SUPPLEMENTARY INFORMATION

Identification of copper-containing oxidoreductases in the secretomes of three *Colletotrichum* species with a focus on copper radical oxidases for the biocatalytic production of fatty aldehydes

David Ribeaucourt^{1,2,3}, Safwan Saker^{1,a}, David Navarro¹, Bastien Bissaro¹, Elodie Drula^{1,4,5},

Lydie Oliveira Correia⁶, Mireille Haon¹, Sacha Grisel¹, Nicolas Lapalu⁷, Bernard Henrissat^{4,5,8},

Richard J. O'Connell⁷, Fanny Lambert³, Mickaël Lafond^{2*} and Jean-Guy Berrin^{1*}

¹INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France

²Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France

³V. Mane Fils, 620 route de Grasse, Le Bar sur Loup, France

⁴INRAE, USC1408, AFMB, Marseille, France

⁵CNRS, Aix Marseille Univ, UMR7257, AFMB, Marseille, France

⁶Plateforme d'Analyse Protéomique de Paris Sud-Ouest, INRAE, AgroParisTech, Université Paris-Saclay, Micalis Institute, Jouy-en-Josas, France

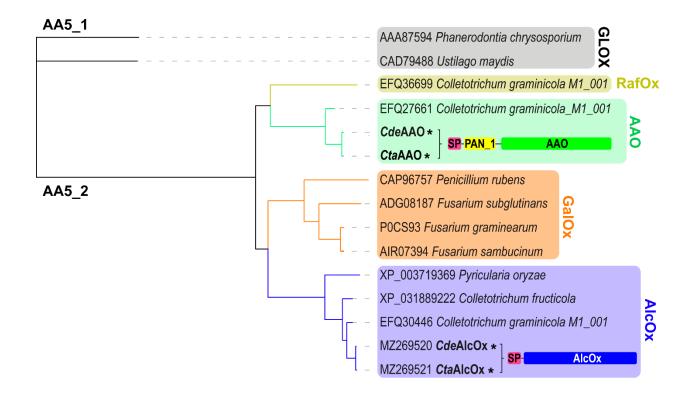
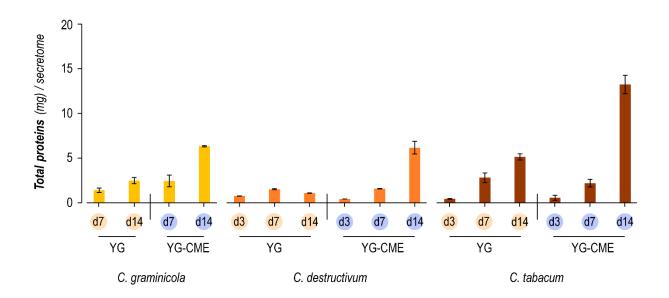
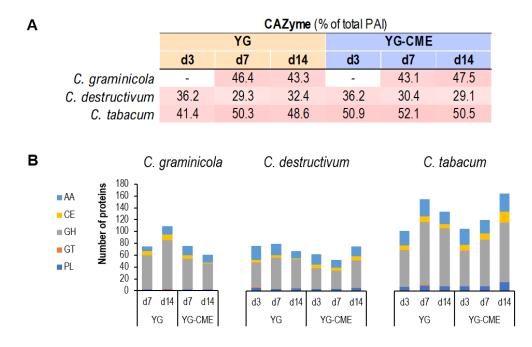
⁷UMR BIOGER, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-11Saclay, Versailles, France

