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The Diploid Human Genome Model Parameterized with Hi-C Data

The energy function of the genome model is defined as

UGenome(r) = U(r) + Uintra(r) + Uinter(r) + UXi(r) + U specific
inter (r). (S1)

U(r) represents a generic potential applied to each chromosome to ensure the polymeric

topology of chromosomes:

U(r) =
∑
i

[ubond(ri,i+1) + uangle(~ri,i+1, ~ri+1,i+2) + uc(ri)] +
∑
j>i

usc(rij), (S2)

where ubond(ri,i+1) and uangle(ri,i+1, ri+1,i+2) are the bonding and angular potential applied

for neighboring beads to ensure the connectivity of the chromatin chain.

ubond(ri,i+1) = −1

2
KR2

0ln

[
1−

(
ri,i+1

R0

)2
]
, Kb = 30ε, R0 = 1.5σ

uangle(~ri,i+1, ~ri+1,i+2) = Ka [1− cos(θ − π)] , Ka = 2ε, cosθ =
~ri,i+1 · ~ri+1,i+2

|~ri,i+1| · |~ri+1,i+2|

(S3)

uc(ri) is a spherical boundary potential applied to each bead to mimic the confinement effect

of nuclear envelop.

uc(ri) =

ULJ(ri), ri ≤ 21/6σ

0, ri > 21/6σ
(S4)

where ULJ(r) = 4ε
[(

σ
r

)12 −
(
σ
r

)6
]

is the Lennard-Jones potential. ri is the distance between

i-th bead and the wall surface. usc(rij) is a non-bonded soft-core potential added to each

pair formed by beads index i and j to account for the excluded volume effect while allowing

finite probability of cross-over of polymer chains.

usc(ri) =


0.5Ecut

(
1 + tanh

[
2ULJ(ri)
Ecut

− 1
])
, ri ≤ rcut

ULJ(ri), rcut < ri ≤ 21/6σ

0, ri > 21/6σ

(S5)

which corresponds to the Lennard-Jones potential capped off at a finite volume within a

replusive core to allow for chain crossing at finite energy cost. Ecut = 4ε and rcut is chosen

as the distance at which ULJ(r) = 0.5Ecut.

Uintra(r) is the intra-chromosomal potential applied to genomic loci within the same chro-

mosome, while Uinter(r) is similarly defined but for interactions between loci from different
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chromosomes. UXi(r) is a weakly attractive potential applied to only one of the two X

chromosomes to induce the known X-chromosome inactivation. These terms adopt the

following form:

Uintra(r) =
∑
I

∑
i,j∈I

[
αideal(|i− j|) + αintra(T Ii , T

I
j )
]
f(rij) (S6)

where I indexes over each chromosome and i and j index over pair of beads on that chromo-

some. αideal(|i−j|) is a function depends only on the sequence separation between two beads

i and j. αintra(T Ii , T
I
j ) depends specifically on the compartment types T Ii and T Ij , which can

be A, B or C. f(rij) measures the probability of contact formation for two loci separated by

a distance of rij, and its ensemble average corresponds to the contact probability measured

in Hi-C experiments. f(rij) adopts the form:

f(rij) =


1
2

[1 + tanh [η(rc − rij)]] , rij ≤ rc

1
2

(rc/r)
4 , rij > rc

(S7)

where rc = 1.5 and η = 2.5. Similarly, we have

Uinter(r) =
∑
I,J

∑
i∈I,j∈J

αinter(T
I
i , T

J
j )f(rij), (S8)

and

UXi(r) =
∑
i,j∈Xi

w(rij) =
∑
i,j∈Xi

αXi(|i− j|)f(rij) (S9)

The last term in the energy function, U specific
inter (r), captures specific inter-chromosome in-

teractions beyond the generic compartment-based potential, and adopts the form

U specific
inter (r) =

∑
I,J

∑
i∈I,j∈J

αIJinter(T
I
i , T

J
j )f(rij) (S10)

Mathematical expressions for the various energy terms in UGenome(r) were designed such

that their ensemble averages can be mapped onto combinations of contact frequencies mea-

sured in Hi-C. The correspondence between the energy functions and Hi-C measurements

allows model parameterization with an efficient maximum entropy optimization algorithm.

