝑥; 𝑟𝑒𝑓! + 1, 𝑎𝑙𝑡! + 1)

2
=
𝑝!"#$!(1 − 𝑝!)%&'! + 𝑝!%&'!(1 − 𝑝!)"#$!

2𝐵(𝑎𝑙𝑡! , 𝑟𝑒𝑓!)
 

 

Likelihood function for each bin is calculated as a product of individual likelihood functions of variants within 

that bin: 

 

𝐿(𝑝.)	~∏ 𝐿(𝑝!|𝑎𝑙𝑡! , 𝑟𝑒𝑓!)	~!∈.!0(.)  ∏ (𝑝!"#$!(1 − 𝑝!)%&'! + 𝑝!%&'!(1 − 𝑝!)"#$!! ), 

 

where 𝑝. is allele frequency for bin 𝑏. To calculate likelihood functions we use discretization. Interval [0,0.5] 

is discretized using some resolution (default is 101 point) and for each point function is calculated by 

multiplying values of symmetrized beta functions for each variant. Position of maximum likelihood represents 

most probable BAF value in particular bin. Along with likelihood function average values of variant BAF and 

MAF are calculated per bin and stored in CNVpytor file together with counts of homozygous and 

heterozygous variants. 

 

Filtering CNV calls 

For each CNV call following values are calculated: (1) event type: “deletion” or “duplication”; (2) 

coordinates in the reference genome; (3) CNV size; (4) RD normalized to 1; (5) e-val1 – p value calculated 

using t-test statistics between RD difference in the region and global (i.e. across whole genome) mean; (6) 

e-val2 – p value from the probability of RD values within the region to be in the tails of a gaussian distribution 

of binned RD; (7) e-val3 – same as e-val1 but without first and last bin; (8) e-val4 – same as e-val2 but without 

first and last bin; (9) q0 – fraction of reads mapped with zero quality within call region; (10) pN – fraction of N 
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bases (i.e., unassembled reference genome) within call region; (11) dG – distance to nearest gap in reference 

genome. 

There are five parameters in viewer mode used for filtering calls: CNV size, e-val1, q0, pN and dG. 

Those parameters will define which calls CNVpytor will plot or print out. When calls are printed or exported 

CNVpytor optionally can generate graphical file(s) with plot of CNV call region containing user specified 

tracks. 

 

Annotating CNV calls 

To annotate called regions we use Ensembl REST API (overlap/region resource). It is an optional 

step requires web connection and is executed when calls are previewed by user or exported to an output file. 

The annotation is added in an additional column in the output and contains string with gene names, Ensembl 

gene IDs and with information about position of genes relative to CNV (i.e., inside, covering, or intersecting 

left/right breakpoints of CNV region). 

 

Genotyping 

Copy number of a provided genomic region is calculated as a mean RD within the region divided by 

mean autosomal RD scaled by 2. To achieve better precision, first and last bin content are weighted by the 

fraction of overlap with the provided region. Optionally CNVpytor can provide additional values: (1) e-value 

from the probability of RD values within the region to be in the tails of a gaussian distribution of binned RD 

(analogous to e-val2); (2) q0 – fraction of reads mapped with q0 quality within call region; (3) pN – fraction of 

reference genome gaps (Ns) within call region; (4) BAF level estimated using maximum likelihood method; 

(5) number of homozygous variants within the region; (6) number of heterozygous variants within the region; 

(7) p-value based on BAF signal. 

 

Merging calls over multiple regions 

To make joint call set for multiple samples CNVpytor procceds in the following way: 

1. Filter calls using user defined ranges for size, p-val, q0, pN and dG; 

2. Sort all calls for all samples by start coordinate; 
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3. Select first call in that list that is not already processed and select calls from other samples with the 

reciprocal overlap larger than 50%; 

4. For selected calls, calculate genotypes within the region of intersection and, optionally, annotate with 

overlapping genes. 

If specified, for each joint CNV call CNVpytor will create graphical file with plot of call region containing user 

specified tracks. 

 

Data format and compression 

For data storage and compression, we used HDF5 file format and h5py python library. Additional 

compression is obtained by storing RD signal using 100 base pair bins. The same bin size is used for storing 

reference genome AT, GC and N content. Data organization within .pytor file is implemented in IO module 

which can be used to open and read different datasets from an external application. Python library xlwt is 

used to generate spreadsheet files compatible with Microsoft Excel. 

