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I. MATTER WAVE IMAGING THEORY

A. Focusing condition beyond the far-field limit

In the following, we want to derive the focusing con-
dition for the matter wave optics imaging composed of
a quarter period evolution in a harmonic oscillator (HO)
trap and a time-of-flight expansion. In particular, we
prove that exact imaging can be obtained without having
to reach the far field limit of the time-of-flight expansion
by adjusting the evolution time in the harmonic trap. We
give the derivation for the one-dimensional (1D) case.

We solve the Hamilton equations for the time-
dependent x̃ = x

√
mω
~ and p̃ = p√

~mω operators (in the
natural harmonic oscillator units of the harmonic trap
with trapping frequency ω and mass m) in the Heisen-
berg representation:

∂t

(
x̃
p̃

)
= ω

(
0 1
−1 0

)(
x̃
p̃

)
(S1)

This gives after a time tho in the HO:

x̃(tho) = cos(ωtho)x̃(0) + sin(ωtho)p̃(0)

p̃(tho) = cos(ωtho)p̃(0)− sin(ωtho)x̃(0).
(S2)

After a time of flight expansion time ttof it becomes:

x̃(tho + ttof)

= x̃(tho) + p̃(tho)ωttof

= x̃(0) [cos(ωtho)− ωttof sin(ωtho)]

+ p̃(0) [sin(ωtho) + ωttof cos(ωtho)]

= x̃(0)M [cos(θtof) cos(ωtho)− sin(θtof) sin(ωtho)]

+ p̃(0)M [cos(θtof) sin(ωtho) + sin(θtof) cos(ωtho)]
(S3)

where we introduced the phase space rotation angle
θtof = arctan(ωttof) and M = 1

| cos(θtof )| =
√

1 + (ωttof)2

(Fig. S1). Finally, one can write:

x̃(tho + ttof)

= M [x̃(0) cos(ωtho + θtof) + p̃(0) sin(ωtho + θtof)]
(S4)

The focusing condition is given by

tan(ωtho) = −ωttof (S5)

or equivalently by

θtof = arctan(ωttof) = −ωtho + nπ, (S6)

with n integer.
This condition avoids a mixing of the initial momen-

tum p̃(0) into the final position x̃(tho+ttof) and therefore
reproduces the initial density distribution without distor-
tion. The magnification of this imaging is given by

M =
√

1 + (ωttof)2 ≈ ωttof (S7)

or equivalently by

M =
1

| cos(ωtho)|
. (S8)

Note that we always state M as a positive number al-
though the imaging can be inverting. The focusing con-
dition Eq. (S5) is fulfilled when the evolution time in
the harmonic oscillator is close to an odd multiple of a
quarter of the oscillation period T = 2π/ω. For values
of tho ∼ (1 + 4n)T4 values of cos(ωtho + θtof) are nega-
tive and the image would then be inverted, while regular
imaging is realized at tho ∼ (3 + 4n)T4 . In the far-field
limit of the time-of-flight (ToF) expansion ωttof � 1, the
magnification simplifies to M ≈ ωttof and the evolution
time in the harmonic trap reduces to tho ≈ T/4. For
typical magnifications M > 35, tho deviates from T/4 by
less than 2%.
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FIG. S1. Graphical representation of the focusing con-
dition. Time evolution of the operator x̃ = cx(t)x̃(0) +
cp(t)p̃(0) (with cx(t),cp(t) time-dependent coefficients), as
a combination of the time-independent operators x̃(0), p̃(0).
The evolution starts at A = (1, 0) and performs a rotation
in the HO for a duration tho. Upon reaching point B, time
of flight begins, as described by the straight line BC (since
during tof p̃ = ∂tx̃ = const.) of length ωttof (since at all times
the velocity in this plane is ω). To get |cx| = M , cp = 0 one
sees that ωtho + θtof = π must hold, adding up to the half
circle with θtof = arctan(ωttof), and that M =

√
1 + (ωttof)2

as the hypotenuse of the right-angled triangle 0BC. In the far
field limit ωttof →∞, ωtho → π/2 i.e. an exact T/4 pulse.

Our large magnifications of up to M = 93 are reached
via the use of rather large trap frequencies. In the case
that larger magnifications are desired, the scheme can
easily be adapted. The magnification could be increased
via longer time of flight expansion accessible via levi-
tation or by adding an additional time evolution in an
anti-confinement after evolution in the harmonic confin-
ing potential, in analogy to the proposal for magnification
of the momentum distribution in ref.S1.

