
3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 1/15

Mapping Species Ranges from eBirddata
Ryan Huang
Feb 22 2021

Last updated: 2021-03-16 11:10:58

Introduction
What follows is a detailed guideline for batch producing ranges maps for birds using alpha
hulls and calculating Area of Habitat. We recommend reading the paper first to gain an
understanding of the motivation, advantages, and limitations. We assume that users of this
code not only have a basic understanding of R, but also in using eBird's 'auk' package. Ideally,
users will be able to adapt the provided code to their use case.

This example will produce a range map for the moss-backed tanager, Bangsia edwardsi, a
forest bird native to Ecuador and Colombia. As such, we use the Hansen forest cover data and
determine the threshold of forest cover based on the distribution of presence points. However,
you may subsitute it for any landcover or other environmental layer you wish to refine by.

Packages

Here is a list of the necessary packages:

suppressPackageStartupMessages({

 library(auk)

 library(rgdal)

 library(rgeos)

 library(raster)

 library(sf)

 library(dplyr)

 library(spdplyr)

 library(lubridate)

 library(alphahull)

 library(hull2spatial)

 library(SpatialPosition)

 library(tmaptools)

 library(gstat)

 library(leaflet)

})

Data

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 2/15

You will need to provide several external datasets to run this code. The mandatory datasets
are a DEM and a raster of habitat which I call DEM and forest respectively. In Huang et al.,
we also include a shapefile of published ranges (publishedRange) from BirdLife as well as a
table of species' elevation ranges (publishedElev) also provided by BirdLife.

Projections

You need two coordinate systems, a geographic and a projected coordinate system. The
geographic coordinate system is to allow items to be plot via Leaflet. The projected coordinate
system is needed to create and buffer the alpha hulls in a later step. Here, we used WGS84
and South America Alber's Equal Area

Auk
Please refer to the Cornell Lab of Ornithology documentaion for instructions on using the 'auk'
package (Strimas-Mackey et al. 2018; https://cornelllabofornithology.github.io/auk/). The code
shown here follows the guidelines; ebd represents the eBird Basic Dataset and sed is the
eBird Sampling Event Data.

Checklists
After defining the reference for the eBird data, you must define filters for the checklists that will
define your absences. Here I filter eBird checklists to only complete checklists within the extent
of the forest data layer. We also remove “Historical” and “Incidental” checklists and “Traveling”
checklists greater than 3 hours or 7km due to low confidence in the exact location of the
record. The “Traveling” distance limit of 7km also informed the size of the non-detection
squares as it is the diagonal of a 5km x 5km square. We will convert each of the checklists into
a point at a later step.

WGS84.proj <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")

SAmer.proj <- CRS("+proj=aea +lat_1=-5 +lat_2=-42 +lat_0=-32 +lon_0=-60 +x_

https://cornelllabofornithology.github.io/auk/

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 3/15

Mapping a Species
All previous steps described only need to be run once per session. From this point on, you
need to iterate through all of these steps for each species you intend to map. A simple for loop
will work that refers to a list of target species. For our example, we will work with a single
species and set sci.name="Bangsia edwardsi"

Species Presences
To collect presences, we again use the eBird 'auk'package with the same set of filters as
previously. Once we have a data frame of presences, we again convert them to points. A
benefit of these methods is that one can interrogate any presence point used to build these
maps, either while it is in the data frame, or after it's been converted into spatial points. We
have made several decisions in determining which points we are confident in using to build
these maps, but anyone who may wish to include or exclude certain presences may simply
add or remove these points at this point and execute the code.

extent <- extent(forest)

bbox <- c(extent@xmin, extent@ymin, extent@xmax, extent@ymax)

protocols <- valid_protocols[-c(21,23)]

checklists <- sed %>%

 auk_bbox(bbox) %>%

 auk_protocol(protocols) %>%

 auk_complete() %>%

 auk_filter("checklists.txt", overwrite = TRUE) %>%

 read_sampling()

checklists <- subset(checklists, !(protocol_type == "Traveling" & (duration

coordinates(checklists) <- c("longitude", "latitude")

proj4string(checklists) <- WGS84.proj

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 4/15

Alpha Hulls

Once we have the presence points, we create an alpha hull to delineate the extent of interest.
Alpha hulls are a generalization of convex hulls (i.e. all convex hulls are alpha hulls but not all
alpha hulls are convex hulls) that use a parameter alpha to pinch in empty space without
removing points. (The units of alpha are the units of the coordinate system you use, which is
why we must project the points). In regions like the Andes where presences may follow a
concave shape, the bounding polygon would not include the same amount of empty space as
a minimum convex polygon. We have previously loaded the 'alphahull' package written by
Pateiro-Lopez (2019) and the 'hull2spatial' package by Babich Morrow (2021).