 

Visualizations 

Matplotlib [30] python library is used for creating and storing visualizations. Different plotting styles 

available within matplotlib. Derived installed libraries can be used as well as variety of file formats for storing 

graphical data.   

 

Module dependences 

CNVpytor depends on several widely used python packages: requests 2.0 or higher, gnureadline, 

pathlib 1.0 or higher, pysam 0.15 or higher, numpy 1.16 or higher, scipy 1.1 or higher, matplotlib 2.2 or higher, 

h5py 2.9 or higher, xlwt 1.3 or higher. All dependences are available through pip installer that makes 

installation of CNVpytor straightforward.  

 

Supplementary Information 

Additional file: Figs. S1-S5 
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Abstract 
Detecting copy number variations (CNVs) and copy number alterations (CNAs) based on whole genome 
sequencing data is important for personalized genomics and treatment. CNVnator is one of the most popular 
tools for CNV/CNA discovery and analysis based on read depth (RD). Herein, we present an extension of 
CNVnator developed in Python -- CNVpytor. CNVpytor inherits the reimplemented core engine of its 
predecessor and extends visualization, modularization, performance, and functionality. Additionally, 
CNVpytor uses B-allele frequency (BAF) likelihood information from single nucleotide polymorphism and 
small indels data as additional evidence for CNVs/CNAs and as primary information for copy number neutral 
losses of heterozygosity. CNVpytor is significantly faster than CNVnator—particularly for parsing alignment 
files (2 to 20 times faster)—and has (20-50 times) smaller intermediate files. CNV calls can be filtered using 
several criteria, annotated, and merged over multiple samples. Modular architecture allows it to be used in 
shared and cloud environments such as Google Colab and Jupyter notebook. Data can be exported into 
JBrowse, while a lightweight plugin version of CNVpytor for JBrowse enables nearly instant and GUI-assisted 
analysis of CNVs by any user. CNVpytor release and the source code are available on GitHub at 
https://github.com/abyzovlab/CNVpytor under the MIT license. 
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Introduction 
The continuous reduction of cost made the whole genome sequencing (WGS) to be widely used in 

different research projects and clinical applications. Consequently, many approaches for processing, 
analyzing, and visualizing WGS data have been developed and are being improved. Detection and analysis 
of copy number variations (CNVs) based on WGS data is one of them. Research directions related to the 
cancer genomics, single-cell sequencing, and somatic mosaicism create huge amounts of data and demands 
for processing on the cloud that require further improvements of CNV callers, moving to parallel processing, 
better compression, modular architecture, and new statistical methods. 

CNVnator is a method for CNV analysis based on read depth (RD) of aligned reads. It was determined 
to have high sensitivity (86%-96%), low false-discovery rate (3%-20%), and high genotyping accuracy (93%-
95%) for germline CNVs in a wide range of sizes from a few hundred base pairs to chromosome size events 
[1-5]. Since its development a decade ago, the tool has been widely used in different scientific areas by 
researchers around the world for detection of CNVs in a variety of species with different genome sizes: 
bacteria [6], fungi [7], plants [8-10], insects [11], fish [12], birds [13], mammals [14-17] and humans [2, 18-
20]. It has been used to discover somatic variations in cancer and disease studies [21] and to find mosaic 
variants in human cells [22]. Although CNVnator was developed to detect germline CNVs, it is well-suited to 
discover copy number alteration (CNAs) present in a relatively high (>50%) fraction of cells, such as somatic 
alteration found in cancers. It was not, however, designed for nor capable of aiding analysis of copy number 
neutral changes. 

Here we describe CNVpytor, a Python extension of CNVnator. CNVpytor inherits the reimplemented 
core engine of CNVnator and extends visualization, modularization, performance, and functionality. Along 
with RD data, it enables consideration of allele frequency of single nucleotide polymorphism (SNP) and small 
indels as an additional source of information for the analysis of CNV/CNA and copy number neutral variations. 
Along with RD data, this information can be used for genotyping genomic regions and visualization. 
 