B. Magnified imaging of the momentum
distribution

In contrast, when choosing cot(ωtho) = ωttof , one gets
x̃ = Mp̃0, i.e. one can measure the momentum distri-
bution without distortion even for finite ToF expansion
time ttof but with a magnification arbitrarily tunable in
the range between 1 and∼ ωttof , where 1 is obtained with
a pure T/4 evolution in the trapS1,S2 and ∼ ωttof by a
pure time of flight evolution. The advantage of avoiding
the far-field approximation has to be balanced with pos-
sibly stronger interaction effects during the matter wave
optics as discussed in Section IIC.

C. Invariance to time-dependent parameters

We provide a proof that distortion free imaging is at-
tainable also in the case where the trap confinement ω
or the trap center are time dependent as long as the
trap remains harmonic. This is relevant, e.g., for finite
switching times of the magnetic trap providing the con-

finement, which is around 40 µs in our experiments. It
is also relevant for magnification protocols during which
the trap frequency is ramped up, which can addition-
ally move the trap position due to gravitational sag.
For a time dependent trapping frequency ω(t) one has
∂tp = −mω(t)2x, which becomes ∂tp̃ = −ω2/ω0x̃ after
substituting for the dimensionless operators, and ω0 is
the reference time-independent trap frequency entering
their definition. Considering also a time dependent trap
center shift c(t) of the position operator we can write, in
a compact form:

∂t

(
x̃
p̃

)
=

(
0 ω0

−ω2(t)/ω0 0

)[(
x̃
p̃

)
−
(
c(t)
0

)]
. (S9)

We note that this is still valid in presence of an additional
constant force like gravity, since it would just shift the
trap center; it has the solution:(

x̃
p̃

)
= U(t)

[
−
∫ t

0

U−1(t′)

(
c(t′)

0

)
dt′ +

(
x̃(0)
p̃(0)

)]
(S10)

with U(t) (with the matrices in the product ordered from
right to left):

U(t) = lim
dt→0

t
dt∏
n=0

[
1 + dt

(
0 ω0

−ω2(ndt)/ω0 0

)]
(S11)

The first term of the sum in Eq. (S10) just shifts x̃ by a
(time-dependent) real number (the image would be dis-
placed). The evolution restricted to the space spanned by
the linear combinations of x̃(0) and p̃(0) is then described
just by

∂t

(
x̃
p̃

)
=

(
0 ω0

−ω2(t)/ω0 0

)(
x̃
p̃

)
, (S12)

which is solved by(
x̃
p̃

)
= U(t)

(
x̃(0)
p̃(0)

)
. (S13)

The matrix
(

0 ω0

−ω2(t)/ω0 0

)
implies a rotation with an-

gular velocity ∂tθ > min(ω2(t)/ω0, ω0) which is always
finite as long as ω(t) remains finite, and the additional
time of flight can only rotate vectors θtof < π

2 : from con-
tinuity it follows that it must exist an optimal time in the
HO that ensures zero p̃(0) component in x̃. In such cases,
the expression for the magnification might be involved.
The finite switching time of the magnetic trap of 40 µs is
about 10% of T/4 for the biggest ω/2π ≈ 700Hz, result-
ing in a deviation of similar magnitude of M from the
estimate ωttof . Therefore, we determine the magnifica-
tion experimentally by comparing the measured lengths
of lattice vectors with the expected ones.
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D. Derivation in the Schrödinger picture

We provide for completeness the derivation for the
magnification in the Schrödinger picture, which is com-
pletely equivalent to the Heisenberg’s one but it is useful
because it describes the evolution of the quantum field
operators Ψ†(r) illustrating that the matter wave optics
also reproduces quantum correlations. This possibility
will allow for future fundamental studies in single-atom
resolved regimes with the quantum gas magnifier.

We make use of the generating function G of the Her-
mite polynomials hn(x) given by

G(x, g) = e−
1
2x

2+2xg−g2 =
∑
n

e−
1
2x

2

hn(x)
gn

n!
. (S14)

Using the operator Ôn = (∂g)n|g=0, one gets

ÔnG(x, g) = e−
1
2x

2

hn(x) = ψn(x) (S15)

with ψn(x) being the nth eigenstate of the HO and with
x being the spatial coordinate in natural units. Up to a
global phase, the time evolution in the HO U(tho) can be
described by

U(tho)G(x, g) = G(x, ge−iωtho) (S16)

which is proven by checking that ψn picks up a phase
φho,n = −nωtho:

U(tho)ψn(x) = ÔnG(x, ge−iωtho) = ψn(x)e−inωtho .
(S17)

