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Methods 

Faradaic Efficiency of Gas Products. 

𝐹𝐸𝑎 =

𝑣 × 𝐶𝑎
𝐴 × 𝑉𝑚

× 𝑍𝑎 × 𝐹

𝑗𝑡𝑜𝑡𝑎𝑙
× 100% 

𝐹𝐸𝑎: Faradaic Efficiency of the product a 

𝑣: CO2 gas flow rate (L s-1) 

𝐶𝑎: Volumefraction of the product a detected by GC 

𝐴: Geometric area of the electrode (cm-2) 

𝑉𝑚: molar Volume (22.4 L mol-1) 

𝑍𝑎: electrons transferred for reduction to product a 

𝐹: Faradaic Constant (C mol-1) 

𝑗𝑡𝑜𝑡𝑎𝑙: Total current density during CO2 bulk electrolysis (A cm-2) 

Partial current density. 

𝑗𝑎 = 𝐹𝐸𝑎 × 𝑗𝑡𝑜𝑡𝑎𝑙 
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Figures and Tables 

 

Supplementary Fig. 1 EDX-mapping images of Cu3(HITP)2 showing the homogeneous 

distribution of Cu, N, and C. 

 

 

 

Supplementary Fig. 2 XPS Cu 2p3/2 spectrum of Cu3(HITP)2. 
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Supplementary Fig. 3 Normalized Cu K-edge XANES spectra of Cu3(HITP)2 in reference to CuO and 

Cu2O. 

 

 

 

Supplementary Fig. 4 XPS N 1s spectrum of Cu3(HITP)2. 
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Supplementary Fig. 5 LSV curves of KB@Cu3(HITP)2 and Cu3(HITP)2 in N2/CO2-saturated 0.1 M 

KHCO3 solution. 

 

 

 
Supplementary Fig. 6 CV curves of (a) KB@Cu3(HITP)2 and (b) Cu3(HITP)2 under different scan rates 

from 40 to 140 mV s-1 in 0.1 M KHCO3. (c) The plot of capacitive current at 0.42 V against the scan 

rate. (d) The LSV curves normalized to ECSA for KB@Cu3(HITP)2 and Cu3(HITP)2. 
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Supplementary Fig. 7 Partial current densities of C2H4 and CH4 production on KB@Cu3(HITP)2 and 

Cu3(HITP)2. 

 

 

Supplementary Fig. 8 FEs of all CO2 reduction products for (a) KB@Cu3(HITP)2 and (b) Cu3(HITP)2. 
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Supplementary Fig. 9 Zoom-in diffractograms for XRD Cu(111) peaks of (a) KB@Cu3(HITP)2 and (b) 

Cu3(HITP)2. 

 

 

 

Supplementary Fig. 10 Correlation between the Cu particle size observed in TEM and the FEs of 

C2H4 and H2 for (a) KB@Cu3(HITP)2 and (b) Cu3(HITP)2 in chronoamperometric tests. 
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Supplementary Fig. 11 TEM images of KB@Cu3(HITP)2 after 0.25 h CO2RR at (a)-1.21 V, (b)-1.37 V, 

(c)-1.52 V and (d)-1.67 V. TEM images of Cu3(HITP)2 after 0.25 h CO2RR at (e)-1.25 V, (f)-1.42 V, (g)-

1.59 V and (h)-1.75 V. 
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Supplementary Fig. 12 Correlation between the Cu particle size observed in TEM and the FEs of 

C2H4 and H2 for (a) KB@Cu3(HITP)2 and (b) Cu3(HITP)2 at varying potentials. 

 

 

Supplementary Fig. 13 Total current densities on KB@Cu3(HITP)2 and KB@CuNPs. 

 

 

 

Supplementary Fig. 14 (a) FEs of C2H4, CH4, CO, and H2 at different potentials tested in a H-cell with 

0.1 M KHCO3 for KB@Cu3(HITP)2 and KB@CuNPs. (b) The chronoamperometric i-t test at −1.56 V 

for KB@CuNPs showing the evolution of total current density and FEs of C2H4, CH4, and H2. 
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Supplementary Fig. 15 TEM images taken on KB@CuNPs (a, b) before and (c, d) after a 

chronoamperometric testing period of 8 h at −1.56 V. 

