Current Biology, Volume 31

Supplemental Information

The arbitrium system controls prophage induction

Aisling Brady, Nuria Quiles-Puchalt, Francisca Gallego del Sol, Sara Zamora-Caballero, Alonso Felipe-Ruíz, Jorge Val-Calvo, Wilfried J.J. Meijer, Alberto Marina, and José R. Penadés

Figure S1. Model for the mechanism of action of the arbitrium system in phages of the SPβ family, Related to Figure 3. (A) The arbitrium model prior to this study describes that after infection of a SPβ prophage, AimR is being expressed and binds to the operator site promoting expression of the *aimX* sRNA and promoting the lytic cycle. After AimP accumulates above the threshold levels, it binds to AimR disrupting its binding to the DNA and reducing expression of *aimX*, leading to lysogeny. (B) Our understanding is that the arbitrium system of SPβ is involved in a more complex mechanism to control prophage induction. The regulator AimR functions to inhibit the phage repressor, YopR, thus promoting prophage induction. Another component of the system is YopN that we hypothesise to promote YopR activity, acting as a negative regulator of prophage induction. We propose that following activation of the SOS response, AimR activates an unknown component that blocks YopN function, thus reducing the activity of YopR and promoting induction.

Figure S2. Analysis of the *aim*R and *aim*P deletions in SPβ-type prophages, Related to Figure 5. (A) Lysogenic strains for phage SPβ, SPβ Δaim R or SPβ Δaim P were MC induced (0.5 µg/ml) and incubated at 30 °C with 80 rpm shaking for 4 h. The lysates were left overnight at room temperature before being photographed. (B) Complementation of the *aim*R mutant in SPβ. Strains lysogenic for phage SPβ wt, Δaim R, Δaim R am/E::Pspank and Δaim R am/E::Pspank-AimR were MC induced (0.5 µg/ml) and the number of resulting phages were quantified by titering using 168 $\Delta 6$ as the recipient strain. The results are represented as the plaque forming units (PFUs) mL-1. The means and SDs are presented (n = 5). An ordinary one-way ANOVA of transformed data was performed to compare mean differences between titres. Adjusted p values were as follows: SPβ Δaim R *am*/E::Pspank and Δaim R am/E::Pspank-AimR ns = not significant. (C) Complementation of the *aim*R mutant in phi3T. Strains lysogenic for phage sphi3T wt, Δaim R am/E::Pspank and Δaim R am/E::Pspank-AimR ns = not significant. (C) Complementation of the *aim*R mutant in phi3T. Strains lysogenic for phages phi3T wt, Δaim R am/E::Pspank and Δaim R am/E::Pspank-AimR ns = not significant. (C) Complementation of the *aim*R mutant in phi3T. Strains lysogenic for phages phi3T wt, Δaim R am/E::Pspank and Δaim R am/E::Pspank-AimR ns = not significant. (D) SPβ lysates were tittered using 168 $\Delta 6$ as the recipient strain. The resulting phages were quantified by titering using 168 $\Delta 6$ as the recipient strain. The resulting plaque morphologies were quantified by titering using 168 $\Delta 6$ as the recipient strain. The resulting plaque morphologies were quantified by titering using 168 $\Delta 6$ as the recipient strain. The resulting plaque morphologies were quantified by titering using 168 $\Delta 6$ as the recipient strain. The resulting plaque morphologies were quantified by titering using 168 $\Delta 6$ as the recipient strain. The resulting plaque were quantified by t