The time of flight evolution U(ttof) of G can be de-
scribed by

U(ttof)G(x, g) = F−1(
√

2π

∫
dx′e−

1
2x
′2+2x′g−g2eikx

′−ik2 T
2 )

(S18)
with T = ωttof and F−1 being the inverse Fourier Trans-
form operator. It follows:

F−1(
√

2π

∫
dx′e−

1
2 (x
′−2g−ik)2− 1

2k
2−ik2 T

2 +2ikg+g2)

=F−1(e−
1
2k

2+g2−ik2 T
2 +2ikg)

=
√

2π

∫
dke
− 1

2 (k
2D− 2ig√

D
+ ix√

D
)2+g2+ 1

2D (−4g2−x2+4xg)

(S19)
with D = 1 + iT . One gets, recalling M =

√
1 + T 2:

=
1√
D
e−

x2

2D+ 2xg
D +g2(1− 2

D )

=
1√
D
e

x2

2
iT

1+T2 e
− x2

2
1

1+T2 + 2xg
1+iT −

1−iT
1+iT g

2

=
1√
M
e−i

arctan(T )
2 + iT

2 ( x
M )2G(

x

M
, g · e−i·arctan(T ))

(S20)

It follows:

U(ttof)ψn(x) = ÔnU(ttof)G(x, g)

=
1√
M
e−i

arctan(T )
2 + iT

2 ( x
M )2ψn(

x

M
)e−in·arctan(T )

(S21)

One gets a normalization factor 1√
M

and a n-independent

phase eiφ(x,T ) = e−i
arctan(T )

2 + iT
2 ( x

M )2 . During time of
flight, ψn gets magnified by a factor M and picks up a
phase φtof,n = −n · arctan(T ). The total time evolution
of a generic wavefunction ψ(x) =

∑
n cnψn(x) during the

magnification protocol is then:

U(ttof)U(tho)ψ(x) =
1√
M
eiφ(x,T )

∑
n

cnψn(
x

M
)eiφn

(S22)
and the focusing condition Eq. (S5) for the magnified
imaging can then be obtained by requiring that

φn = φho,n+φtof,n = −n · [ωtho + arctan(ωttof)] = −n ·π
(S23)

As a consequence, the terms in the superposition with n
even (odd), corresponding to states ψn(x) symmetric (an-
tisymmetric) w.r.t x = 0, pick up a phase 0 (π), as if un-
der the action of the parity operator Pψ(x) = ψ(−x); for
this reason the distribution is inverted. The phase factor
e

iTx2

2M2 means that although density correlations g2(r) are
reproduced via the scaling g2(r′) = g2(M · r), phase cor-
relations g1(r) have to be treated with care. This comes
from the fact that the protocol presented here simply
rescales the real space positions, but not the momentum
operator.

II. CHARACTERIZATION OF THE QUANTUM
GAS MAGNIFIER

A. Imaging resolution

In order to characterize the matterwave optics and
the employed magnetic trap, we study the images for
odd multiples of T/4, i.e. matterwave relay imaging by
adding T/2 evolutions, in which all aberrations are ampli-
fied and can be better quantified. We define the contrast
of the quantum gas magnifier as the integrated strength
of the peaks around the reciprocal lattice vectors in the
Fourier transformation of the measured densities normal-
ized to the total atom number. Fig. S2a shows how the
lattice contrast of the images decreases for these multi-
ples as expected. Fig. S2b shows the contrast around the
expected evolution times in the trap tho corresponding
to (2n + 1)T/4 for n = 0, ..., 5. For a larger number of
relay imaging steps n, the contrast cannot be recovered
and the contrast also gets worse for larger atom num-
bers. This data is taken after removing the coherence
between different tubes by ramping into a deep optical
lattice. Without removing coherence, the contrast is lost
much faster.
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From this data, we also obtain the precise time of max-
imal contrast, which we plot in Fig. S2c. We find that
the time of optimal contrast slightly depends on the di-
rection in which the contrast is evaluated (Fig. S2d) and
we attribute this to the graviational sag, which slightly
opens the trap along the vertical direction. The result-
ing ellipticity is only on the order of 1% allowing us to
focus the image in x and y direction simultaneously. The
exact time of optimal contrast also slightly depends on
the atom number as depicted in Fig. S2e,f. We attribute
this to a mean field repulsion, which effectively reduces
the trap frequency of the external trap.

