Supplementary information

The unusual cell wall of the Lyme disease spirochaete *Borrelia burgdorferi* is shaped by a tick sugar

In the format provided by the authors and unedited

Supplemental Figure 1: LCMS chromatograms by muropeptide – Total ion counts (TICs) are shown in black with the [M +H]+ and [M+Na]+ for each muropeptide shown in blue and purple, respectively. *Muropeptides containing G-G-anhM are denoted by an asterick.

Muropeptide ID	Structure	Relative % of PG	Theoretical [M+H]⁺	Previously Identified as ^γ
1	Mur/NAc-Ala-Glu-Orn-Gly	16.9	667.3145	Peak 1
2	GlcNAc-MurNAc-Ala-Glu-Orn-Gly	27.4	870.3938	Peak 2
3	Mur/NAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala	1.7	1109.5321	NM
4	GlcNAc-MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala	<0.5	1312.6114	NM
5*	GlcNAc-GlcNAc-MurNAcAnh-Ala-Glu-Orn-Gly	0.6	1053.4470	Peak 3
6	GlcNAc-MurNAcAnh-Ala-Glu-Orn-Gly	5.4	850.3676	Peak 4 & 7
7*	GlcNAc-GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly- Orn-Glu-Ala	<0.5	1495.6646	NM
8	GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu- Ala	<0.5	1292.5852	NM
9	Mur/NAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala-Mur/NAc	4.7	1386.6482	Peak 6
10	GlcNAc-MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala- MurNAc	3.0	1589.7276	Peak 8
11	GlcNAc-MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala- MurNAc-GlcNAc	11.7	1792.8070	Peak 9
12	GlcNAc-MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala- MurNAcAnh-GlcNAc	6.0	1772.7808	Peak 10 & 11
13*	GlcNAc-GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly- Orn-Glu-Ala-MurNAc-GlcNAc	0.8	1975.8601	NM
14	GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu- Ala-MurNAc	1.0	1569.7014	NM
15*	GlcNAc-GlcNAc-MurNAcAnh-Ala-Glu-Orn-Gly-Ala-Orn- [Gly]-Glu-Ala-MurNAcAnh-GlcNAc	<0.5	1955.8339	NM
16	MurNAc-(Ala-Glu-Orn-Gly-Ala)-GlcNAc-MurNAc-(Ala- Glu-Orn-Gly-Ala)-GlcNAc-MurNAcAnh-(Ala-Glu-Orn-Gly)	<0.5	2492.1145	NM
17	GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu- Ala-MurNAcAnh-GlcNAc	<0.5	1752.7545	NM

Supplemental Table 1: Analysis of muropeptides present in 5A11 B. burgdorferi peptidoglycan.

 γ – As previously identified in Jutras et. al., 2019, PNAS. NM denotes newly identified muropeptides. * Muropeptide contains G-G-anhM.

