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Supplemental Methods 
 
MPO measurements 

Human PMNs were adhered onto 12-well plates (2x106 cells/well) in NET buffer, 

incubated with RvT1 (10 nM) or vehicle control for 15 min, followed by addition of IL-1β 

(50 ng/ml) for 4 hours at 37°C. Cells were washed twice with PBS and then incubated 

with S7 micrococcal nuclease (15 units/ml/well; Thermo Fisher Scientific) in NET buffer 

for 30 min at 37°C to cleave NETs. Supernatants containing NETs were collected for 

MPO determinations (R&D Systems, DY3174) following manufacturer’s protocol.  
 
 
S. aureus infection in murine dorsal air pouch 

Murine infectious exudates were collected. Total leukocyte counts were determined by 

light microscopy, and PMN percentages determined by differential counting using 

Wright-Giemsa stain kit (Thermo Scientific, Waltham, MA). For bacterial titers, aliquots 

of exudates were plated onto LB agar plates and cultured overnight at 37°C. For NET, 

exudate cells (2x105 cells) were incubated with Sytox Green (5 µM) for 10 min and 

loaded onto the microfluidic NET device for quantification. In parallel, exudate cells 

(1x105 cells) were adhered onto a 96-well plate, incubated with Sytox Green (5 µM) for 

10 min and washed once with PBS. Fluorescence was determined using a SpectraMax 

M3 plate reader (Molecular Devices), and fluorescence of total DNA was determined 

following TritonX-100 lysis. Images were taken using a Keyence BZ-9000 (BIOREVO) 

inverted fluorescence phase-contrast microscope (20X objective) equipped with a 

monochrome/color switching camera using BZ-II Viewer software and BZ-II Analyzer 

(Keyence).  

 
 
Preparation of human NETs for macrophage phagocytosis 

Freshly isolated human PMNs were adhered onto 6-well plates (10x106 cells/well) in 

NET buffer and incubated with PMA (20 nM) with Sytox Green (5 μM) for 4 hours at 

37°C. Supernatants were aspirated and cells washed twice with PBS. S7 

micrococcal nuclease (15 units/ml; 2 ml/well) was then added for 30 min at 37°C to 
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cleave NETs. Supernatants containing NETs were collected and stored at -20°C. 

Approximately 100 µg DNA was obtained from 10x106 PMN. 

 

Immunofluorescence staining 

Human PMNs (2x105 cells/well) were stained with Sytox Green (5 µM), fixed in 4% 

paraformaldehyde, and in some experiments, stained with PE-conjugated anti-human 

CD66b IgG (1:200 dilution; BD Biosciences).  In select experiments, human MΦs 

(100,000 cells/well) with ingested NETs were stained with (1) PKH26 red (1:1000 

dilution, Millipore Sigma, St. Louis, MO), or (2) anti-pAMPK IgG (1:100 dilution; Cell 

Signaling, Catalog No. 2535), followed by PE-conjugated anti-rabbit IgG (1:200; 
eBioscience). Mouse MΦs with ingested NETs were stained with PE-conjugated anti-

F4/80 IgG (1:200; eBioscience). Mouse exudates (2x105 cells/well) were stained with 

Sytox Green (5 µM), fixed in 4% paraformaldehyde, then stained with (1) PE-conjugated 

anti-mouse Ly-6G IgG (clone 1A8, Biolegend, San Diego, CA), or (2) goat anti-mouse 

MPO IgG (1:100 dilutions; DY3667, R&D Systems), followed by Cy™3-conjugated 

Donkey anti-goat IgG (1:200 dilutions; cat no. 705-165-147, Jackson ImmunoResearch 

Laboratories, Inc., West Grove, Pennsylvania).  

 

Human macrophage differentiation and proliferation 

PBMCs were isolated by Ficoll-Histopaque-1077 density-gradient. Monocytes were 

adhered in PBS, and then cultured in complete RPMI-1640 medium (Lonza, NJ) 

containing 10% fetal calf serum and recombinant human GM-CSF (20 ng/ml; R&D 

Systems) for 7 days for macrophage (MΦ) differentiation to M0 phenotype. In select 

experiments, MΦ were polarized towards M1 and M2. Briefly, M1 MΦs were prepared 

from monocytes incubated with GM-CSF (20 ng/ml) for 7 days in RPMI-1640 medium, 

followed by LPS (100 ng/ml) and INF-γ (20 ng/ml) for 48 h. M2 was obtained by 

incubating monocytes with M-CSF (20 ng/ml) for 7 days followed by 20 ng/ml IL-4 for 

48 h. 
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Figure S1. Proposed biosynthesis of RvTs, and authentication of synthetic RvTs.
(A) Proposed biosynthesis of RvTs. RvT biosynthesis is initiated by conversion of n-3
DPA (Dalli et al., 2015) to the intermediate 13R-HpDPA (13R-Hydroperoxy-7Z,10Z,13R,14E,16Z,19Z 
docosapentaenoic acid). This intermediate was prepared by total organic synthesis and its conversion was 
proven to RvT1, RvT2, RvT3 and RvT4 with human neutrophils (Primdahl et al., 2016). 