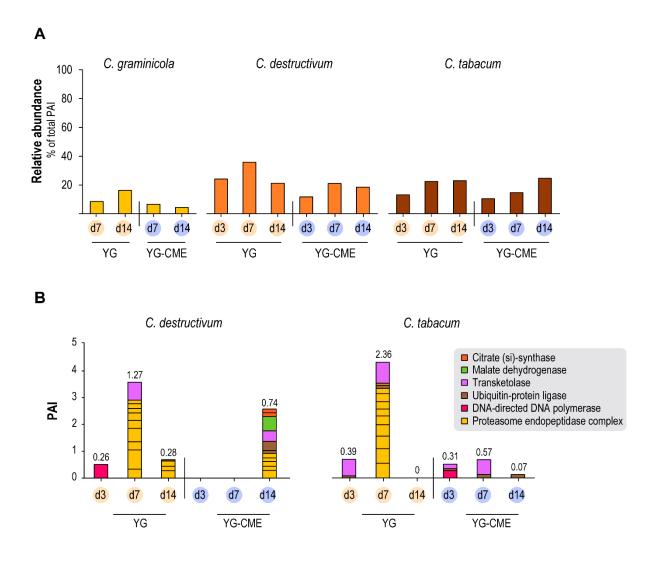
⁸Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia

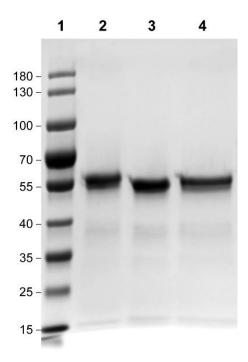
^apresent address: CRITT BOIS, Epinal, France

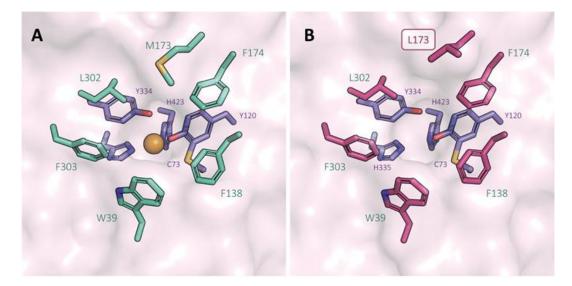
*corresponding authors:

Jean-Guy Berrin (jean-guy.berrin@inrae.fr) Mickaël Lafond (<u>mickael.lafond@univ-amu.fr</u>) Tree scale: 1


Figure S1: Phylogenetic tree representation for the alignment of *C. destructivum* and *C. tabacum* AA5_2 (displayed in bold characters and marked with an asterisk) with some of the characterized AA5_2s. The tree was derived from a multiple sequence alignment. The modularity of the *Cde-* and *Cta*AA5_2 is represented next to their name; Abbreviations: SP,signal peptide; GLOX, Glyoxal oxidase; RafOx, Raffinose oxidase (1).


Figure S2. Quantification of total soluble proteins in *Colletotrichum* secretomes using the Bradford assay and BSA as standard. The total volume of each secretome was 300 mL. Error bars show independent experiment (n=2).


Figure S3. CAZymes identified in the *Colletotrichum* **secretomes.** (**A**) relative abundance of CAZymes in the secretomes (expressed in percentage of total PAI). (**B**) Number of unique CAZymes identified in the secretomes. Abbreviations: PAI, Protein Abundance Index; AA, auxiliary activities; CE, carbohydrate esterases ; GH, glycoside hydrolases; GT, glycosyl transferases; PL, polysaccharide lyases.

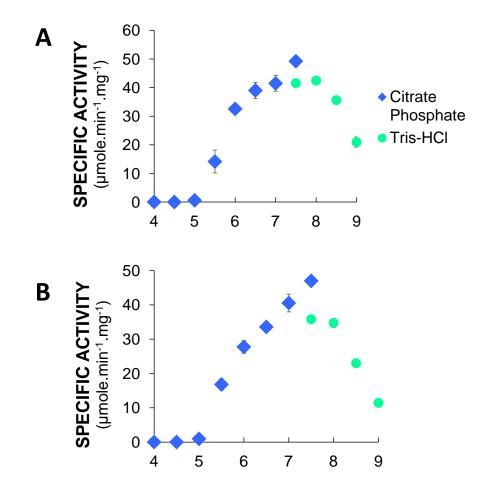

Figure S4. Abundancy of intracellular proteins in *Colletotrichum* secretomes. (A) Proportion of proteins predicted without signal peptide (expressed in percentage of total PAI) and detected in the secretomes. (B) abundancy of various intracellular proteins used as marker of cell lysis. The number displayed at the top of each bar in panel B corresponds to the relative percentage of the selected proteins against total PAI of each secretome. Note: none of the selected proteins were found in *C. graminicola* secretomes.