Peak #	Muropeptide ID	[M+H]⁺	Structure	RT (mins)
1	1	667.3145	Mur/NAc-Ala-Glu-Orn-Gly	1.688
2	2a	870.3939	GlcNAc-MurNAc-Ala-Glu-Orn-Gly	2.935
3	2b	870.3939	GlcNAc-MurNAc-Ala-Glu-Orn-Gly	3.342
4	3	1109.5321	MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala	6.548
5	4	1312.6115	GlcNAc-MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala	7.842
6	5*	1053.4470	GlcNAc-GlcNAc-MurNAcAnh-Ala-Glu-Orn-Gly	8 035
0	6a	850.3676	GlcNAc-MurNAcAnh-Ala-Glu-Orn-Gly	0.000
7	6b	850.3676	GlcNAc-MurNAcAnh-Ala-Glu-Orn-Gly	11.477
8	7*	1495.6646	GlcNAc-GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu- Ala	11.627
0	8a	1292.5853	GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala	11 010
9	9a	1386.6482	MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala-MurNAc	11.918
10	9b	1386.6482	MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala-MurNAc	10 650
10	10a	1589.7276	GlcNAc-MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala-MurNAc	12.052
	10b	1589.7276	GlcNAc-MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala-MurNAc	10.000
11	11	1792.8070	GlcNAc-MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala-MurNAc- GlcNAc	13.302
12	8b	1292.5853	GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala	13.802
13	12a	1772.7808	GlcNAc-MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala- MurNAcAnh-GlcNAc	15.428
14	13*	1975.8601	GlcNAc-GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu- Ala-MurNAc-GlcNAc	15.828
15	14a	1569.7014	GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala- MurNAc	15.962
16	12b	1772.7808	GlcNAc-MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala- MurNAcAnh-GlcNAc	16.433
17	14b	1569.7014	GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala- MurNAc	17.478
40	14c	1569.7014	GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala- MurNAc	47.000
18	12c	1772.7808	GlcNAc-MurNAc-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala- MurNAcAnh-GlcNAc	17.803
19	15a*	1955.8339	GlcNAc-GlcNAc-MurNAcAnh-Ala-Glu-Orn-Gly-Ala-Orn-[Gly]-Glu- Ala-MurNAcAnh-GlcNAc	18.490
20	16a	2492.1145	MurNAc-(Ala-Glu-Orn-Gly-Ala)-GlcNAc-MurNAc-(Ala-Glu-Orn- Gly-Ala)-GlcNAc-MurNAcAnh-(Ala-Glu-Orn-Gly)	19.043
21	17a	1752.7546	GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala- MurNAcAnh-GlcNAc	19.277
22	15b*	1955.8339	GlcNAc-GlcNAc-MurNAcAnh-Ala-Glu-Orn-Gly-Ala-Orn-[Gly]-Glu- Ala-MurNAcAnh-GlcNAc	19.717
23	16b	2492.1145	MurNAc-(Ala-Glu-Orn-Gly-Ala)-GlcNAc-MurNAc-(Ala-Glu-Orn- Gly-Ala)-GlcNAc-MurNAcAnh-(Ala-Glu-Orn-Gly)	20.265
24	17b	1752.7546	GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala- MurNAcAnh-GlcNAc	20.523
25	17c	1752.7546	GlcNAc-MurNAcAnh-Ala-Glu-Orn-[Gly]-Ala-Gly-Orn-Glu-Ala- MurNAcAnh-GlcNAc	21.905

Supplemental Table 2: Muropeptide-containing peaks from 5A11 *B. burgdorferi* peptidoglycan analyzed via LCMS.

* Muropeptide contains G-G-anhM

Muropeptide	Molecular formula	Observed Ion	Theoretical <i>m/z</i>	Observed <i>m/z</i>	Difference (Da)
1	C ₂₆ H ₄₆ N ₆ O ₁₄	[M+H]+	667.3145	667.3115	0.0030
2	C34H59N7O19	[M+H]+	870.3938	870.3939	-0.0001
3	$C_{44}H_{76}N_{12}O_{21}$	[M+2H] ⁺²	555.2697	555.2676	0.0021
4	C52H89N13O26	[M+2H] ⁺²	656.8094	656.8069	0.0025
5*	C42H68N8O23	[M+H]+	1053.4470	1053.4425	0.0045
6	C ₃₄ H ₅₅ N ₇ O ₁₈	[M+H]+	850.3676	850.3639	0.0037
7*	C ₆₀ H ₉₈ N ₁₄ O ₃₀	[M+2H] ⁺²	748.3359	748.3331	0.0028
8	C52H85N13O25	[M+2H] ⁺²	646.7963	646.7936	0.0027
9	C55H95N13O28	[M+2H] ⁺²	693.8278	693.8250	0.0028
10	C63H108N14O33	[M+2H] ⁺²	795.3674	795.3644	0.0030
11	C71H121N15O38	[M+2H] ⁺²	896.9071	896.9034	0.0037
12	C71H117N15O37	[M+2H] ⁺²	886.8940	886.8902	0.0038
13*	C79H130N16O42	[M+2H] ⁺²	988.4337	988.4299	0.0038
14	C ₆₃ H ₁₀₄ N ₁₄ O ₃₂	[M+2H] ⁺²	785.3543	785.3512	0.0031
15*	C79H126N16O41	[M+2H] ⁺²	978.4206	978.4168	0.0038
16	C100H166N22O51	[M+2H] ⁺²	1246.5609	1246.5564	0.0045
17	C71H113N15O36	[M+2H] ⁺²	876.8809	876.8779	0.0030

Supplemental Table 3: Theoretical vs. observed m/z for each muropeptide after mass correction using an internal standard.

* Muropeptide contains G-G-anhM.