We also want to ensure our alpha hull includes the published range. However, since alpha
hulls do not take polygons as inputs, we need to convert the polygon to points and append
them to our eBird presences.

#This will filter the ebd for the target species. You can also skip this st

species <- ebd %>%

 auk_species(sci.name) %>%

 auk_complete() %>%

 auk_protocol(protocols) %>%

 auk_filter(paste0("Bangsia ewardsi.txt"), overwrite = TRUE) %>%

 read_ebd()

species <- subset(species, !(protocol_type == "Traveling" & (duration_minut

species <- species[,colSums(is.na(species))==0] #Removing excess columns to

#These steps insert columns that will be referencd by the interactive map

species <- species %>%

 mutate(year = year(observation_date)) %>%

 mutate(url = paste0("https://ebird.org/checklist/", checklist_id))

coordinates(species) <- c("longitude", "latitude")

proj4string(species) <- WGS84.proj

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 5/15

presences <- spTransform(species, SAmer.proj)

hull.coords <- presences@coords #We only need to input the coordinates of e

#We recommend setting the alpha-value to the median of the interpresence di

pair.dist<-pointDistance(hull.coords, lonlat = FALSE, allpairs = TRUE)

diag(pair.dist)<-NA

alpha = median(pair.dist, na.rm=T)

poly.p <- spTransform(publishedRange, SAmer.proj)

#Sometimes the polygon sides are long without vertices, so we segment every

poly.p <- as_Spatial(st_segmentize(st_as_sf(poly.p), units::set_units((alph

for (k in 1:length(poly.p@polygons[[1]]@Polygons)){ #This loop is needed if

 poly.coords <- poly.p@polygons[[1]]@Polygons[[k]]@coords

 colnames(poly.coords) <- colnames(hull.coords)

 hull.coords <- rbind(hull.coords, poly.coords)

}

hull.coords <- hull.coords[!duplicated(hull.coords),]

alphaHull<-ahull(x = hull.coords[,1], y = hull.coords[,2], alpha = alpha)

plot(alphaHull) #You can see the raw ahull object bounding the species pres

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 6/15

Refined Habitat

Recent work has been refining published ranges and Extent of Occurrence in Area of Habitat
(AOH) (Ocampo-Pe昼㸱uela et al. 2016). Area of Habitat often reflects a more realistic
depiction of how much fragmentation and total habitat is available to a species as opposed to a
homegeneous polygon. Refining ranges by elevation and landcover are straightforward
approaches to do so.

Here, we refine our previously generated alpha hulls using our rasters for DEM and forest
(Hansen, 2013). To set thresholds for each, we utilize the distribution of values at our
presences, using the middle 98% of elevations and the upper 75% of forest cover percents.
Similar to which presence points you wish to use, you may set different thresholds depending
on your confidence in the locations of the crowd-sourced data.

alphaHullLines <- ahull2lines(alphaHull)

alphaHullPoly <- spLines2poly(alphaHullLines)

proj4string(alphaHullPoly) <- SAmer.proj

hull <- gBuffer(alphaHullPoly, width = 1000) #Set your buffer width in map

hull <- spTransform(hull, WGS84.proj) #We need to convert back to decimal d

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 7/15

#Forest Cover

species@data$forest_cover <- raster::extract(forest, species)

spForest <- species@data %>% filter(year>1999) %>% select(forest_cover) #we

spForest <- spForest[spForest>0]

forestThreshold <- unname(quantile(spForest, probs = 0.25))

forest.rcl <- matrix(

 c(0, forestThreshold, forestThreshold, 100,NA, 1),

 nrow = 2, ncol = 3)

forestMask <- raster::mask(forest, hull)

forestMask <- crop(x = forestMask, y = extent(hull))

forestRange <- reclassify(forestMask, forest.rcl, right = FALSE)

#Elevation

species@data$elevation <- raster::extract(DEM, species)

spDEM <- species@data$elevation

DEMLimits <- unname(quantile(spDEM, probs = c(.01,.99)))

#To produce a more conservative estimate, we use the widest range of elevat

#of the distribution of crowd sourced points and the published elevational

if(!is.na(publishedElevMin)){

 DEMmin <- min(c(DEMLimits[1], publishedElevMin))

}else{

 DEMmin <- DEMLimits[1]

}

if(!is.na(publishedElevMax)){

 DEMmax <- max(c(DEMLimits[2], publishedElevMax))

}else{

 DEMmax <- DEMLimits[2]

}

DEM.rcl <- matrix(

 c(DEM@data@min, DEMmin, DEMmax, DEMmin, DEMmax, DEM@data@max, NA, 1, NA),

 nrow = 3, ncol = 3)

DEMmask <- mask(DEM, hull)

DEMmask <- crop(x = DEMmask, y = extent(hull))

DEMRange <- reclassify(DEMmask, DEM.rcl, right = FALSE)

#The following ensures your rasters line up perfectly

if(extent(DEMRange) != extent(forestRange)){

 extent(DEMRange) <- extent(forestRange)

 DEMRange <- resample(DEMRange, forestRange)

}

habitatRefined <- mask(forestRange, DEMRange)

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 8/15

Presences vs Absences
Now that we have a refined Area of Habitat, we are interested in leveraging the vast amount of
checklists in the eBird dataset. The often-expressed idea that “the absence of evidence is not
evidence of absence” has obvious limits. If an area has been extensively surveyed for years
without the species having been recorded, it may be indicative of a true absence.