 

 

 

Supplementary Fig. 16 TEM images of KB@Cu3(HITP)2 after the CO2RR conducted at -1.25 V for 10 

h in CO2-saturated 0.1 M KHCO3 electrolyte, the lines indicate the grain boundaries. 
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Supplementary Fig. 17 STEM and EDX-Mapping images of (a) KB@Cu3(HITP)2 and (b) Cu3(HITP)2 

after the CO2RR conducted at -1.25 V for 10 h in CO2-saturated 0.1 M KHCO3 electrolyte. 

 

 

 

Supplementary Fig. 18 TEM images of Cu3(HITP)2 after the CO2RR conducted at -1.25 V for 10 h in 

CO2-saturated 0.1 M KHCO3 electrolyte. 
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Supplementary Fig. 19 (a) Atomic structures of [101] Cu rectangular nanopyramid to model post-

electrolytic KB@Cu3(HITP)2. (b) Schematic illustration, (c) top view and (d) front view of single Cu 

rectangular nanopyramid sitting on 5×5×1 Cu(101) supercell. Colour codes: Cu, orange and green. 

The unit cell is marked with black slash lines and the grain boundaries are marked with blue slash 

lines as the visual guide. 

 

 

 
Supplementary Fig. 20 (a) Front view and (b) top view of atomic structures of post-electrolytic 

Cu3(HITP)2 based on 4×4×4 Cu(111) supercell. Colour codes: Cu, orange. 
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Supplementary Fig. 21 Active sites identified on Cu-RNP surface and the application of ‘extended 

square principle’1, i.e. C–C coupling prefers to proceeding between strongly-bound *CO and 

weakly-bound *CO within under-coordinated (i.e. lattice boundary) surface square sites. E*CO 

values are marked in green and black, denoting strong and weak adsorption, respectively. 

 

 

 

Supplementary Fig. 22 Reaction pathways starting with 2*CO on active site-2 of Cu [101] 

rectangular nanopyramids (Cu-RNP) at 0 V vs RHE. The key bifurcating points are 

highlighted with red circles and the unit of energy is eV. 
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Supplementary Fig. 23 Reaction pathways starting with 2*CO on active site-3 of Cu [101] 

rectangular nanopyramids (Cu-RNP) at 0 V vs RHE. The key bifurcating points are 

highlighted with red circles and the unit of energy is eV. 
 

 

 

Supplementary Fig. 24 *CO binding energies on various adsorption sites of (a) Cu-RNP and (b) 

Cu(111).  
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Supplementary Fig. 25. *CO and *H adsorption sites identified on (a) Cu (111) surface and (b) Cu-

RNP surface. *CO was used as the exampled atomic configuration. 
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Supplementary Fig. 26. Calculated electrode potentials as the function of surface electron 

numbers for the intermediates *CO, *CHO and CO(g) on Cu(111) under various *H coverage. 

 

 

 

Supplementary Fig. 27 Photograph of the flow cell used for electrocatalytic CO2RR. 
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Supplementary Fig. 28 Total current densities on KB@Cu3(HITP)2 and Cu3(HITP)2. 

 

 

 

Supplementary Fig. 29 FEs of C2H4, CH4, CO, and H2 at different potentials tested in a flow-cell with 

1 M KOH electrolyte for (a) KB@Cu3(HITP)2 and (b) Cu3(HITP)2. 

 

 

 

Supplementary Fig. 30 XRD patterns of Cu3(HITP)2 and Cu3(HHTP)2. 
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Supplementary Fig. 31 TEM images of Cu3(HHTP)2. 