For a more quantitative measure of the resolution of
the quantum gas magnifier, we fit a grid of Gaussians
with global 1/

√
e radius σsite to a central cut of the im-

ages along the three lattice axes. We repeat this for sev-
eral magnifications M , i.e. different trapping frequen-
cies, and plot the resulting width versus magnification
(Fig. S3a,b). For magnifications above M = 35, the lat-
tice sites are well resolved according to the Rayleigh cri-
terion with σsite < 0.35alat. The experimental resolution
σsite can be reasonably well described as a convolution
of the actual size of the wavefunction in the lattice site
σwf multiplied by the magnification M and the optical
resolution of the absorption imaging σopt:

σsite(M) =
√
σ2
opt + (Mσwf)2. (S24)

The brown line in Fig. S3b shows this dependency, yield-
ing σopt = 5.2(2)µm, σwf = 118(3)nm.

A more careful analysis should also include interac-
tion effects during the matter wave optics. In order to
increase these usually small effects, we repeat the analy-
sis for different atom numbers N and for odd multiples
of T/4 (Fig. S3c). A more complete description is then
given by the heuristic model

σ2
site(M,N, n) =σ2

opt + (Mσwf)
2 + ([2n+ 1]p1Np2Mσint)

2

+ ([2n+ 1]p3σlens)
2

(S25)
with the parameters σopt = 5.3(3)µm, σwf = 68(24) nm,
σint = 4.2(4) nm, σlens = 0.42(46)µm and the exponents
p1 = 0.29(5), p2 = 0.33(5) and p3 = 1.6(7). Here σint
takes into account the broadening due to interactions and
σlens the single particle broadening. Note that the opti-
cal resolution σopt is given here as the 1/

√
e-width of the

point spread function, which corresponds to a Rayleigh
resolution of about r0 = (3.83/1.35)σopt = 15µm. The
dashed lines in Fig. S3b show the fit of Eq. (S25) us-
ing σlens, p1, p2 and p3 from Fig. S3c, yielding very
similar results: σopt = 5.2(1)µm, σwf = 75(10)nm,
σint = 3.6(3)nm. The optical resolution also agrees with
the simpler fit of Eq. (S24), whereas σwf is overestimated
in that case due to the negligence of interaction effects.

We note that an estimation of the scattering rates
based on the formula for classical particles Γs = nσsv
(with n the particle density, σs their scattering cross-
section and v their mean velocity) yields a scattering
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FIG. S2. Image contrast of the quantum gas magni-
fier. a, Images of the triangular lattice using increasing num-
bers of odd multiples in the harmonic trap: (2n + 1)T/4 for
n = 0, ..., 5. The average atom number is 30,000 correspond-
ing to the dark blue color in b. b, Lattice contrast versus
the evolution time tho. The colors specify the average atom
number used in the images. c, Focusing times tm obtained
as times of maximal contrast determined by fitting a Gaus-
sian function to every contrast peak of the blue lines from b
(blue stars: direction 1, teal circles: direction 2, green crosses:
direction 3, for comparison of the directions see inset in a).
d, Differences between the times of the two 1D lattice along
direction 2 and 3 (not perpendicular to gravity) and the 1D
lattice along direction 1 (perpendicular to gravity), illustrat-
ing the slight ellipticity along gravity. e, Times of maximal
contrast for n = 0 and different atom numbers for the three
1D lattices. f, Corresponding effective trap frequencies, the
decrease of which we attribute to mean field repulsion. All
error bars correspond to the 68% confidence interval.

probability per atom smaller than 1% over the whole T/4
evolution, for all of the experiments described here with
removal of coherence. For coherent systems with their
larger density peaks during the T/4 evolution, the num-
ber of scattering events can be significantly higher.

The influence of interaction should therefore be
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FIG. S3. Resolution of the quantum gas magnifier. a,
Images with varying magnification (from left): M = 83(1),
56(1), 38(1). Beneath are cuts through the most populated
rows along the three lattice directions, marked by correspond-
ingly coloured lines in the images. The lines connecting the
data points result from fitting a grid of Gaussian functions
with a global 1/

√
e radius σsite for every lattice site. b, Fit-

ted σsite for five different magnifications and varying atom
number. The brown line shows the fit according to Eq. (S24),
independent of the atom number. The dashed lines describe
the dependency from Eq. (S25), using the parameters σlens

and p1, p2 and p3 from c. The lattice sites can be resolved
according to the Rayleigh criterion when σsite < 0.35alat (blue
line). c, Gaussian width σsite from fits to data along cuts in
images as in Fig. S2a for different atom numbers, the first
three odd multiples of T/4 (red: n=0, blue: n=1, green: n=2)
and two magnifications. The two line triplets are from a com-
mon fit of Eq. (S25) to the data in both panels in c. All error
bars correspond to the 68% confidence interval.