Using eBird's “complete checklists”, we have some sense of how thoroughly an area has been
surveyed. We set the threshold for an absence to be 25 complete checklists without a single
presence within a 5 km x 5 km grid cell, but this may be set to whatever threshold you believe
is appropriate.

This purpose of this section of code is to create a layer of points coded as either a presence,
or the center point of an “absence.” Now we will use the checklists points we used earlier.
The reason we did not generate the list of checklists here is to allow batch processing of many
species using a loop without having to generate the checklists every time.

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 9/15

#We first select only the checklists within our alpha hull and within appro

sppChecklists <- checklists[hull,]

sppChecklists@data$habitat <- raster::extract(habitatRefined, sppChecklists

sppChecklists <- sppChecklists %>%

 filter(sppChecklists@data$habitat>0)

#We create a blank raster for our extent of interest. This raster will beco

#checklists in our grid cells. You can also think of this as a map of surve

effort <- raster(extent(habitatRefined))

res(effort) = res(habitatRefined)*5 #the habitat raster is 1km and we want

crs(effort) <- crs(habitatRefined)

#Here we tabulate the number of checklists in each grid cells and assign th

effortTable <- table(cellFromXY(effort, sppChecklists))

effort[as.numeric(names(effortTable))] <- effortTable

effort[effort < 25] <- NA #We set our threshold for absences to be 25 check

presenceAbsenceRaster <- effort

ii <- extract(presenceAbsenceRaster, species, cellnumbers=TRUE)[,"cells"]

presenceAbsenceRaster[ii] <- NA #This eliminates any cell where a presence

absenceRaster <- presenceAbsenceRaster #we save the absence raster for disp

#We now convert cells of absences to 0's rather than number of checklists w

absenceCells <- extract(presenceAbsenceRaster, sppChecklists, cellnumbers=T

ii <- subset(absenceCells, !is.na(absenceCells[,"layer"]))[,"cells"]

presenceAbsenceRaster[ii] <- 0

#Below we convert the absence raster cells into points at the center and co

#we are left with points with values of 1 and 0 for presences and absences

absencesPts <- data.frame(coordinates(presenceAbsenceRaster), Presence=pres

absencesPts <- absencesPts[!is.na(absencesPts$Presence),]

if(length(absencesPts$Presence)>0){

 coordinates(absencesPts) <- c("x", "y")

 proj4string(absencesPts) <- proj4string(habitatRefined)

 presenceAbsencePts <- matrix(

 c(absencesPts@coords[,1], species@coords[,1],

 absencesPts@coords[,2], species@coords[,2],

 rep(0, length(absencesPts@coords[,1])),rep(1, length(species@coords[,

 ncol = 3)

 presenceAbsencePts<- presenceAbsencePts[!duplicated(presenceAbsencePts[,1

}else {

 presenceAbsencePts <- matrix(

 c(species@coords[,1],

 species@coords[,2],

 rep(1, length(species@coords[,1]))),

 ncol = 3)

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 10/15

Nearest Neighbor Interpolation
Now that we have spatial points with values to represent presences or absences, we want to
identify every pixel in our extent of interest that is closer to a presence or an absence. We
define Area of Habitat closer to a presence as Potentially Occupied Area of Habitat (POAOH).
We can acheive this Using a simple, unweighted nearest neighbor interpolation.

[inverse distance weighted interpolation]

nearestNeighbor <- reclassify(nearestNeighbor, nn.rcl, right = FALSE)

POAOH<- mask(habitatRefined, nearestNeighbor)

Mapping Our Results
We now have all the pieces to visualize the final maps. We have the presences, the
“absences”, the alpha hull, the Area of Habitat, and the Potentially Occupied Area of Habitat.
We will now put these together in a interactive Leaflet map. This is not meant to be a tutorial in
using Leaflet, so if you wish to learn more, you can find the documentation here:
https://rstudio.github.io/leaflet/

The major benefit of creating an interactive map is to allow the interrogation of all the
underlying data. You can zoom in and out, click on absent grid cells to see the number of
checklists without a presence, or click on any presence point to view the date of observation,
the elevation, forest cover %, or even link to the eBird checklist for further investigation. The