Results 
Analysis of RD signal 

CNVpytor inherits the RD analysis approach developed in CNVnator [1]. Briefly, it consists of the 
following steps: reading alignment file and extracting RD signal, binning RD signal, correcting the signal for 
GC bias, segmenting the signal using the mean-shift technique, and calling CNVs (Fig. 1). RD signal can be 
parsed from BAM, SAM, or CRAM alignment files and is counted in 100 bp intervals, resulting in a small 
footprint of intermediate .pytor files in HDF5 format (Table 1). Because of using the pysam [23] library for 
parsing, this step (the most time-consuming one) is parallelized and can be conducted very efficiently, 
particularly in comparison with the older tool (Table 1). The binning step integrates RD over larger bins that 
are limited to multiples of initially stored 100 bp bins. Next, technical biases in the read depth signal that are 
correlated with GC content (so-called GC biases) are removed using GC correction procedure. For the human 
reference genomes GRCh37 and GRCh38 per bin, GC content is pre-calculated and supplied as a resource 
with the CNVpytor package. For other genomes, GC content can be calculated during runtime from a 
provided FASTA file or precalculated and added to the CNVpytor resource for future use. Once information 
about read coverage (and variants, see below) is extracted from an alignment file, the following analysis 
steps take place (i.e., read input and write output) with the same file. As a result, histograms for each 
processed bin size and information about CNV calls, including coordinates, different statistics, and p-values 
are all stored in one .pytor file and can be extracted into Excel (TSV file) or a VCF file. 
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Table 1. Efficiency of parsing alignment file on modern computers in relation to sequencing coverage and 
engaged number of CPU cores. 
Sequencing 
coverage of 
the human 
genome 

Parsing time File size 

CNVnator 
CNVpytor 

CNVnator 
CNVpytor 

4 cores 8 cores 23 cores RD 
parsing 

BAF 
parsing   

With 1 & 10 
kbp bins 

5X 10 min 5 min 3 min <2 min 1 Gb 18 Mb 20 Mb 250 Mb 
30X 1 h 28 min 18 min 10 min 1.5 Gb 19 Mb 20 Mb 250 Mb 
100X 3.3 h 1.5 h 1 h 33 min 2 Gb 20 Mb 20 Mb 250 Mb 

  
Figure 1. Schematics of core algorithm and data processing steps. (A) Read depth analysis steps include parsing 
alignment file, calculating and storing read depths in 100 bp intervals, binning using user-specified bin size, correcting 
RD for GC bias, segmenting by mean-shift, and calling CNVs. (B) B-allele frequency analysis steps include reading 
variant file storing the data about SNPs and small indels, filtering variants using strict mask, calculating BAF for 
heterozygous variants (HETs), and calculating likelihood function for bins. For CNVs, BAF signal splits away from 
value 0.5 expected for HETs. (C) Distribution of the variant allele frequency for all variants and variants within strict 
mask as defined by the 1000 Genomes Project. Black line shows fit by gaussian distribution. (D) An example of RD 
depending on GC within bin. Statistics of RD signal within bins of the same percentage of GC content is used to 
correct for GC bias in the signal. White line represents average RD level for bins with given GC content. (E) An 
example of RD and BAF signals for a germline duplication in NA12878 sample (raw RD signal is in grey, GC-corrected 
RD signal is in black, brighter color of BAF likelihood corresponds to higher values of the likelihood). 
a 
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Analysis of variant data 
A novel feature of CNVpytor is the analysis of information from SNPs and small indels imported from 

a VCF file. An imbalance in the number of haplotypes can be measured using allele frequencies traditionally 
referred to as B-allele frequency (BAF) [24-27]. The main advantage of using BAF compared to RD is that 
BAF values do not require normalization and are distributed around 0.5 by binomial distribution for 
heterozygous variants (HETs). Additionally, BAF is complementary to RD signal, as it changes for copy 
number neutral events such as loss of heterozygosity. However, BAF dispersion can be measured incorrectly 
due to systematic misalignment particularly in repeat regions, incomplete reference genome, or site-specific 
noise in sequencing data. To mitigate this issue, we filtered out HETs in the fraction of genome that is 
inaccessible to short read technologies, as defined by the strict mask from the 1000 Genomes Project [28]. 
Such filtering removes almost all HETs with outlier values of BAF, while values for the retained variants 
closely follow binomial distribution (Fig. 1C). To integrate BAF information within bins, CNVpytor calculates 
the likelihood function that describes an imbalance between haplotypes (see Methods). Currently, BAF 
information is used when genotyping a specific genomic region where, along with estimated copy number, 
the output contains the average BAF level and two independent p-values calculated from RD and BAF signal. 
Variant data can also be plotted in parallel with RD signal (Fig. 2). Same as for RD signal, binned information 
calculated from variants is stored in and can be extracted from .pytor file.  