thought of via the repulsive mean-field potential, which
modifies the effective potential seen be the atoms. In-
deed, the effective trapping frequency is reduced by about
2% when increasing the atom number (Fig. S2e,f), which
can then be compensated by the proper focusing time.
However, the density distribution during the T/4 evolu-
tion is not harmonic and the anharmonicity can lead to
distortions of the image similar to the anharmonicity of
the trap itself. Estimates show that the quartic part of
the mean field potential for our typical parameters can
be of the same order of magnitude, but with opposite

sign, as the quartic part of the trap. As an example,
we make an estimate for the parameters in (Fig. S3c)
with a large magnification M = 79 and an atom number
N = 105. We obtain a Gaussian atomic distribution with
width σsys = 1.45µm at the end of the T/4 evolution and
a corresponding mean-field potential with quartic term
of amplitude 15.7Hz/(µm)4, comparable to the quartic
term of the trap of −7.2Hz/(µm)4 (Compare also with
section II B). A more quantitative theoretical analysis
of the influence of interactions on the resolution of the
quantum gas magnifier is left for future work.

In contrast to the analysis above, the coherence was
not removed for the nanoscale dynamics data of Fig. 4
and we therefore expect more interaction effects due to
the residual coherence even in the relatively deep lattice.
Indeed, we find about 17% of the atoms scattered into a
constant background (compare the different color maps in
Fig. 4c). These stronger interaction effects might also be
related to the more complicated situation of a honeycomb
lattice, in which scattering processes at the beginning of
the ToF expansion can play a role for spin-mixturesS3,S4.

B. Discussion of matter wave aberrations

The matter wave optics can also include single parti-
cle aberrations, e.g. due to anharmonicity of the mat-
ter wave lens. The choice of a magnetic trap for the
harmonic oscillator potential allows not only for a very
smooth and isotropic trap, but also for smaller anhar-
monicities than in typical optical traps. The anharmonic
(or aspheric) aberration can therefore be said to set a lim-
itation on the usable field of view. For our magnetic trap,
such aberrations become visible only for very large mag-
nifications and for large systems or when displacing the
cloud relative to the trap center. In order to control and
characterize this anharmonicity we image a cloud shifted
off-center in a very strong magnetic trap with a trap fre-
quency in the x− y plane of ωho = 2π · 641Hz, which re-
sults from a gradient B1 = 1.69 ·104 G/m, a trap bottom
B0 = 0.112G and an anticurvature B2 = 7.1 · 105 G/m2

(Fig. S4). The trap potential Vtrap can then be written
as

Vtrap/h = 78.4 kHz + 1756 Hz(ρ/µm)2 − 7.2 Hz(ρ/µm)4

(S26)
where ρ is the distance from the trap center and 78.4kHz
is the resonance to the mF = 1 state in the center of
the trap. An optical trap with a waist of 16 µm has the
same quartic term to quadratic term ratio. This trap has
a relatively high trapping frequency and anharmonicity,
in general the magnetic trap is much more tunable and
for example we could get a trap frequency as high as
2π · 200Hz with an anharmonicity corresponding to a
135 µm waist optical trap. For suitable parameters of an
optical trap with small anharmonicity, intensity require-
ments for reaching the high trapping frequencies might
be an important factor. The small distortion of the im-
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a b

FIG. S4. Aberrations due to trap anharmonicity. a,
Sum of two images with the cloud displaced in different direc-
tions. For large trapping frequencies (here ωho = 2π · 641Hz)
and atoms far from the center of the trap (’optical axis’, grey
circle), the anharmonicity of the trap gives rise to a distortion
of the matter wave optics image, directly visible as a distor-
tion of the imaged lattice . b, The distortion of the positions
can be reconstructed by a simulation of the dynamics of a
lattice of classical point particle.

age is no limitation when one is interested in the lattice
site occupations.

The small effect of aberrations due to anharmonicity or
other imperfections in magnetic traps is also supported
by the observation in ref.S6 that the density distribution
after a T/2 evolution in a harmonic trap is almost iden-
tical to the original distribution for the case of a non-
interacting two-dimensional (2D) Fermi gas.