Figure S5. SDS-PAGE of purified recombinant AA5_2 AlcOx. Lanes 1: molecular weight marker (PageRuler – Thermo Scientific; size expressed in kDa), 2: *Cgr*AlcOx, 3: *Cta*AlcOx, 4: *Cde*AlcOx. 3 µg of each enzyme were loaded on a 10 % polyacrylamide gel. Gel was stained by Coomassie blue and displayed as grey shades.

Figure S6. Structural view of the copper-binding centers of (A) *CgrAlcOx* (PDB ID 5C92 (2)), and (B) *CdeAlcOx* (homology model). The active site amino acid natural substitution in *CdeAlcOx* (compared to *CgrAlcOx*) is framed and highlighted. The *CdeAlcOx* model was generated through Phyre2 web portal (3).

Figure S7: pH-rate profiles of (A) *Cta***AlcOx & (B)** *Cde***AlcOx.** Specific activities were measured by the ABTS/HRP coupled assay using 3 mM BnOH. pH ranging from 4 to 7.5 and 7.5 to 9 were respectively maintained with 50 mM citrate phosphate buffer (blue diamond) and 50 mM Tris-HCl buffers (green circle). *Cta***AlcOx** and *Cde***AlcOx** were used at 1 nM. Error bars show s.d. (independent experiments, n = 3).

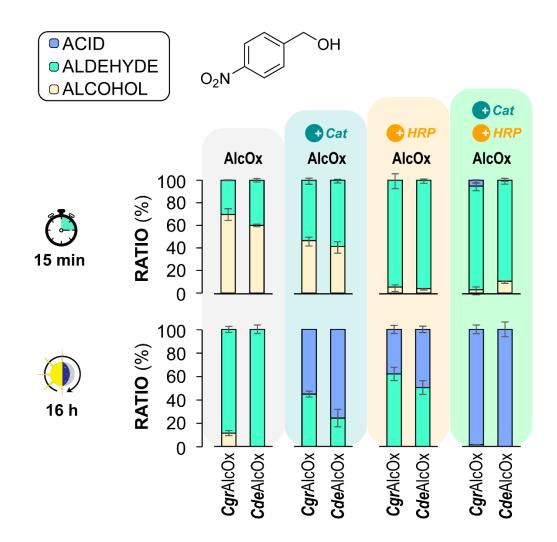
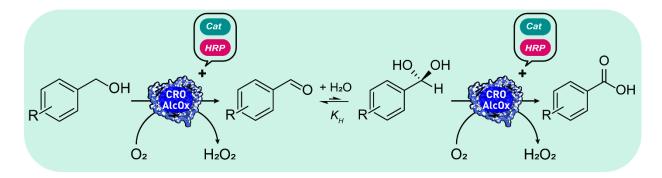



Figure S8. CgrAlcOx and CdeAlcOx mediated oxidation of 4-NO₂-BnOH. Reactions were incubated for either 15 minutes or 16 hours. All reaction mixtures contained: 3 mM substrate and 1 μ M AlcOx, in phosphate sodium buffer (50 mM, pH 8.0) and 23°C. Reactions varied as follows: no auxiliary enzyme added, addition of catalase (8 μ M final), addition of HRP (12 μ M final), addition of both catalase (0.5 μ M) and HRP (12 μ M final). Conversion products were analyzed by GC-FID. Error bars show s.d. (independent experiments, n = 3).

Scheme S1. Proposed mechanism (based on a previous study (4)) for the oxidation of benzyl alcohol derivatives by the *Cgr*AlcOx.