Figure S3. Complementation of the *aim***R** mutants in recipient strain , Related to Figure 4 and Figure 5. (A) Strain lysogenic for phage SP $\beta \Delta aim$ R was MC induced (0.5 µg/ml) and the number of resulting phages were quantified by titering using 168 $\Delta 6 amy$ E::Pspank (-) or 168 $\Delta 6 amy$ E::Pspank-AimR_{SP $\beta}$} (+) as recipient strains. The results are represented as the plaque forming units (PFUs) mL⁻¹. The means and SDs are presented (n = 4). An ordinary one-way ANOVA of transformed data was performed to compare mean differences between titres. Adjusted p values were as follows: column A vs column B ****p = <0.0001; column A vs column C ns = not significant; column A vs column A vs column C ns = not significant; column A vs column A vs column C ns = not significant; column A vs column D ****p = <0.0001. (B) Strain lysogenic for phage Phi3T Δaim R was MC induced (0.5 µg/ml) and the number of resulting phages were quantified by titering using 168 $\Delta 6$ amyE::Pspank (-) or 168 $\Delta 6$ and $\Delta aimR$ amyE::Pspank-AimR_{phi3T} (+) as recipient strains. The results are represented as the plaque forming units (PFUs) mL⁻¹. The means and SDs are presented (n = 3). An ordinary one-way ANOVA of transformed data was performed to compare mean differences between titres. Adjusted p values were as follows: column A vs column B ****p = <0.0001; column A vs column B ****p = <0.0001; column A vs column A vs column C ns = not significant; column A vs column D ****p = <0.0001. (C) Plaques morphologies produced after titration of the SP $\beta \Delta aim$ R using 168 $\Delta 6$ amyE::Pspank (-) or 168 $\Delta 6$ amyE::Pspank Aim R_{SP $\beta}$ (+) as recipient strains were photographed. (D) Overexpression of AimR does not induce the lytic cycle. Strains lysogenic for phage SP β amyE::Pspank and SP β amyE::Pspank-AimR_{SP $\beta}$ were analysed for their ability to produce phage particles under several conditions: without induction (No MC), with phage induction (+ MC 0.5 µg/ml) and with Pspank induction (+ IPTG 1mM). The number of resulting phages were qua}}

Figure S4. Schematic representation of the SP β Δaim R evolution procedure Related to STAR Methods. SP β Δaim R lysate was acquired following MC induction of a lysogenic strain carrying the SP β Δaim R phage. The lysate was titered using 168 $\Delta 6$ as the recipient strain and the resulting cloudy plaques were collected and passaged, as described in the STAR Methods, until wt-appearing plaques were obtained. Created with BioRender.com

Figure S5. Plaque morphology of SP β wt, $\Delta aimR$, $\Delta yopN$, $\Delta aimR$ -yopN and yopR::erm phages, Related to Figure 5 and Figure 6. Strains lysogenic for phage SP β wt, $\Delta aimR$, $\Delta yopN$ and $\Delta aimR$ -yopN were MC induced (0.5 µg/ml) and titered using 168 $\Delta 6$ as the recipient strain. A strain lysogenic for phage SP β was transformed with an erythromycin cassette to replace the yopR gene. The resulting strain, supposedly yopR::erm, was MC induced (0.5 µg/ml) and titered using 168 $\Delta 6$ as the recipient strain. The resulting plaque morphologies were photographed.