 

 
Figure 2. BAF signal corroborates and complements RD signal. Example of CNVpytor region plots produced for 
deletion (left), duplication (middle), and CNN-LOH (right) for NA12878 sample. Within the coordinates of heterozygous 
deletion, there is a 50% drop in RD signal and a loss in heterozygosity in BAF signal (i.e., no heterozygous SNPs in the 
region). Duplication of one haplotype results in the increase of RD signal by 50% and in a split in VAF distribution of 
SNPs and a split in BAF likelihood function. In the CNN-LOH region, few reliable heterozygous SNPs are detected while 
RD signal does not change. Likelihood function values are normalized to maximal across the range.  
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Figure 3. CNVpytor workflow. Steps used in data processing. On the left: reading RD data from alignment file, creating 
histograms, segmentation, calling CNVs. On the right: reading SNP and indel data from VCF file, filtering variants using 
strict mask, calculating histograms and likelihood function. In the middle: alternatively, if alignment file is not available 
RD signals can be calculated from variant data (green arrows). Visualization using both RD and/or BAF data can be 
done from an interactive command line interface or automatically by running script file. 
 
Running CNVpytor 

CNVpytor is to be run in a series of steps (Fig. 3). For enhanced flexibility, RD and BAF processing 
workflows proceed in parallel. In this way each workflow can be run at different times or even on different 
computers. For example, data parsing steps can be run on a cloud where data (i.e., alignment files) is 
accessible, resulting in less than 25 Mb .pytor files that then can be copied to local computer/cluster where 
the remaining calculation steps will be performed. If necessary, a user can run additional calculations (e.g., 
conduct processing with different bin size) using the same .pytor file in the future, allowing for further flexibility 
in data analysis.  

Routine processing steps can be followed by CNV visualization and analysis in the Viewer session, 
which can be interactive or hands-off. Implementation of interactive mode is inspired by a Linux shell with tab 
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completion and with a help page similar to the man pages. In this mode a user can instantly make various 
visualizations, preview and filter CNV calls, annotate calls, create joint calls across multiple samples, and 
genotype specified regions. The viewer does not save results into the .pytor file, and outputs are printed and 
plotted on the screen or exported to an output file(s). Hands-off mode executes user-written script(s) with 
CNVpytor commands. Such scripts can be used as part of the processing pipeline where, for example, 
images of signals around called CNVs are generated and stored for possible future inspection. Through the 
viewer interface, it is possible to directly access Python and run code. This allows user to access some 
standard features of underlying libraries, e.g., matplotlib library can be used to customize plots. 

CNVpytor can be used as the Python module. All functionalities, like reading and editing CNVpytor 
data files, and all calculation steps and visualizations can be performed by calling functions or classes. This 
way CNVpytor can be easily integrated in different platforms and computing environments; for example, 
CNVpytor can be run from Jupyter Notebook on a local machine or in cloud services, e.g., Google Colab. 
CNVpytor is also integrated into OmniTier’s “Compstor Novos” variant calling workflow [29].  

 
Figure 4. Novel features of visualization using data for HepG2 cell line. Genome-wide visualizations can be 
useful in some cases, like cancer studies or clinical applications like screening for chromosomal 
abnormalities. They also can be useful for quick insight in sequencing or single-cell amplification quality. To 
demonstrate genome-wide plot types, HapG2 immortal cell line sample is used. A) Manhattan and B) circular 
style plot of RD signal. Large CNVs and chromosome copy number changes are apparent. One can also 
judge about dispersion of the RD signal. The inner circle in B shows RD signal while outer shows minor allele 
frequency (MAF). Regions where we can see loss of MAF signal with normal RD, e.g., chromosome 14 or 
22, are chromosomal CNN-LOH. C) Examples of smaller CNVs not apparent in the global view. Each CNV 
is about 15 Mbp. The displayed regions with multiple CNVs (that are possibly complex events) were hardly 
visible on the circular plot. 
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Data visualization and result curation 
Visualization of multiple tracks/signals can be done interactively by mouse and by typing relevant 

commands as well as by running scripts with CNVpytor commands provided as inputs to CNVpytor. CNVpytor 
has extended visualization capabilities with multiple novel features as compared to CNVnator. For each 
sample (i.e., input file) multiple data tracks such as RD signal, BAF of SNPs, and binned BAF likelihood can 
be displayed in an adjustable grid layout as specified by a user. Specifically, multiple regions across multiple 
samples can be plotted in parallel, facilitating comparison across samples and different genomic loci (Fig. 2). 
To get a global view, a user can visualize an entire genome in a linear or circular fashion (Fig. 4, S1, S2). 
Such a view can be useful in judging the quality of samples and in visually checking for aneuploidies.  