Table S1. Top-five of most abundant proteins in *Colletotrichum* secretomes (according to PAI). Each cell contains the protein type and its JGI accession number (in italic) ^{a,b}

C. tabacum

	YG			YG-CME		
Rank	d3	d7	d14	d3	d7	d14
1	0	CBM1- PL3_2; <i>10469</i>	GH72; <i>10141</i>	AA9; 4708	GH17; <i>3085</i>	AA9; 4708
2	Putative FAD oxidoreductase; <i>12106</i>		CBM1-PL3_2; <i>10469</i>	AA9; 10008	AA1_3; 10075	GH17; <i>3085</i>
3	Feruloyl esterase; 4066	CE1; <i>13740</i>	CE1; <i>13740</i>	<mark>AA9</mark> ; 1520	GH15-CBM20; <i>11319</i>	AA5_1; 827
4	GH31; <i>10601</i>		CBM35-GH26; <i>14407</i>	AA1_3; 10075	PL1_7; 9696	AA9; 10008
5	GH17; <i>5071</i>		Feruloyl esterase; 4066	UNK; <i>11499</i>	AA9; 10008	GH15-CBM20; <i>11319</i>

C. destructivum

	YG			YG-CME		
Rank	d3	d7	d14	d3	d7	d14
1	L-gulonolactone oxidase; 12384		L-gulonolactone oxidase; 12384	CE4-CBM18- CBM18; <i>8548</i>	AA5_1; 827	UNK; 1971
2	Adenosylhomocy steinase; 48		Putative FAD oxidoreductase; 12106	•	L-gulonolactone oxidase; 12384	AA5_1; 827
3		CE5- CBM24- CBM24; <i>13441</i>	GH3; <i>4665</i>	UNK; 1987	CE4-CBM18- CBM18; <i>8548</i>	L-gulonolactone oxidase; 12384
4	· · ·		Putative peptidase; 590	GH105; <i>4860</i>	AA3_2; 3248	AA3_2; 3248
5	GH17; <i>3085</i>		GH15-CBM20; <i>8930</i>	Putative serine- protease; 7903	Putative FAD oxidoreductase; 12106	Putative FAD oxidoreductase; 12106

C. graminicola

	YG	YG-CME		
	d7	d14	d7	d14
1	GH28; <i>4565</i>	GH28; 4565	GH28; 4565	GH28; <i>4565</i>
2	Putative DNase; 11676	,	Putative cerato- platanin; <i>4510</i>	Putative cerato- platanin; <i>4510</i>
3	GH18; <i>10483</i>	Putative DNase; 11676	UNK; 2752	GH18; <i>10483</i>
4	Putative sulfhydryl oxidase; 4345	Putative tannase and feruloyl esterase; 6369	GH18; <i>10483</i>	UNK; <i>2752</i>
5	GH17; 9930		Putative DNase; 11676	Putative DNase; 11676

^a "putative" qualifies proteins not annotated in the main analysis and subsequently manually blasted against NCBI database ^bAA enzymes are displayed in red

	Rate	Т	Time
Compounds	(°C.min ⁻¹)	(°C)	(min)
	-	130	3
$(4-NO_2-benzyl-)^1$	3	180	0
	40	220	5
	-	40	4
(Hexan-) ¹	8	100	0
	25	220	3
$(Oaton)^{1}$	_	80	5.5
$(\text{Octan-})^1$ –	12	220	3.5

 Table S2. GC-programs applied for analysis of the different compounds.

 $^{^{1}}$ Substrate scaffold bearing the primary alcohol, the aldehyde or the carboxylic acid function.

REFERENCES

- Mathieu Y, Offen WA, Forget SM, Ciano L, Viborg AH, Blagova E, Henrissat B, Walton PH, Davies GJ, Brumer H. 2020. Discovery of a fungal copper radical oxidase with high catalytic efficiency towards 5-hydroxymethylfurfural and benzyl alcohols for bioprocessing. ACS Catal. 10:3042–3058.
- Yin D, Urresti S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin J-G, Henrissat B, Walton PH, Davies GJ, Brumer H. 2015. Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. 1. Nat Commun. 6:10197.
- 3. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. 6. Nat Protoc. 10:845–858.
- Ribeaucourt D, Bissaro B, Guallar V, Yemloul M, Haon M, Grisel S, Alphand V, Brumer H, Lambert F, Berrin J-G, Lafond M. 2021. Comprehensive Insights into the Production of Long Chain Aliphatic Aldehydes Using a Copper-Radical Alcohol Oxidase as Biocatalyst. ACS Sustainable Chem Eng. 9:4411–4421.