SPβ

Unconserved 012345678910 Conserved

	50
SP MELIRIAMKK DLENDNSLMN KWATVAGLKN PNPLYDFLNH DG	KTFNEFSS
Katmira MELIRIAMKK DLENDNSLMN KWATVAGLKN PNPLYDFLNH DG	KTFNEFSS
Consistency ********* **************************	*******
	100
SPIVNIVKSQYP DREYELMKDY CLNLDVKTKA ARSALEYADA NM	FFEIEDVL
Katmira IVNIVKSQYP DREYELMKDY CLNLDVKTKA ARSALEYADA NM	FFEIEDAL
Consistency ********* **************************	*****5*
	150
SPIDSMISCSNM_KSKEYGKVYK_IHRELS <mark>NSVI_TE</mark> FEAVKRLG_KL	NIKTPEMN
Katmira IDSMISCSNM KSKEYGKVYK IHRELS <mark>KGE</mark> I <mark>DV</mark> FEASANIG KQ	RIKTAEMN
Consistency ********* **************************	4 * * * 3 * * *
	1002 - V.202
	200
SPSFSRLLLLYH YLSTGNFSPM AQLIKQIDLS EISENMYIRN TY	QTRVHVLM
Katmira <mark>IFSKMLLMYD CLNK</mark> GNFAPM ML <mark>LFQ</mark> QIDLS EI <mark>KENR</mark> YLKN SF	ETRINVLL
Consistency 2 ** 6 7 * * 7 * 2 1 * 5 3 * * * 6 * * 3 2 * 4 5 * * * * * * 4 * * 3 * 7 6 * 5 6	6 * * 8 4 * * 7
	250
SPSNIKLNENSL EECREYSKKA LESTNILRFQ VFSYLTIGNS LL	FSNYELAQ
SPSNIKLNENSL EECREYSKKA LESTNILRFQ VFSYLTIGNS LL Katmira SNIYLNENNL ELCREYAQKA ISSTDTQRFL VFSYLTIGTS YI	FSNYELAQ FSDFNLSK
SPSNIKLNENSL EECREYSKKA LESTNILRFQ VFSYLTIGNS LL Katmira SNIYLNENNL ELCREYAQKA ISSTDTQRFL VFSYLTIGTS YI Consistency * * * 2 * * * 5 * * 1 * * * 65 * * 7 4 * * 5 32 * * 2 * * * * * * * * * * 4 37	FSNYELAQ FSDFNLSK **564*65
SPSNTKLNENSL EECREYSKKA LESTNILRFQ VFSYLTIGNS LL Katmira SNTYLNENNL ELCREYAQKA ISSTDTQRFL VFSYLTIGTS YI Consistency * * * 2 * * * * 5 * * 1 * * * 6 5 * * 7 4 * * 5 32 * * 2 * * * * * * * * * * 4 * 3 7	FSDFNLSK **564*65
SP SNTKLNENSL EECREYSKKA LESTNILRFQ VFSYLTIGNS LL Katmira SNTYLNENNL ELCREYAQKA ISSTDTQRFL VFSYLTIGTS YI Consistency * * 2 * * * 5 * * 1 * * * 6 5 * * 7 4 * * 5 3 2 * * 2 * * * * * * * * * * 4 * 3 7	FSNYELAQ FSDFNLSK ** 564*65
SP SNTKLNENSL EECREYSKKA LESTNILRFQ VFSYLTIGNS LL Katmira SNTYLNENNL ELCREYAQKA ISSTDTQRFL VFSYLTIGNS VI Consistency ***2 ***5 *1****65** 74**532**2 ********4 37	FSNYELAQ FSDFNLSK **564*65
SP SNTKLNENSL EECREYSKKA LESTNILRFQ VFSYLTIGNS LL Katmira SNTYLNENNL ELCREYAQKA ISSTDTQRFL VFSYLTIGTS YI Consistency ***2 ***5 *1****65** 74**532**2 ********4 37	FSNYELAQ FSDFNLSK **564*65
SP	FSNYE LAQ FSDFNLSK **564*65
SP SNTKLNENSL EECREYSKKA LESTNILRPQ VFSYLTIGNS LL Katmira SNTYLNENNL ELCREYAQKA ISSTDTQRFL VFSYLTIGTS YI Consistency ***2 ***5 *1 ***65 74 *532 2 *******4 37	FSNYE LAQ FSDFNLSK **564*65
SP	FSNYELAQ FSDFNLSK **564*65
SP	FSNYELAQ FSDFNLSK **564*65
SP	FSNYE LAQ FSDFNLSK **564*65
SP	FSNYE LAQ FSDFNLSK **564*65
SP	FSNYELAQ FSDFNLSK **564*65
SP	FSNYE LAQ FSDFNLSK **564*65
SP	FSNYE LAQ FSDFNLSK **564*65
SP	FSNYE LAQ FSDFNLSK **564*65

Figure S6. Homology analysis of AimR_{SPβ} and AimR_{KATMIRA1933}, **Related to STAR Methods.** AimR sequences from SPβ and KATMIRA1933 were obtained from BLAST. The superposition analysis was made using the PRALINE program. Residues conservancy is depicted by blue to red colours.

Figure S7. Schematic representation of the SPβ-like phages arbitrium and operon genetic layout, Related to Figure 3. Diagram shows the genetic organisation of the arbitrium genes, *aim*R and *aim*P, followed by the operon directly downstream. Colours denote putative functions according to BLAST results; orange: arbitrium genes, grey: unknown function, navy blue: HTH_XRE domain, green: integrase domain, purple: ParB domain, light blue: putative repressor. Rotated black line indicates the end/beginning of the contigs containing the genes described for Katmira1933. Created with BioRender.com

Strain	Gene	Mutation
JP20762	yopN	L90S
JP20766	yopN	L46P
	yopQ	T156T
JP20769	yopN	I51* Deletion produces frameshift and stop codon
Lytic phage 1	yopR	L140* Deletion produces frameshift and stop codon
Lytic phage 2	yopR	L49* Deletion produces frameshift and stop codon

Table S1. Mutations identified in evolved SP β $\Delta \textit{aim}R$ phages, Related to Figure 3 and Figure 4.