(B-E) MS/MS and UV spectra of RvT1, RvT2, RvT3 and RvT4. 
Physical properties of each synthetic RvTs were examined and compared to published results for 
authentication (Dalli et al., 2015; Primdahl et al., 2016). LC-MS/MS was carried out in the negative ionization 
mode using a liquid chromatography-tandem linear ion trap quadrupole mass spectrometer system, QTRAP 
6500+ (Sciex, Waltham, MA) equipped with a Sciex ExionLC (Sciex, Waltham, MA) as in Walker et al., 2021. 
A Kinetex Polar C18 LC column (100mm x 4.6mm x 2.6μm; Phenomenex, Torrance, CA) was kept in a 
column oven maintained at 50°C. The RvTs were each eluted with a gradient of water/methanol/formic acid 
55:45:0.1 (v/v/v) to 20:80:0.1 from 2.0–16.5 min, then by 20:80:0.1 to 2:98:0.1 from 16.5–16.6 min, followed 
by an isocratic elution at 2:98:0.1 from 16.6–18.5 min, and finally 2:98:0.1 to 90:10:0.1 until 20.5 min at a 0.5 
mL/min flow rate. A targeted multiple reaction monitoring (MRM) method was devised with signature ion 
fragments for each molecule.

(B) RvT1 MS/MS fragments: m/z 377=M-H, 359=M-H-H2O, 341=M-H-2H2O, 315=M-H-H2O-CO2, 301=319-
H2O, 297=M-H-2H2O-CO2, 239, 233, 215=233-H2O, 193=211-H2O, 149=211-H2O-CO2, 125=143-H2O. For 
UV spectrum, RvT1 possesses a conjugated triene, that gave a UV chromophore with lMeOH

max ≃269 nm and 
shoulders ≃260 and 280 nm, RvT1 also has a conjugated diene, giving a lMeOHmax ≃238 nm. 

(C) RvT2 MS/MS fragments : m/z 377=M-H, 359=M-H-H2O, 341=M-H-2H2O, 333=M-H-CO2, 315=M-H-H2O-
CO2, 297=M-H-2H2O-CO2, 227=263-2H2O, 209=263-3H2O, 207=225-H2O, 215=233-H2O, 197, 181, 
163=181-H2O, 157=255-3H2O-CO2, 143, 125=143-H2O. For UV spectrum, RvT2 has double conjugated 
dienes, giving a UV chromophore with lMeOH

max ≃241 nm, and a shoulder ≃230 nm.

(D) RvT3 MS/MS fragments: m/z 377=M-H, 359=M-H-H2O, 341=M-H-2H2O, 333=M-H-CO2, 315=M-H-H2O-
CO2, 233, 215=233-H2O, 219=255-2H2O, 173, 143, 125=143-H2O. For UV spectrum, RvT3 has double 
conjugated dienes, giving a UV chromophore with lMeOH

max ≃245 nm, and a shoulder ≃230 nm.

(E) RvT4 MS/MS fragments: m/z 361=M-H, 343=M-H-H2O, 325=M-H-2H2O, 299=M-H-H2O-CO2, 281=M-H-
2H2O-CO2, 221=239-H2O, 211=247-2H2O, 199=217-H2O, 193=211-H2O, 149=211-H2O-CO2, 177=239-H2O-
CO2, 143, 125=143-H2O. For UV spectrum, RvT4 has double conjugated dienes, giving a UV chromophore 
with lMeOH

max ≃239 nm, and a shoulder ≃230 nm.
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Figure S2. Human PMN NET formation and regulation by RvTs
See Methods and figure legend of Figure 3 for experimental details.
(A,B) Human PMNs were incubated with vehicle or IL-1b for 4h. Green: Sytox Green for DNA, red: anti-
CD66b for human PMN. Scale bars: 50 µm.
(C) Comparisons of SPMs [100 nM] and a PAD4 inhibitor [10 µM]; mean±SEM; n=7 (SPM) or 3 (PAD4 
inhibitor). No statistically significant differences were obtained using one-way ANOVA with Tukey’s 
multiple comparisons.
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Figure S3. RvTs do not activate or antagonize LTB4 signals with human recombinant BLT1 
receptor in vitro 
Ligand-receptor interactions were monitored by measuring impedance changes in cultured CHO-hBLT1 cells 
using an ECIS system (Applied Biophysics). Cells were plated (1×105/well in 8-well chamber slides), (A) 
incubated with vehicle, LTB4, RvT1, RvT2, RvT3, RvT4 (10nM) or a BLT1 antagonist (LY293111; 100 nM) for 
10 min, followed by (B) addition of 10 nM LTB4 for 10 min. (A,B) Results are (left panels) impedance 
changes; mean±SEM; n = 3 independent experiments, and (right panels) real-time tracings from a 
representative experiment. (A) **P<0.01 vs veh, LY293111, RvT1, RvT2, RvT3 and RvT4. (B) *P<0.05 vs 
LTB4, LTB4 +RvT1, LTB4 +RvT2, LTB4 +RvT3 and LTB4 +RvT4; One-way ANOVA with Tukey multiple 
comparisons.
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Figure S4. Bacterial titers and NETs from S. aureus infected mice
See Methods and figure legend of Figure 4 for experimental details.
(A) Representative images of bacterial titers from infectious exudates.
(B) Representative images of NETs in exudates collected from S. aureus infected mice with or without RvTs. 
Green: Sytox Green; Red: PE-labeled anti-Ly-6G Ab for mouse PMN. NETs are indicated by arrows. Scale 
bars: 50 µm.
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Supplemental Figure S5 

Figure S5. Schematic summary: Resolvin T-series reduce NETosis and enhance macrophage 
clearance of NETs.
RvTs reduced PMA-stimulated NETs in human blood, and IL-1b and LTB4-stimulated NETs with 
isolated PMN. With human MΦ, RvTs enhanced NET ingestion via cAMP-PKA-AMPK axis. In mice, 
RvTs limited S. aureus dermal infection and stimulated peritoneal MΦ clearance of NETs.

11


	Supplemental methods
	BLOOD_supplement_Figures