Some additional features include GC-bias curve plot and 2D histogram (Fig. 1D), allele frequency 
distribution per region (Fig. 1C), and comparing RD distributions between two regions (Fig. S3). Figure 
resolution, layout grid, colors, marker size, titles, and plotting style are adjustable by the user. 
 
Integration with JBrowse 

CNVpytor also has implemented functionality to export data into formats that can be embedded into 
JBrowse, a web-based genome browser used to visualize multiple related data tracks (Fig. S4). The export 
enables users to utilize JBrowse capabilities to visualize, compare, and cross-reference CNV calls with other 
data types (such as CHiP-seq, RNA-seq, ATAC-seq, etc.) and annotations across genome. Exported data 
provide 3 resolutions of RD and BAF tracks (1 kbp, 10 kbp, and 100 kbp bins) while the appropriate resolution 
is chosen automatically by JBrowse depending on the size of the visualized genomic region. Multiple .pytor 
files can be exported at once. 

Alternatively, a user can utilize a lightweight CNVpytor plugin for JBrowse. The plugin takes 
information about coverage from a relatively small (as compared to BAM) VCF file and on the fly performs 
the read depth and BAF estimation, segmentation, and calling. For read depth analysis, the plugin fetches 
the information from the DP field in the VCF field and uses it as a proxy for actual coverage. Since for large 
bin sizes such an estimate corresponds well to the actual value (Fig. S5), the plugin enables quick and easy 
review of large copy number changes in a genome. For BAF analysis, the plugin conducts analyses the same 
way as a stand-alone application. All temporary values are stored in the browser cache for fast and interactive 
visualization of a genomic segment. As well as improving responsiveness by eliminating the network lag of a 
client-server application, this ensures that no information about a personal genome is transferred to external 
servers. Once the analyses are complete, the results are instantly visualized using JBrowse’s native 
capabilities. Usage cases of the plugin are: 1) quick and visual cross-referencing of copy number profiles 
between multiple samples and in relation to other data types, and 2) a review of a personal genome(s) for 
large CNVs in a simple user-friendly environment. 
 
Conclusion 

Development of new, maintenance, and improvement of existing bioinformatics tools are driven by 
changing data types, demands for newer and user-verifiable analyses, necessity for processing larger 
datasets, and the evolving nature of computational infrastructures and platforms. CNVpytor brings the 
functionality of its predecessor CNVnator to a new level and significantly expands it. CNVpytor is faster and 
virtually effortless to install, requires minimum space for storage, enables analysis of BAF for call confirmation 
and genotyping, provides users with instant and extended visualization and convenient functionality for result 
curation (including merging over multiple samples), and is equipped for integration with other tools. 
Lightweight plugin for JBrowse enables on-the-fly visualization and analysis convenient for wide categories 
of users. Overall, CNVpytor establishes a framework for discovering and analyzing copy number changes 
from whole genome sequencing data either by an individual researcher or clinician or in a collaborative and 
shared environment.  
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Materials and Methods 
 
RD analysis  
Calculations for RD binning, mean-shift algorithm, partitioning and calling CNVs are explained in details in 
CNVnator paper [1]. The only difference in CNVpytor implementation is how information about GC content is 
obtained. For two versions GRCh37 (hg19) and GRCh38 of the human reference genome information about 
GC and AT content for each 100 base pair bins is provided as resource data within CNVpytor package. This 
way user does not need to have reference genome FASTA for GC correction. In spite of slightly different 
implementation called regions by CNVnator and CNVpytor overlap by over 99%. Additionally, CNVpytor can 
calculate read depth from coverage of imported variants (Fig. 3). This is an approximate but rather precise 
solution to cases when alignment file is not available (Fig. S5). 
 