}

colnames(presenceAbsencePts) <- c("Long", "Lat","Presence")

presenceAbsencePts <- data.frame(presenceAbsencePts)

coordinates(presenceAbsencePts) <- c("Long", "Lat")

proj4string(presenceAbsencePts) <- WGS84.proj

nn.rcl <- matrix(

 c(0, 0.5, 0.5, 1,NA, 1),

 nrow = 2, ncol = 3)

blankRaster <- raster(extent(habitatRefined))

res(blankRaster) = res(habitatRefined)

crs(blankRaster) <- WGS84.proj

gs <- gstat(formula = presenceAbsencePts$Presence ~ 1, locations = presence

nearestNeighbor <- interpolate(blankRaster, gs)

https://rstudio.github.io/leaflet/

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 11/15

resulting map not only makes the process more transparent by seeing what data has been
included, but it also allows anyone to make decisions as to which data points to include or
exclude.

#First we will set the colors and symbology

#colors

presence.col <- "#a9eb75"

AOH.col <- "#808080"

POAOH.col <- "#0d4201"

published.col <- "#d6872d"

hull.col <- "#6CD4FF"

Legend

legend.values = c("Presence Points", "Area of Habitat", "Possible Area of H

legend.col = c(presence.col, AOH.col, POAOH.col, published.col , hull.col)

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 12/15

#Now we will create the Leaflet map

suppressWarnings(range_map <- leaflet() %>%

 addProviderTiles(providers$Esri.WorldTopoMap) %>%

 addRasterImage(habitatRefined, colors = AOH.col, opacity

 addRasterImage(POAOH, colors = POAOH.col, opacity = 1) %

 addPolygons(data = hull, stroke = TRUE, color = hull.col

 addPolygons(data = publishedRange, color = published.col

 #This next line controls the ability to turn layers on a

 addLayersControl(overlayGroups = c("Published Range","No

 options = layersControlOptions(collapse

 #This mini map provides an inset map for context

 addMiniMap(

 tiles = providers$Esri.WorldTopoMap,

 width = 150,

 height = 150) %>%

 addLegend("topright",

 colors = legend.col,

 labels = legend.values,

 opacity = 1,

 title = paste(sci.name, "
 Alpha =",floor(a

 addScaleBar(options = scaleBarOptions(metric = TRUE, imp

#We will also convert the absence raster into polygons to interact with

absencePolygon <- rasterToPolygons(absenceRaster)

absenceLabels <- absencePolygon@data$layer

absence.col <- colorNumeric(

 palette = "YlOrRd",

 domain = absencePolygon$layer)

range_map <- range_map %>%

 addPolygons(data = absencePolygon,

 fillColor = ~absence.col(layer),

 color = ~absence.col(layer),

 opacity = 1,

 weight = 1,

 fillOpacity = 0.75,

 popup = ~paste("Absences: ",layer,"
"),

 group = "Non-Detection") %>%

 addLegend("bottomleft", pal = absence.col, values = absencePolygon$layer,

 title = "Number of Absences",

 opacity = 1)

#Lastly we will add the presences

range_map <- range_map %>%

 addCircleMarkers(data = species,

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 13/15

range_map

 radius = 4,

 fillColor = presence.col,

 fillOpacity = 1,

 stroke = TRUE,

 opacity = 1,

 weight = 1,

 #This is where Leaflet reads the attributes for each poi

 popup = ~paste("Protocol: ", protocol_type, "

 "Date: ", observation_date, "
"

 "Elevation (m): ", elevation, "<br

 "Forest Cover (%): ", forest_cover

 "Locality: ", locality, "
",

 "Checklist: ","<a href='",url,"' t

 color = "#4d7e29",

 group = "eBird Presences")

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 14/15

References
M. Strimas-Mackey, E. Miller, and W. Hochachka (2018). auk: eBird Data Extraction and
Processing with AWK. R package version 0.3.0. https://cornelllabofornithology.github.io/auk/

B. Pateiro-Lopez and A. Rodriguez-Casal (2019). alphahull: Generalization of the Convex Hull
of a Sample of Points in the Plane. R package version 2.2. https://CRAN.R-
project.org/package=alphahull

C. Babich Morrow (2021). hull2spatial: Convert Alpha Hulls to Spatial* Objects. R package
version 0.1.0.

https://cornelllabofornithology.github.io/auk/
https://cran.r-project.org/package=alphahull

3/16/2021 Mapping Species Ranges from eBird data

file:///D:/Bird Range Mapping/MapLayers/BatchMapping9_Clean.html 15/15

N. Ocampo-Pe昼㸱uela, C. N. Jenkins, V. Vijay, B. V. Li, and S. L. Pimm (2016). Incorporating
explicit geospatial data shows more species at risk of extinction than the current Red List.
Science Advances 2, e1601367 .