				Operon genes accession numbers					
Phage/lysogen AimR AimP	AimP sequence	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6		
SPβ	GenBank: NP_389968	GenBank: NP_389967	GMPRGA	GenBank: NP_389966	GenBank: NP_389965	GenBank: NP_389964	GenBank: NP_389963	GenBank: NP_389962	GenBank: NP_389961
phi3T	GenBank: APD21232	GenBank: APD21233	SAIRGA	GenBank: APD21235	GenBank: APD21236	GenBank: APD21237	GenBank: APD21238	GenBank: APD21239	GenBank: APD21240
Bacillus amyloliquefaciens UCMB5033	GenBank: CDG30054	*NA	SPSRGA	GenBank: CDG30052	GenBank: CDG30051	GenBank: CDG30050	GenBank: CDG30049	GenBank: CDG30048	GenBank: CDG30047
<i>Bacillus</i> <i>velezensis</i> strain SCGB 1	GenBank: ATC49385	GenBank: ATC49384	SIIRGA	GenBank: ATC49382	GenBank: ATC49381	GenBank: ATC49380	GenBank: ATC49379	GenBank: ATC49378	GenBank: ATC49377
Bacillus amyloliquefaciens TA208	GenBank: AEB23458	GenBank: AEB23459	GVVRGA	GenBank: AEB23460	Gen Ban k: AEB23461	GenBank: AEB23462	GenBank: AEB23463	GenBank: AEB23464	GenBank: AEB23465
Bacillus atrophaeus BA59	GenBank: ATO28982	GenBank: ATO28981	GMPRGA	GenBank: ATO28980	*NA	GenBank: ATO28979	*NA	GenBank: ATO28978	GenBank: ATO28977
<i>Bacillus subtilis</i> KATMIRA1933	GenBank: WP_033885437	GenBank: WP_134819006	GIVRGA	GenBank: WP_033885435	GenBank: WP_009967507	GenBank: WP_019712296	GenBank: WP_033885434	GenBank: NP_389962.1	GenBank: WP_003231032
Bacillus sonorensis L12	GenBank: WP_051056713	GenBank: WP_141231111	GFPRGA	GenBank: WP_006640569	GenBank: WP_006640568	*NA	GenBank: WP_006640567	GenBank: WP_006640566	GenBank: WP_006640565
Bacillus licheniformis strain SCDB 34	GenBank: ARC67883	GenBank: ARC67884	GFTVGA	GenBank: ARC67885	GenBank: ARC67886	*NA	GenBank: ARC67887	GenBank: ARC67888	GenBank: ARC67889

*NA: Not annotated

Table S2. Genetic composition of the arbitrium-operon region in the different SP β -like phage families, Related to Figure 3.