Supplemental Figure 2: (A) MS1 spectra generated from scanning retention times of 1.542-1.908 minutes. (B) The structure of muropeptide 1. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 667.3145 [M+H]⁺. Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 3: (A) MS1 spectra generated from scanning retention times of 2.788-3.162 minutes. (B) The structure of muropeptide 2a. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 870.3902 [M+H]⁺. Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 4: (A) MS1 spectra generated from scanning retention times of 3.235-3.488 minutes. (B) The structure of muropeptide 2b. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 870.3902 [M+H]⁺. Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 5: (A) MS1 spectra generated from scanning retention times of 6.495-6.735 minutes. (B) The structure of muropeptide 3. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 555.2676 [M+2H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 6: (A) MS1 spectra generated from scanning retention times of 7.575-8.042 minutes. (B) The structure of muropeptide 4. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 656.8094 [M+2H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 7: (A) MS1 spectra generated from scanning retention times of 8.775-9.162 minutes. (B) The structure of muropeptide 5. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 1053.4426 [M+H]⁺. Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 8: (A) MS1 spectra generated from scanning retention times of 8.775-9.162 minutes. (B) The structure of muropeptide 6a. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 850.3676 [M+H]⁺. Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 9: (A) MS1 spectra generated from scanning retention times of 11.352-11.577 minutes. (B) The structure of muropeptide 6b. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 850.3676 [M+H]⁺. Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 10: (A) MS1 spectra generated from scanning retention times of 11.527-11.727 minutes. (B) The structure of muropeptide 7. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 748.3359 [M+2H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 11: (A) MS1 spectra generated from scanning retention times of 11.827-12.027 minutes. (B) The structure of muropeptide 8a. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 646.7963 [M+2H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 12: (A) MS1 spectra generated from scanning retention times of 11.827-12.027 minutes. (B) The structure of muropeptide 9a. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 693.8277 [M+2H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 13: (A) MS1 spectra generated from scanning retention times of 12.552-12.752 minutes. (B) The structure of muropeptide 9b. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 693.8277 [M+2H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 14: (A) MS1 spectra generated from scanning retention times of 12.552-12.752 minutes. (B) The structure of muropeptide 10a. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 795.3674 [M+2H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 15: (A) MS1 spectra generated from scanning retention times of 13.127-13.427 minutes. (B) The structure of muropeptide 10b. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 795.3674 [M+2H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 16: (A) MS1 spectra generated from scanning retention times of 13.127-13.427 minutes. (B) The structure of muropeptide 11. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 896.9035 [M+H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 17: (A) MS1 spectra generated from scanning retention times of 13.667-13.927 minutes. (B) The structure of muropeptide 8b. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 646.7963 [M+2H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 18: (A) MS1 spectra generated from scanning retention times of 15.262-15.512 minutes. (B) The structure of muropeptide 12a. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 886.8902 [M+H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 19: (A) MS1 spectra generated from scanning retention times of 15.745-15.862 minutes. (B) The structure of muropeptide 13. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 988.4299 [M+H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 20: (A) MS1 spectra generated from scanning retention times of 15.912-16.085 minutes. (B) The structure of muropeptide 14a. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 785.3512 [M+H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 21: (A) MS1 spectra generated from scanning retention times of 16.342-16.470 minutes. (B) The structure of muropeptide 12b. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 886.8902 [M+H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 22: (A) MS1 spectra generated from scanning retention times of 17.392-17.522 minutes. (B) The structure of muropeptide 14b. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 785.3512 [M+H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 23: (A) MS1 spectra generated from scanning retention times of 17.717-17.890 minutes. (B) The structure of muropeptide 14c. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 785.3512 [M+H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 24: (A) MS1 spectra generated from scanning retention times of 17.717-17.890 minutes. (B) The structure of muropeptide 12c. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 886.8902 [M+H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 25: (A) MS1 spectra generated from scanning retention times of 18.370-18.570 minutes. (B) The structure of muropeptide 15a. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 978.417 [M+H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 26: (A) MS1 spectra generated from scanning retention times of 18.917-19.130 minutes. (B) The structure of muropeptide 16a. (C) MS2 obtained from targeting precursor ion 1246.5609 [M+H]⁺².

Supplemental Figure 27: (A) MS1 spectra generated from scanning retention times of 19.197-19.330 minutes. (B) The structure of muropeptide 17a. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 876.87755 [M+H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 28: (A) MS1 spectra generated from scanning retention times of 19.650-19.877 minutes. (B) The structure of muropeptide 15b. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 978.4168 [M+H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 29: (A) MS1 spectra generated from scanning retention times of 20.215-20.590 minutes. (B) The structure of muropeptide 16b. (C) MS2 obtained from targeting precursor ion 1246.5609 [M+H]⁺².

