SUPPLEMENTARY INFORMATION

Identification of copper-containing oxidoreductases in the secretomes of three *Colletotrichum* **species with a focus on copper radical oxidases for the biocatalytic production of fatty aldehydes**

David Ribeaucourt1,2,3, Safwan Saker1,a, David Navarro¹ , Bastien Bissaro¹ , Elodie Drula1,4,5 , Lydie Oliveira Correia⁶, Mireille Haon¹, Sacha Grisel¹, Nicolas Lapalu⁷, Bernard Henrissat^{4,5,8}, *Richard J. O'Connell⁷ , Fanny Lambert³ , Mickaël Lafond2* and Jean-Guy Berrin1**

¹INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France

²Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France

³V. Mane Fils, 620 route de Grasse, Le Bar sur Loup, France

4 INRAE, USC1408, AFMB, Marseille, France

⁵CNRS, Aix Marseille Univ, UMR7257, AFMB, Marseille, France

⁶Plateforme d'Analyse Protéomique de Paris Sud-Ouest, INRAE, AgroParisTech, Université Paris-Saclay, Micalis Institute, Jouy-en-Josas, France

⁷UMR BIOGER, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-11Saclay, Versailles, France

⁸Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia

a present address: CRITT BOIS, Epinal, France

*corresponding authors:

Jean-Guy Berrin [\(jean-guy.berrin@inrae.fr\)](mailto:jean-guy.berrin@inrae.fr) Mickaël Lafond [\(mickael.lafond@univ-amu.fr\)](mailto:mickael.lafond@univ-amu.fr)

Figure S1: Phylogenetic tree representation for the alignment of *C. destructivum* **and** *C. tabacum* **AA5_2 (displayed in bold characters and marked with an asterisk) with some of the characterized AA5_2s.** The tree was derived from a multiple sequence alignment. The modularity of the *Cde*- and *Cta*AA5_2 is represented next to their name; Abbreviations: SP,signal peptide; GLOX, Glyoxal oxidase; RafOx, Raffinose oxidase (1).

Figure S2. Quantification of total soluble proteins in *Colletotrichum* **secretomes using the Bradford assay and BSA as standard.** The total volume of each secretome was 300 mL. Error bars show independent experiment (n=2).

Figure S3. CAZymes identified in the *Colletotrichum* **secretomes. (A)** relative abundance of CAZymes in the secretomes (expressed in percentage of total PAI). **(B)** Number of unique CAZymes identified in the secretomes. Abbreviations: PAI, Protein Abundance Index; AA, auxiliary activities; CE, carbohydrate esterases ; GH, glycoside hydrolases; GT, glycosyl transferases; PL, polysaccharide lyases.

Figure S4. Abundancy of intracellular proteins in *Colletotrichum* **secretomes. (A)** Proportion of proteins predicted without signal peptide (expressed in percentage of total PAI) and detected in the secretomes. **(B)** abundancy of various intracellular proteins used as marker of cell lysis. The number displayed at the top of each bar in panel B corresponds to the relative percentage of the selected proteins against total PAI of each secretome. Note: none of the selected proteins were found in *C. graminicola* secretomes.

Figure S5. **SDS-PAGE of purified recombinant AA5_2 AlcOx.** Lanes 1: molecular weight marker (PageRuler – Thermo Scientific; size expressed in kDa), 2: *Cgr*AlcOx, 3: *Cta*AlcOx, 4: *Cde*AlcOx. 3 µg of each enzyme were loaded on a 10 % polyacrylamide gel. Gel was stained by Coomassie blue and displayed as grey shades.

Figure S6. Structural view of the copper-binding centers of (A) *Cgr***AlcOx (PDB ID 5C92** (2)**), and (B)** *Cde***AlcOx (homology model).** The active site amino acid natural substitution in *Cde*AlcOx (compared to *Cgr*AlcOx) is framed and highlighted. The *Cde*AlcOx model was generated through Phyre2 web portal (3).

Figure S7: pH-rate profiles of (A) *Cta***AlcOx & (B)** *Cde***AlcOx.** Specific activities were measured by the ABTS/HRP coupled assay using 3 mM BnOH. pH ranging from 4 to 7.5 and 7.5 to 9 were respectively maintained with 50 mM citrate phosphate buffer (blue diamond) and 50 mM Tris-HCl buffers (green circle). *Cta*AlcOx and *Cde*AlcOx were used at 1 nM. Error bars show s.d. (independent experiments, n = 3).

Figure S8. *Cgr***AlcOx and** *Cde***AlcOx mediated oxidation of 4-NO2-BnOH.** Reactions were incubated for either 15 minutes or 16 hours. All reaction mixtures contained: 3 mM substrate and 1 µM AlcOx, in phosphate sodium buffer (50 mM, pH 8.0) and 23°C. Reactions varied as follows: no auxiliary enzyme added, addition of catalase (8 μ M final), addition of HRP (12 μ M final), addition of both catalase (0.5 μ M) and HRP (12 µM final). Conversion products were analyzed by GC-FID. Error bars show s.d. (independent experiments, $n = 3$).

Scheme S1. Proposed mechanism (based on a previous study (4)**) for the oxidation of benzyl alcohol derivatives by the** *Cgr***AlcOx.**

Table S1. Top-five of most abundant proteins in *Colletotrichum* **secretomes** (according to PAI). Each cell contains the protein type and its JGI accession number (in italic) a,b

C. tabacum

C. destructivum

C. graminicola

^a"putative" qualifies proteins not annotated in the main analysis and subsequently manually blasted against NCBI database bAA enzymes are displayed in red

	Rate	т	Time
Compounds	$(^{\circ}C.min^{-1})$	$({}^{\circ}C)$	(min)
$(4-NO_2$ -benzyl- $)^1$		130	3
	3	180	
	40	220	5
$(Hexan-)$ ¹		40	
	8	100	
	25	220	3
$(Octan-)$ ¹		80	5.5
	12		3.5

Table S2. GC-programs applied for analysis of the different compounds.

¹ Substrate scaffold bearing the primary alcohol, the aldehyde or the carboxylic acid function.

REFERENCES

- 1. Mathieu Y, Offen WA, Forget SM, Ciano L, Viborg AH, Blagova E, Henrissat B, Walton PH, Davies GJ, Brumer H. 2020. Discovery of a fungal copper radical oxidase with high catalytic efficiency towards 5-hydroxymethylfurfural and benzyl alcohols for bioprocessing. ACS Catal. 10:3042–3058.
- 2. Yin D, Urresti S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin J-G, Henrissat B, Walton PH, Davies GJ, Brumer H. 2015. Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. 1. Nat Commun. 6:10197.
- 3. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. 6. Nat Protoc. 10:845–858.
- 4. Ribeaucourt D, Bissaro B, Guallar V, Yemloul M, Haon M, Grisel S, Alphand V, Brumer H, Lambert F, Berrin J-G, Lafond M. 2021. Comprehensive Insights into the Production of Long Chain Aliphatic Aldehydes Using a Copper-Radical Alcohol Oxidase as Biocatalyst. ACS Sustainable Chem Eng. 9:4411–4421.