Strains	Genotype or description	Reference or source
Bacillus subtilis		
168 (1A700)	trpC2	S1
Δ6 (1A1299)	<i>trpC2</i> ; Δ SP β ; subclacin 168-sensitive; Δ <i>skin</i> ; Δ PBSX; Δ prophage 1; Δ <i>pks</i> ::Cm; Δ prophage 3; Cm ^r	S2
IL26	phi3T	S3
BKK20860	trpC2 ∆aimR::kan	S4
BKE20860	trpC2 ∆aimR::erm	S4
BKE20850	<i>trpC2</i> ∆aimP::erm	S4
BKE20830	trpC2 ΔyopN::erm	S4
BKE20790	trpC2 ΔyopR::erm	S4
JP22770	trpC2 SPβ Δaim R	This study
JP22771	trpC2 SP _β Δ aimP	This study
JP22776	trpC2 SPβ ΔaimR; amyE::Pspank	This study
JP22777	trpC2 SPβ ΔaimR;	This study
JP19877	$\Delta 6$ lysogenic SP β	This study
JP19936	Δ6 lysogenic SP β Δ <i>aim</i> R	This study
JP20866	Δ6 lysogenic SP β yokl::kan	This study
JP22949	Δ6 lysogenic SP β yokl::kan Δaim R	This study
JP21702	Δ6 lysogenic SPβ <i>yok</i> l:: <i>kan Δaim</i> P	This study
JP22950	Δ6 lysogenic SPβ <i>yok</i> l::kan Δ <i>aim</i> R; <i>amy</i> E::P _{spank}	This study
JP22951	Δ6 lysogenic SP β yokl::kan Δaim R; amy E::P _{spank} aim R _{SPβ}	This study
JP21854	Δ6 lysogenic phi3T	This study
JP21870	Δ6 lysogenic phi3T <i>phi3T_5::kan</i>	This study
JP22453	Δ6 lysogenic phi3T <i>phi3T_5::kan</i> Δ <i>aim</i> R	This study
JP22454	Δ6 lysogenic phi3T <i>phi3T_5::kan</i> Δ <i>aim</i> P	This study
JP22518	Δ6 lysogenic phi3T <i>phi3T_5::kan</i> Δ <i>aim</i> R; <i>amy</i> E::P _{spank}	This study
JP22519	Δ6 lysogenic phi3T <i>phi3T_5::kan</i> ΔaimR; amyE::P _{spank} aimR _{SPβ}	This study
JP20762	Δ6 lysogenic SPβ Δ <i>aim</i> R; <i>yop</i> N L90S	This study
JP20766	Δ6 lysogenic SP β yokl::kan ΔaimR; yopN L46P; yopQ T156T	This study
JP20769	Δ6 lysogenic SPβ <i>yok</i> l:: <i>kan Δaim</i> R; <i>yop</i> N A49*	This study
JP22952	Δ6 lysogenic SP β Δ <i>yop</i> N	This study
JP22953	Δ6 lysogenic SP β Δ <i>aim</i> R Δ <i>yop</i> N	This study
JP21752	Δ6 lysogenic SP β yopR::erm	This study
JP22339	$\Delta 6$ lysogenic SP β yopR::erm; amyE::P _{spank} yopR _{SPβ}	This study
JP19679	Δ6 amyE::P _{spank}	This study
JP19944	Δ6 amyE::PspankaimRspβ	This study
JP22515	$\Delta 6 amy E:: P_{spank} aim R_{3T}$	This study
JP21941	Δ6 amyE::PspankyopRspβ	This study
JP19883	Δ6 lysogenic SP β ; <i>amy</i> E::P _{spank}	This study

Table S3. Bacterial strains, Related to STAR Methods.

Plasmid	Description	Reference or source
pDR244	<i>B. subtilis</i> thermosensitive vector containing Cre recombinase that allows excision of DNA fragments flanked by <i>lox</i> P sites	t S4
pDR110	B. subtilis amy E integration vector containing IPTG-inducible P_{span} promoter	K S5
pJP2340	$aim R_{SP\beta}$ gene cloned in integration vector pDR110	This study
pJP2801	$aim R_{3T}$ gene cloned in integration vector pDR111	This study
pJP2800	$yopR_{SP\beta}$ gene cloned in integration vector pDR110	This study

Table S4. Plasmids used in this study, Related to STAR Methods.