C. Discussion of interaction effects

The matter wave optics imaging is initialized by pro-
jecting onto a non-interacting system. Quick reduction
of the density is achieved here by switching off the optical
lattice; other possibilities are a fast release of the trans-
verse confinement in bulk 2D systems or a switching off of
the interactions via a Feshbach resonance. For suppress-
ing interaction effects during the matter wave optics, we
typically remove the coherence by freezing in a deep lat-
tice of 6Erec (J/h ∼ 0.001Hz) for 12 ms right before the
magnification protocol. This avoids the density peaks,
which otherwise arise during the T/4 evolution due to
interference (Talbot revivals for short times and Bragg
peaks at the end of the T/4 pulse).

For the analysis of the density sector in this article,
removing the coherence is unproblematic and interaction
effects are then small.

In the experiments corresponding to Fig. 1-3 we re-
move the coherence with the scheme presented above.
For the data presented in Fig. 4, we reduce the coher-
ence by starting in a deep lattice.

When ramping up the lattice intensity for the coher-
ence removal procedure one can excite breathing oscil-
lations along the transverse direction (z-direction), over
which the signal is integrated. This can increase the den-
sity during the T/4 evolution and therefore reduce the
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FIG. S5. Contrast oscillation. Width of the cloud along
the line of sight of the usual imaging direction after the magni-
fication protocol, as a function of the time after the excitation
of a breathing mode in the direction perpendicular to the lat-
tice (red curve). Broader clouds have a smaller widths during
the first stages of the protocol and hence enhanced interac-
tions. This leads to a smaller contrast of the quantum gas
magnifier (blue curve).

contrast due to interaction effects. The resulting oscil-
lation of the contrast (Fig. S5) fits well to a breathing
mode for the independent characterization of the trans-
verse trapping frequency of the optical lattice. This anal-
ysis shows that the dynamics along the transverse direc-
tion is very important for the size of interaction effects.
Therefore a protocol, which leads to a rapid expansion in
the transverse direction without bringing the cloud out
of the depth of focus of the optical imaging system, can
be beneficialS1.

When not exciting breathing modes, there is no sig-
nificant dynamics during the whole protocol along the
z-direction. The residual harmonic confinement in z-
direction during T/4 is very weak when compared to
ωpulse (after switching off the lattice, ωz ∼ 2π × 11 Hz)
and can be neglected. The scale of the energies involved
in this direction is then set by the initial transverse trap
frequency ωz ∼ 2π × 29 Hz which leads, over a time of
flight of about ∼ 20 ms, just to a small (relative) length-
ening of the tubes, initially characterized by a Thomas-
Fermi radius of about 30 µm. We note that the extension
in the z direction therefore stays significantly below the
depth of focus of the optical imaging of about 800 µm.
Our characterizations provide a benchmark for the capa-
bility of the quantum gas magnifier concept and are also
relevant for matter wave optics for imaging momentum
space. This analysis demonstrates the full control of the
quantum gas magnifier even including interaction effects
for Rb-atoms and typical magnifications M = 50 − 90.
For other elements like 7Li or 39K the use of appropriate
Feshbach resonances will even allow further extensions of
the magnifier as interaction effects can be fully switched
off prior to magnification and imaging. Vice versa inter-
action effects can be studied with the system with careful
prior calibration.

Alternatively, interaction effects during the magnifi-
cation protocol would be sufficiently suppressed for the
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small background scattering lengths at low magnetic
fields, allowing to combine the use of Feshbach resonances
for the initial system of interest with a tight magnetic
trap for the matter wave optics.

In addition, we note that while possible interaction ef-
fects during the matter wave optics protocol have to be
treated with care, the magnification and its resulting low
densities completely remove interaction effects during the
optical imaging, such as saturation effects at high optical
densitiesS7 or light-assisted collisions in tight traps. This
avoids distortions of the obtained density profile and re-
duces systematic effects on the absolute atom number
calibration of absorption imaging.

III. DISCUSSION OF FUTURE DIRECTIONS

A. Prospects for reaching single-atom sensitivity

The quantum gas magnifier can be extended to single-
atom sensitivity as we demonstrate in the following. This
is relevant both for studying arrays of tubes in three-
dimensional (3D) systems or for imaging single 2D sys-
tems, i.e. for reaching strongly-correlated regimes and ac-
cessing quantum correlations as in conventional quantum
gas microscopesS8. The estimate below follows the free-
space fluorescence imaging of few atoms demonstrated for
87Rb atomsS9–S11 and for 6Li atomsS12. Alternatively,
combining the quantum gas magnifier with the single-
atom detection of metastable helium on multi-channel
platesS13 would also allow single-atom sensitivity and
could even be devised to include a 3D real-space imaging
as already achieved in momentum space (see e.g. ref.S14).