Variant data 

CNVpytor imports information about SNPs and single letter indels form variant (VCF) file. All other 
variants are ignored. For each variant following data is stored in CNVpytor file: chromosome, position, 
reference base, alternative base, reference count (𝑟𝑒𝑓!), alternative count (𝑎𝑙𝑡!), quality, and genotype (0/1 
or 1/1). 

In the normal case with one copy of each haplotype, heterozygous SNPs are visible in half of the reads 
coming from that haplotype. In other words, B-allele frequency distributes around 1/2. Contrarily, in the 
regions with constitutional duplication of one haplotype, heterozygous SNPs are expected with frequency 
equals 2/3 or 1/3 depending are they located on duplicated haplotype or not. This split from value 1/2 can be 
visible in plot of BAFs vs position of variants as shown in the right panel of Figure 1. Similarly, for homozygous 
deletion complete loss of heterozygous SNPs is expected. In the case of somatic sub clonal CNA (e.g., 
frequently observed in cancer genomes), the ratio between haplotypes can be an arbitrary number depending 
on cell frequencies with the CNA. Consequently, the split in BAF plot varies from 0 through 1. Measuring the 
level of this split can provide useful information about type of CNV. Moreover, copy number neutral loss of 
heterozygosity (CNN-LOH) can be detected this way. 

For each stored variant we can calculate two frequencies defined in following way: 
• B-allele frequency (BAF): 𝐵𝐴𝐹 = "#$!

%&'!("#$!
 

• Minor allele frequency: 𝑀𝐴𝐹 = min/ "#$!
%&'!("#$!

, %&'!
%&'!("#$!

	2 = min(𝐵𝐴𝐹, 1 − 𝐵𝐴𝐹) 
One of next generation sequencing features is that some bases are not accessible for variant discovery 

using short reads, due to repetitive nature of the human genome. In the 1000 Genomes Project, genome 
mask is created to tabulate bases for variant discovery. There are about 74% of bases marked passed (P), 
what correspond to about 77% of non-N bases (1000 Genomes Project Consortium, 2015). We use that 
mask to filter out variants called in non-P regions. This way we eliminate around 22% of variants but there is 
benefit because with less false-positive heterozygous SNPs statistics is improved (Fig. 1C) and this improves 
quality of further calculations. The same way as GC content, information about strict mask P regions for two 
versions of human reference genome are stored in resource files that are part of CNVpytor package. 
 
Calculating BAF likelihood function 

The ratio between reads coming from one or another haplotype is distributed following binomial 
distribution. If counts are known then one can calculate likelihood function for that ratio: 

𝐿(𝑝!|𝑎𝑙𝑡! , 𝑟𝑒𝑓!) = 	𝐵(𝑥; 𝑎𝑙𝑡! + 1, 𝑟𝑒𝑓! + 1) =
)

*("#$!,%&'!)
𝑝!"#$!(1 − 𝑝!)%&'!, 

where 𝑝! is allele frequency for variant 𝑖 and 𝐵(𝑎𝑙𝑡! , 𝑟𝑒𝑓!) is normalization constant. 
By multiplying likelihood functions of individual variants in a bin one can obtain likelihood for each bin. 

This is true only if real value of that ratio does not change within a that bin. However, we are using non-
phased variant counts, what means that there is 50% of chance that variant is coming from one or another 
haplotype. Frequency of a fixed haplotype is sometimes described by either BAF and 1 - BAF distributions. 

In that case we have to use symmetrized beta function for likelihood: 
 

𝐿(𝑝!|𝑎𝑙𝑡! , 𝑟𝑒𝑓!) = 	
𝐵(𝑥; 𝑎𝑙𝑡! + 1, 𝑟𝑒𝑓! + 1) + 𝐵(𝑥; 𝑟𝑒𝑓! + 1, 𝑎𝑙𝑡! + 1)

2
=
𝑝!"#$!(1 − 𝑝!)%&'! + 𝑝!%&'!(1 − 𝑝!)"#$!