Mutants		Oligonucleotides	Sequence (5'-3')
kan marker without <i>lox</i> P		KanR-5m	TTTGATTTTTAATGGATAATGTGATATAATC
		KanR-6c	TCTAGGTACTAAAACAATTCATCC
erm marker with <i>lox</i> P		ErmR-1m	XAGGCGAGAAAGGAGAGAGAGACGCAAGGA GAGGC ACGCGAGG GAGG AAA GGC AGGATACCGTTCGTATAGCATACATTATACGAAGTTATGAATTC
		ErmR-2c	3AGGCTCCTGTCACTGCTTCGCTCTGCTTCGGTGTCGTCGCCGTATCTGTGCTC TCTCTACCGTTCGTATAATGTATGCTATACGAAGTTATCTCGAG
	Forward Flooking	yokI-5pL	ATCCTCCATTGCTTTAGTCAGTATG
SPβ yokl::kan		yokl-1_R	GATTATATCACATTATCCATTAAAAATCAAACCATTTCATTCTCCTTTCAAGCC
		yokl-4_F	GGATGAATTGTTTTAGTACCTAGAAACTTTAGAAAGTAGGTGCG
	Reverse Flanking	yokl-3pR	ACTGAAGACAAACTCCTCAAACG
	Forward Flooking	phi3T-1m	GCAATGTTTCCTGAACAGATTTGC
nhiot waldulan	Forward Flanking	phi3T-2c	GATTATATCACATTATCCATTAAAAAATCAAAATCATTCTCCTTCCATTCTTACTC
рпізт уокі.:кап —	Deveree Fleeking	phi3T-3m	GGATGAATTGTTTTAGTACCTAGACACAGGCCGAAGCTGAAGATTGG
	Reverse Flanking	phi3T-4c	CTTGCCTACAACCTCCGCTTC
SD0 cimDucrm		AimR-SPB-24mB	CGC <u>GGATCC</u> TATACAATGGCGCTGAGATCC
SPp annkem		AimR-SPB-14cS	ACGC <u>GTCGAC</u> CACAAAATGTATTAGGGATCTAAAATGCGG
		AimP-SPB-1mB	CGC <u>GGATCC</u> GACAAAGGCAGCAAGAAGTGC
SPp amP::erm		AimP-SPB-4c	ATTGTGATGCCACGTTTGACC
		Spbeta_5_S_F	CTGCAGGTCGACACCTGAAATGAATTCTTTCTCAAG
SPp yopn::erm		YopMNO_R	GCCTTTCACCTCATGTCATGTTGC
SPβ <i>yo</i> pR::erm		YopR_F	CTTCACAGAAACGGATATGAGAG
		YopR_R	CTCTCCCTTGAAACAAAGTAGG
	Converd Fleeking	AimR-phi3T-1m	CGAATCGTGGAGAAACTTTGCAAATG
	Forward Flanking	AimR-phi3T-2c	GTTCTCTCCCTTTCTCGCCTGCCTGCTTTAATTTCAATTGTCTCC
phi31 aimR::erm		AimR-phi3T-3m	GCGAAGCAGTGACAGGAGCCTCGGTTTGACAAATTTGAAAAGGAGGTG
	Reverse Flanking	AimR-phi3T-4c	CAAGACAATCATATGCTTTTTCCAG
		AimR-phi3T-5m	GTTGCATTTGGCCAATTATGC
	Forward Flanking	AimR-phi3T-11c	GCCAATAGTTAAGTAGCTGAAAACCTGAAACGCCAGGATATTTGTACTTTCCAA TGCC
phi3T aimP::erm —	Roverse Elanking	AimR-phi3T-11m	GCCTTTGTGCTTCTTAAATAATGTATGGCGCGCCGCCGCCAAGTGGATTAATTT TGAATCTGATTCAATTATGG
	i tororoo i tanking	AimR-phi3T-4c	CAAGACAATCATATGCTTTTTCCAG
Plasmids		Oligonucleotides	Sequence (5'-3')
pJP2340		AimR-SPBeta-1mH	CCC <u>AAGCTT</u> GACTCGTAATGTGATCTATAG
		AimR-SPBeta-2cS	ACGC <u>GTCGAC</u> CATTGTCTCACCTCCTTTAAAGTAAAAG
pJP2750		AimR-phi3T-9mS	ACGC <u>GTCGAC</u> CTTGAAATTCTGACAACTATGAGG
		AimR-phi3T-10cSphl	ACAT <u>GCATGC</u> CCTCCTTTCAAATTTGTCAAACC
pJP2800		YopR_2F	ACGCGTCGACAGGTGTAGTAGACAAGAATGG
		YopR_2R	ACATGCATGCCCATTTAACCAAAATAGTCAAATGGATTTC
Southern Blot		Oligonucleotides	Sequence (5'-3')
OD0 mesha		SPBeta-1m	GATAGGCTTACCGAGGTCTTC
SP _β probe		SPBeta-2c	CTAATGGACGGCTGGAGAGGC

Table S5. Primers used in this study, Related to STAR Methods.

Supplemental References:

- S1. Burkholder, P. R., and N. H. Giles. (1947). Induced biochemical mutations in *Bacillus subtilis*.
 Amer. J. Bot. 34:345.
- S2. Westers H, Dorenbos R, van Dijl JM, Kabel J, Flanagan T, Devine KM, *et al.* (2003). Genome engineering reveals large dispensable regions in *Bacillus subtilis*. Mol Biol Evol. *20*, 2076–90.
- S3. Dean, D. H., J. C. Orrego, K. W. Hutchinson, and H. O. Halvorson. (1976). New temperate bacteriophage for *Bacillus subtilis*, r11. J. Virol. *20*, 509-519.
- Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A,
 Peters JM *et al.* (2017). Construction and Analysis of Two Genome-Scale Deletion Libraries for
 Bacillus subtilis. Cell Syst. *4*, 291-305.
- S5. Carniol K, Ben-Yehuda S, King N, Losick R. (2005). Genetic dissection of the sporulation protein
 SpollE and its role in asymmetric division in *Bacillus subtilis*. J Bacteriol. *187*, 3511–20.