In the following, we exemplarily estimate the expected
number of photons from a single 87Rb atom of mass m.
The recoil velocity from scattering a photon of wave-
length λ = 780 nm is vrec = h/(λm) = 5.88mm/s.
The random recoils lead to a random walk with a width
σ(τ) = 1

3vrecR
1/2τ3/2 after scattering for a time τ with

a rate RS15. Due to their smaller recoil velocity, heav-
ier atoms allow to scatter more photons before reaching a
certain width. For a magnification ofM = 70, the lattice
spacing of the triangular lattice alat = 709nm is magni-
fied to Malat = 50 µm. We therefore want to restrict
the width of the random walk to σ = 15 µm, in order to
keep the signal from the different lattice sites separated.
This choice restricts the scattering time to τ = 150 µs
for a resonant saturated scattering rate R = Γ/2 with
Γ = 2π · 6MHz, yielding N = Rτ = 2700 scattered
photons. The number of detected photons crucially de-
pends on the numerical aperture (NA), which dictates
the solid angle Ω ∼ πNA2, from which the photons are
collected. For a medium high NA of 0.3, the solid angle
covers a fraction Ω/(4π) ∼ 2.3% of the unit sphere. As-
suming a transmission of the imaging system of 80% and
a quantum efficiency of the camera of 75%, this yields
36 detected photons. On an electron multiplying charge-
coupled device (EMCCD) camera, an average number of

25 detected photons is sufficient for a signal above the
noise levelS12. This estimate does not include the possi-
bly slightly enhanced scattering into the imaging system
due to the dipole radiation pattern for correct choice of
the magnetic field direction and polarization. We em-
phasize that this estimate explicitly uses the matter wave
magnification to bring the atoms to large distances of e.g.
50 µm, where the signals from different lattice sites do not
overlap. This is in contrast to conventional quantum gas
microscopes with an in situ detection of atoms at 0.5 µm
distances, where a few hundreds to thousands of photons
are required for distinguishing the atoms. This magnifi-
cation and the resulting dilution will also allow imaging
systems with several atoms per lattice site by avoiding
density-dependent processes such as light-assisted colli-
sions.

Another limitation to the duration of the optical imag-
ing comes from the fact that the atoms are in free fall. At
the end of the time-of-flight expansion of duration ttof =
25ms, they have acquired a velocity v = gttof = 0.25m/s,
where g = 9, 81m/s2 is the gravitational acceleration.
To keep the displacement during the imagine pulse of
length tim below a lattice constant Malat = 50 µm, it is
restricted to tim � Malat/v = ωhoalat/g = 200 µs. This
is no limitation to standard absorption imaging, but be-
comes relevant for reaching large signals per atoms, in
particular when the diffusion from photon scattering al-
lows longer imaging times such as for heavy elements.
Solutions include a magnetic levitation during ToF, ver-
tical orientation of the imaging, or the use of fluorescence
imaging with carefully imbalanced beam intensities to de-
celerate the atoms.

Even without the gravitational acceleration, the atoms
obtain a velocity from the matter wave transformation
itself, which is given by v = nalatωho with the initial
distance from trap center nalat. This velocity restricts
the imaging time to tim � ttof/n, which could become
a limitation for large systems or displacements in the
trap with n � 100. This would still allow larger system
sizes than typically achieved in conventional quantum gas
microscopes.

We expect that starting from Hubbard-like systems,
where the single-atom sensitivity is most relevant, does
not introduce particular limitations to the matter-wave
optics, because the rapid initial expansion after switch-
ing off the lattice will also hold in this case. Let us recall
that also time-of-flight images work equally well starting
from Mott insulators or superfluids. In particular, work-
ing with a single 2D system should reduce interaction
effects due to the rapid expansion when switching off the
2D confinementS1. As a first test, we have measured the
magnified density distribution of a system with an addi-
tional z-lattice, which brings the system into a 3D Hub-
bard regime, and have found no reduction of the contrast
of the images.
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B. Prospects for spin-resolved detection

While we restrict our measurements to atoms in a
single spin state, the scheme can be straight-forwardly
extended to a spin-resolved detection of spin-mixtures.
This is relevant in particular for the Fermi-Hubbard
model, but requires complicated protocols in conven-
tional quantum gas microscopes for the detection of both
spin states of a single snapshotS16,S17. One possibility is
to choose two spin states with the same magnetic-field de-
pendence, which experience the same harmonic confine-
ment during the T/4 pulse. A global microwave sweep
or Raman coupling, which transfers one of the states to
a state with different magnetic field dependence then al-
lows to spatially separate the two spin states during ToF
expansion by adding a magnetic field gradient in a Stern-
Gerlach configuration. Using a magnetic-field indepen-
dent state during the T/4 pulse would allow to simul-
taneously image the real-space distribution for one spin
state and the momentum-space distribution for the other
spin state. When using a spin-independent optical trap
for the T/4 pulse, one can work with two spin states with
different magnetic moment from the beginning and the
step of changing the spin state can be omitted. The com-
patibility of Stern-Gerlach separation with free-space flu-
orescence imaging was recently demonstrated in ref.S18.