Supplemental Figure 30: (A) MS1 spectra generated from scanning retention times of 20.457-20.590 minutes. (B) The structure of muropeptide 17b. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 876.87755 [M+H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Figure 31: (A) MS1 spectra generated from scanning retention times of 21.800-22.000 minutes. (B) The structure of muropeptide 17c. Cleavages with resulting m/z fragments are shown in red. (C) MS2 obtained from targeting precursor ion 876.87755 [M+H]⁺². Red fragments generated in B correspond to observed MS2 fragments in C.

Supplemental Table 4: A comparison of plasmid content in 5A11, 5A3, 5A3 N.I., and 5A3/*chbC B. burgdorferi* strains.

Plasmid	5A11	5A3	5A3 N. I.	5A3/chbC
ср9	+	-	-	-
cp26	+	+	+	+
ср32-1	+	+	+	+
ср32-3	+	+	+	+
ср32-4	+	+	+	+
ср32-6	+	+	+	+
ср32-7	+	+	+	+
ср32-8	+	+	+	+
ср32-9	+	+	+	+
lp5	+	-	-	-
lp17	+	+	+	+
lp21	+	+	-	+
lp25	+	+	-	+
lp28-1	+	+	-	+
lp28-2	+	+	+	+
lp28-3	+	+	+	+
lp28-4	+	+	+	+
lp36	+	+	-	+
lp38	+	+	+	+
lp54	+	+	+	+
lp56	+	+	+	+

Supplemental Table 5: In addition to the clean deletion of *chbC*, 5A3/*chbC* had the following single nucleotide polymorphisms, relative to 5A3.

Location	Position	Mutation	Annotation	Gene
lp28-1	27,425	S141S (AG <u>T</u> →AG <u>C</u>)	variable surface antigen VIsE	BB_RS05840
lp28-1	37,433	A144D (G <u>C</u> T→G <u>A</u> T)	variable surface antigen VIsE	BB_RS05840
lp28-1	27,897	D299N (<u>G</u> AT→ <u>A</u> AT)	variable surface antigen VIsE	BB_RS05840
lp28-1	27,901	G300D (G <u>G</u> T→G <u>A</u> T)	variable surface antigen VIsE	BB_RS05840
lp28-1	27,910	E303G (G <u>A</u> G→G <u>G</u> G)	variable surface antigen VIsE	BB_RS05840

Feature Name	Retention Time (min)	# of Peaks
C01	13.34	31
C02	17.01	23
C03*°	9.08	17
C04	11.61	13
C05	17.83	12
C06	3.10	12
C09	3.10	9
C10	12.71	8
C11*	15.86	7
C12	16.45	7
C13	13.34	6
C14	13.35	6
C15	13.35	6
C16	3.10	6
C17	1.82	6
C18	16.45	5
C19	17.01	5
C20	17.82	3
C21	13.34	3
C22	13.34	3
C23	12.80	3
C24	5.74	3
C25	20.38	2
C26	19.15	2
C27	16.02	2
C28	13.34	2
C29	12.71	2
C30	13.03	2
C31	12.78	2
C36	3.09	2
C37	3.11	2

Supplementary Table 6: A) Features generated RamCluster used for the comparison of G-Gcontent peptidoglycan from A3 and anhM in A3/chbC B. burgdorferi. Each feature is composed of a retention time and at least two peaks that correspond to an individual m/z. All features listed were used in the analysis. Features designated with an asterisk contain peaks corresponding to G-G-anhM. Features not listed (feature c07, c08, and c32-c35) — they were manually omitted represented adducts and redundancies that were not filtered out by RamClustR. A further breakdown of the peaks that compose each feature can be found in Supplemental Dataset 1. B) Relative comparison of G-G-anhM intensity in 5A3 and 5A3/chbC B. burgdorferi. All features were divided into two groups: G-G-anhM (features C03 & C11, designated by asterisk) or G-M (all other features).

i

^oFeature C03 contained peaks corresponding to two separate muropeptides that had nearly identical retention times — one G-G-anhM and one G-M. Peaks within C03 were manually assigned as G-G-anhM or G-M depending on the muropeptide they correspond to. A further breakdown of which peaks in C03 correspond to G-G-anhM can be found in Source Data.

Strain	Total G-G-anhM Intensity	Total G-M Intensity	% G-G-anhM in Total PG	% G-G-anhM Reduction Relative to 5A3
5A3	68977	4813717	1.43	-
5A3/chbC	47423	5249974	0.90	37.1

Supplemental Figure 32: Thresholds applied to phase-contrast micrographs containing *B. burgdorferi* A3 (left) and A3/*chbC* (right). Thresholds were generated using Fiji. Scale bars are 5 µm.