 

 

 

 

Supplementary Fig. 32 Faradaic efficiencies of CO2 reduction products for (a) KB@Cu3(HHTP)2 and 

(b) Cu3(HHTP)2 at various potentials. 
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Supplementary Fig. 33 TEM images of KB@Cu3(HHTP)2 after 0.25 h CO2RR at (a)-1.22 V, (b)-1.37 V, 

(c)-1.49 V and (d)-1.65 V. TEM images of KB@Cu3(HHTP)2 after 0.25 h CO2RR at (e)-1.26 V, (f)-1.42 

V, (g)-1.51 V and (h)-1.73 V. 
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Supplementary Fig. 34 The pH of the electrolyte (1 M KOH) at different reaction time. 
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Supplementary Table 1. Comparison of CO2RR performance for KB@Cu3(HITP)2 and other Cu-

based catalysts reported in literature (H-cell). 

catalyst electrolyte 
potential 

(V vs. RHE) 

C2H4 

FE (%) 

C2H4 

j (mA cm-2) 

KB@Cu3(HITP)2 

(This work) 
0.1 M KHCO3 -1.37 ~70 ~26.5 

  -1.67 ~64 ~37.4 

PcCu-Cu-O2 0.1 M KHCO3 -1.2 ~50 7.3 

AN-Cu3 0.1 M KHCO3 -1.08 ~38.1 ~7.3 

Cu2O film4 0.1 M KHCO3 -0.99 ~37.5 ~12.9 

Cu-on-Cu3N5 0.1 M KHCO3 -0.95 ~39 ~14 (C2+) 

O2-plasma Cu6 0.1 M KHCO3 -0.9 ~60 ~6.6 

ERD Cu7 0.1 M KHCO3 -1.2 ~38 ~22 

Cu nanocube8 0.25 M KHCO3 -0.96 ~32.5 ~21 

decahedron Cu9 0.1 M KHCO3 -0.993 ~52 ~17.6 

Cu-mesocrystal10 0.1 M KHCO3 -0.99 ~27.2 ~6.8 

Cu3-Ag3Au NFs11 0.1 M KHCO3 -1.2 ~69 ~13 

OBC12 0.5 M KHCO3 -1.00 45 44.7 
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Supplementary Table 2. The average size of Cu nanoparticles calculated using the Debye-Scherrer 

equation. 

 0.25 h 1 h 5 h 10 h 

KB@Cu3(HITP)2 15.5 nm 16.0 nm 17.4 nm 14.5 nm 

Cu3(HITP)2 18.7 nm 23.4 nm 46.2 nm 52.3 nm 

Debye-Scherrer formula: D =
𝐾×𝛾

𝐵×cos𝜃
 

D: average size (nm) 

𝐾: Scherrer constant (0.89) 

𝛾: X-ray wavelength (0.154056 nm) 

𝐵: FWHM of diffraction peak (rad) 

𝜃: Bragg diffraction Angle (rad) 
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Supplementary Table 3 Free energy change of all PCET steps along C2 pathway after 2*CO 

adsorption on active sites of Cu-RNP and Cu(111). The energy unit is eV. 

PCET  Reaction  Active site ΔG 

5th *CO+*CO + H+ + e–→*CO–COH 

1@Cu-RNP 0.61 

2@Cu-RNP 0.68 

3@Cu-RNP 0.67 

Cu(111) 1.30 

6th *CO–COH + H+ + e–→*COH–COH 

1@Cu-RNP 0.05 

2@Cu-RNP –0.04 

3@Cu-RNP –0.13 

7th *COH–COH+H+ + e–→*C–COH + H2O 

1@Cu-RNP –0.15 

2@Cu-RNP 0.26 

3@Cu-RNP 0.02 

8th *C–COH+ H2O + H+ + e–→*CH–COH+ H2O 

1@Cu-RNP –0.48 

2@Cu-RNP –0.82 

3@Cu-RNP –0.56 

9th *CH–COH+ H2O + H+ + e–→*CH–CHOH+ H2O 

1@Cu-RNP –0.63 

2@Cu-RNP –0.11 

3@Cu-RNP –0.80 

10th *CH–CHOH+ H2O + H+ + e–→*CH2–CHOH+ H2O 

1@Cu-RNP –0.32 

2@Cu-RNP –0.49 

3@Cu-RNP 0.05 

11th 

*CH2–CHOH+ H2O + H+ + e–→*CH2–CH + 2H2O 

1@Cu-RNP –0.19 

2@Cu-RNP –0.48 

3@Cu-RNP –0.06 

*CH2–CHOH+ H2O + H+ + e–→*CH3–CHOH + H2O 

1@Cu-RNP 0.26 

2@Cu-RNP 0.23 

3@Cu-RNP 0.27 

12th 

*CH2–CH+ 2H2O + H+ + e–→CH2–CH2 + 2H2O 

1@Cu-RNP 0.06 

2@Cu-RNP 0.15 

3@Cu-RNP 0.04 

*CH3–CHOH+ H2O + H+ + e–→CH3–CH2OH + H2O 

1@Cu-RNP –0.53 

2@Cu-RNP –0.70 

3@Cu-RNP –0.56 
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Supplementary Table 4. Free energy change of all PCET steps along C1 pathway after 2*CO 

adsorption on active sites of Cu-RNP and Cu(111). The energy unit is eV. 