C. Prospects for 3D imaging

We note that tomographic 3D imaging, e.g. via scan-
ning along the z-directionS19,S20, should also be appli-
cable to the magnified system. This requires focused
matter wave imaging in all three directions, which can
be achieved with a fully isotropic trap. The lattice sites
are then also separated by typically 50 µm in the imaging
direction such that either a suitable depth of focus or spa-
tially resolved optical pumping can be used for imaging
the slices separately.

D. Local coherence measurements via Talbot
interference

In this section, we discuss how the concept of the quan-
tum gas magnifier – so far used to image real space den-
sity – could be extended to the realm of coherent phe-
nomena. The Talbot effect in optics describes the revival
of a lattice structure with spatial periodicity LTalbot =
2(Malat)

2/λ after transmission through a periodic poten-
tial with lattice constant alat. The Talbot effect manifest
itself also with matter wavesS21–S23 and it is based on the
fact that a periodic 1D wavefunction can be decomposed
in the plane wave basis at multiples of the wavevector
k = 2π/alat with kinetic energies En = n2(~k)2/(2m)
multiple of the same fundamental frequency, whose in-
verse is the Talbot period TTalbot.

We note that in 2D Talbot revivals also appear in the
case of triangular and honeycomb lattice because here the
allowed wavevectors are kn,m = nka + mkb with ka =

(1, 0), kb = (− 1
2 ,
√
3
2 ) and n, m integers, with associated

kinetic energies En,m ∝ |kn,m|2 = n2 + m2 + m · n. All
energies are then integer multiples of the fundamental
energy.

The free-space evolution of the density in the tradi-
tional Talbot effect can be mapped to the evolution in a
HO by considering the dynamics of the x̃ operator. In
free space we have after a time of flight nTTalbot corre-
sponding to the nth Talbot revival:

x̃(nTTalbot) = x̃0 + ωnTTalbotp̃0 (S27)

and in the trap:

x̃(tho) = cos(ωtho)x̃0 + sin(ωtho)p̃0 (S28)

It follows that for tho = 1
ω arctan(ωnTTalbot)

x̃(tho) =
1

M ′
x̃(nTTalbot) (S29)

with M ′ =
√

1 + (ωnTTalbot)2 = 1/ cos(ωtho).
This shows that the dynamics in the trap can be mapped
to the dynamics in free-space upon rescaling positions
with a factor 1/M ′ and rescaling of the evolution times
via the relation

tho =
1

ω
arctan(ωnTTalbot). (S30)

The distribution in the trap at time tho corresponding to
the nth Talbot revival can be then magnified by a factor
M just by letting the system remain in the trap for an
additional ∼ T/4 and subsequent ttof expansion. One
gets in the end:

x̃ =
M

M ′
x̃(nTTalbot) ∼ ωttof x̃(nTTalbot) (S31)

(since typically ωTTalbot � 1 and ωttof � 1).
As derived in ref.S24 for the 1D case, the strength of

the Talbot revivals is a measure of the phase correlation
function. We argue that the decay of the contrast with
the order of the revival is related to the phase correlation
function also in the 2D case. We note that the quantum
gas magnifier would allow access the contrast and there-
fore the phase correlation function in a spatially resolved
manner. This is particularly relevant for inhomogeneous
systems, as typically the case for harmonically trapped
quantum gases.

Imaging of coherent wavepackets away from the focus-
ing condition of the quantum gas magnifier can be used
to gain information on phase profiles of the wavefunction,
where phase fluctuations of low-dimensional systems are
transformed into density fluctuationsS25,S26. As an ex-
ample, we suggest it could be used to detect domains of
magnetic order encoded in the condensate phasesS27.
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These measurement would take place by adding an
evolution time in the HO, followed by the magnification
whose first step is also an evolution in the HO itself:
we notice that one could also measure negative waiting
times simply by a total wait time in the HO smaller

than required from the precise imaging of the density
ωtho < arctan(ωttof). Measuring for both positive and
negative times would allow detection of time reversal
asymmetry, a strong hint for chiral states.
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