2𝐵(𝑎𝑙𝑡! , 𝑟𝑒𝑓!)
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Likelihood function for each bin is calculated as a product of individual likelihood functions of variants within 
that bin: 
 

𝐿(𝑝.)	~∏ 𝐿(𝑝!|𝑎𝑙𝑡! , 𝑟𝑒𝑓!)	~!∈.!0(.)  ∏ (𝑝!"#$!(1 − 𝑝!)%&'! + 𝑝!%&'!(1 − 𝑝!)"#$!! ), 
 
where 𝑝. is allele frequency for bin 𝑏. To calculate likelihood functions we use discretization. Interval [0,0.5] 
is discretized using some resolution (default is 101 point) and for each point function is calculated by 
multiplying values of symmetrized beta functions for each variant. Position of maximum likelihood represents 
most probable BAF value in particular bin. Along with likelihood function average values of variant BAF and 
MAF are calculated per bin and stored in CNVpytor file together with counts of homozygous and 
heterozygous variants. 
 
Filtering CNV calls 

For each CNV call following values are calculated: (1) event type: “deletion” or “duplication”; (2) 
coordinates in the reference genome; (3) CNV size; (4) RD normalized to 1; (5) e-val1 – p value calculated 
using t-test statistics between RD difference in the region and global (i.e. across whole genome) mean; (6) 
e-val2 – p value from the probability of RD values within the region to be in the tails of a gaussian distribution 
of binned RD; (7) e-val3 – same as e-val1 but without first and last bin; (8) e-val4 – same as e-val2 but without 
first and last bin; (9) q0 – fraction of reads mapped with zero quality within call region; (10) pN – fraction of N 
bases (i.e., unassembled reference genome) within call region; (11) dG – distance to nearest gap in reference 
genome. 

There are five parameters in viewer mode used for filtering calls: CNV size, e-val1, q0, pN and dG. 
Those parameters will define which calls CNVpytor will plot or print out. When calls are printed or exported 
CNVpytor optionally can generate graphical file(s) with plot of CNV call region containing user specified 
tracks. 

 
Annotating CNV calls 

To annotate called regions we use Ensembl REST API (overlap/region resource). It is an optional 
step requires web connection and is executed when calls are previewed by user or exported to an output file. 
The annotation is added in an additional column in the output and contains string with gene names, Ensembl 
gene IDs and with information about position of genes relative to CNV (i.e., inside, covering, or intersecting 
left/right breakpoints of CNV region). 
 
Genotyping 

Copy number of a provided genomic region is calculated as a mean RD within the region divided by 
mean autosomal RD scaled by 2. To achieve better precision, first and last bin content are weighted by the 
fraction of overlap with the provided region. Optionally CNVpytor can provide additional values: (1) e-value 
from the probability of RD values within the region to be in the tails of a gaussian distribution of binned RD 
(analogous to e-val2); (2) q0 – fraction of reads mapped with q0 quality within call region; (3) pN – fraction of 
reference genome gaps (Ns) within call region; (4) BAF level estimated using maximum likelihood method; 
(5) number of homozygous variants within the region; (6) number of heterozygous variants within the region; 
(7) p-value based on BAF signal. 
 
Merging calls over multiple regions 
To make joint call set for multiple samples CNVpytor procceds in the following way: 

1. Filter calls using user defined ranges for size, p-val, q0, pN and dG; 
2. Sort all calls for all samples by start coordinate; 
3. Select first call in that list that is not already processed and select calls from other samples with the 

reciprocal overlap larger than 50%; 
4. For selected calls, calculate genotypes within the region of intersection and, optionally, annotate with 

overlapping genes. 
If specified, for each joint CNV call CNVpytor will create graphical file with plot of call region containing user 
specified tracks. 
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Data format and compression 
For data storage and compression, we used HDF5 file format and h5py python library. Additional 

compression is obtained by storing RD signal using 100 base pair bins. The same bin size is used for storing 
reference genome AT, GC and N content. Data organization within .pytor file is implemented in IO module 
which can be used to open and read different datasets from an external application. Python library xlwt is 
used to generate spreadsheet files compatible with Microsoft Excel. 
 
Visualizations 

Matplotlib [30] python library is used for creating and storing visualizations. Different plotting styles 
available within matplotlib. Derived installed libraries can be used as well as variety of file formats for storing 
graphical data.   
 
Module dependences 

CNVpytor depends on several widely used python packages: requests 2.0 or higher, gnureadline, 
pathlib 1.0 or higher, pysam 0.15 or higher, numpy 1.16 or higher, scipy 1.1 or higher, matplotlib 2.2 or higher, 
h5py 2.9 or higher, xlwt 1.3 or higher. All dependences are available through pip installer that makes 
installation of CNVpytor straightforward.  
 
Supplementary Information 
Additional file: Figs. S1-S5 
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