PCET  Reaction  Active site ΔG 

5th *CO+*CO + H+ + e–→*CO + *CHO 

1@Cu-RNP 0.92 

2@Cu-RNP 0.85 

3@Cu-RNP 0.84 

Cu(111) 1.09 

6th **CO + *CHO + H+ + e–→*CO + *CHOH 

1@Cu-RNP 0.03 

2@Cu-RNP 0.12 

3@Cu-RNP –0.06 

7th *CO + *CHOH+H+ + e–→*CO +*CH + H2O 

1@Cu-RNP –0.66 

2@Cu-RNP –0.70 

3@Cu-RNP –0.42 

8th *CO +*CH + H2O + H+ + e–→*CO + *CH2 + H2O 

1@Cu-RNP –0.03 

2@Cu-RNP 0.06 

3@Cu-RNP 0.69 

9th *CO +*CH2 + H2O + H+ + e–→*CO + *CH3 + H2O 

1@Cu-RNP –0.24 

2@Cu-RNP –0.82 

3@Cu-RNP –0.79 

10th *CO +*CH3 + H2O + H+ + e–→*CO + CH4 + H2O 

1@Cu-RNP –1.39 

2@Cu-RNP –0.92 

3@Cu-RNP –0.49 

 

  



 24 / 27 

 

Supplementary Table 5. Comparison of CO2RR performance for Cu3(HITP)2 and other Cu(111) 

based catalysts reported in literatures. 

catalyst active surface potentials CH4 FE CO FE 

Cuoh
13 Cu (111) -0.93 V. vs. RHE ~36.1% ~5.8% 

Copper Single 

Crystal Electrodes14 
Cu (111) -1.52 V vs SHE ~50.5% ~4.9% 

Cu3(HITP)2  

(This work) 
Cu (111) -1.3 V. vs. RHE ~28% ~2% 
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Supplementary Table 6. Free energy for gas phase species. 

 E (eV) ZPE (eV) –TS (eV) G (eV) 

H2 (g) –6.75 0.27 –0.41 –6.89 

H2O (g) –14.22 0.56 –0.67 –14.33 

CO (g) –14.80 0.13 –0.61 -14.70 

CO2 (g) –23.01 0.31 –0.66 –23.36 

CH4 (g) -24.01 1.19 -0.57 -23.39 

C2H4 (g) –31.97 1.37 –0.55 –31.15 

C2H5OH (g) –46.88 2.13 –0.60 –45.35 
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Supplementary Table 7. Electron assigned for the intermediates *CO, *CHO and CO(g) on Cu(111) 

under different *H coverage to simulate targeted bias potentials. 

Intermediates Potentials 
*H coverage 

(ML) 

Electron Assigned 

(|e|) 

*CO 

0 V vs RHE 

(-0.39 V. vs. NHE) 

2/16 -1.20 

4/16 -1.24 

8/16 -1.37 

-1.3 V vs RHE 

(-1.69 V. vs. NHE) 

2/16 -5.24 

4/16 -5.41 

8/16 -5.50 

*CHO 

0 V vs RHE 

(-0.39 V. vs. NHE) 

2/16 -0.86 

4/16 -0.84 

8/16 -1.18 

-1.3 V vs RHE 

(-1.69 V. vs. NHE) 

2/16 -5.10 

4/16 -5.06 

8/16 -5.24 

CO(g) 

0 V vs RHE 

(-0.39 V. vs. NHE) 

2/16 -0.85 

4/16 -0.82 

8/16 -0.91 

-1.3 V vs RHE 

(-1.69 V. vs. NHE) 

2/16 -4.89 

4/16 -4.98 

8/16 -5.16 
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