Specifically, αideal(|i− j|), αintra(T Ii , T
I
j ), αinter(T

I
i , T

I
j ), αXi(|i− j|), and αIJinter(T

I
i , T

J
j ) were
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tuned to satisfy the following constraints:〈∑
I 6=X

∑
i,j∈I

f(rij)δ|i−j|,s

〉
UGenome(r)

=
∑
I 6=X

∑
i,j∈I

f exp
ij δ|i−j|,s, for s = 1, · · · , n− 1

〈∑
I

∑
i,j∈I

f(rij)δT I
i ,T1

δT I
j ,T2

〉
UGenome(r)

=
∑
I

∑
i,j∈I

f exp
ij δT I

i ,T1
δT I

j ,T2
, for T1, T2 ∈ {A,B,C}〈∑

I,J

∑
i∈I,j∈J

f(rij)δT I
i ,T1

δTJ
j ,T2

〉
UGenome(r)

=
∑
I,J

∑
i∈I,j∈J

f exp
ij δT I

i ,T1
δTJ

j ,T2
, for T1, T2 ∈ {A,B,C}〈∑

i,j∈X

f(rij)δ|i−j|,s

〉
UGenome(r)

=
∑
i,j∈X

f exp
ij δ|i−j|,s, for s = 1, · · · , nX − 1

〈 ∑
i∈I,j∈J

f(rij)δT I
i ,T1

δTJ
j ,T2

〉
UGenome(r)

=
∑

i∈I,j∈J

f exp
ij δT I

i ,T1
δTJ

j ,T2
. for T1, T2 ∈ {A,B}

(S11)

where δT I
i ,T1

is the Kronecker delta function with the following definition:

δT I
i ,T1

=

 1, if T Ii = T1

0, otherwise
(S12)

The angular bracket represents the ensemble average over the Boltzmann distribution

e−βUGenome(r) and f exp
ij is the corresponding experimental contact frequency.

We applied an iterative algorithm to derive the values for αideal(|i − j|), αintra(T Ii , T
I
j ),

αinter(T
I
i , T

I
j ), αXi(|i− j|), and αIJinter(T

I
i , T

J
j ) that enforce the constraints defined in Eq. S11.

As shown in Ref. 1, while the model was parameterized only with population Hi-C data,

it succeeded in reproducing a variety of observations from imaging studies. For example,

A/B compartments were shown to occupy distinct nuclear regions, with B compartments

preferentially at the periphery. The model further captures the formation of chromosome

territories, the clustering of centromeric regions, and the radial position of individual chro-

mosomes.

Estimating the Surface Tension of Simulated Droplets

The surface tension (γ) of simulated droplets were estimated using the expression from

equipartition theorem as γ = kBT/ 〈u2〉. 〈u2〉 measures the fluctuation of droplet size and
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was computed as follows. For every simulated configuration, we identified the droplets and

calculated the size of individual droplets as Ri
g =

√
1
N

∑N
n=1 |rn − rcom|2, where N is the

number of nucleolar particles in the droplet. rn is the Cartesian coordinate of nucleolar

particle n and rcom is the center of mass of the droplet. We then estimated the fluctuation

as 〈
u2
〉

=

∑M
i=1(Ri

g − R̄g)
2

M
, (S13)

where R̄g is the mean value and M is the number of simulated configurations.

The fluctuation 〈u2〉 estimated using all the droplets found in the 12 trajectories was

0.035 σ2. Using σ = 0.25 µm, we have γ = 1.9 × 10−6N ·m−1 which agrees well with the

experimental value [2]. An example trajectory of the Rg with respect to the simulation time

is shown in Fig. S8B.

Details for Simulations with a Dissolved Chromatin Network

To directly probe the impact of the chromatin network on phase separation, we performed

additional simulations with a dissolved chromatin network. Specifically, we dissolved the

chromatin network by removing polymeric connectivity and the bonding potential between

neighboring chromatin beads. Non-bonded interactions between chromatin beads were also

removed. All other setups, including protein-protein and protein-chromatin interactions

as well as the boundary potential mimicking nuclear confinement [1], were kept the same.

We carried out a total of twelve 20-million-step independent simulations starting from an

equilibrated genome structure without bead-bead connections and randomly distributed

nucleolar particles for studying phase separation dynamics (Fig. S3). In the free energy

calculations, we used the same setup for umbrella sampling and temperature replica exchange

as the original system. The simulations were initialized from a two-droplet configuration

and lasted for twelve million steps for each umbrella window.

Identifying the Neck Region between Two Merging Droplets

To quantify the coalescence dynamics between droplets, we measured the radius of their

neck region as follows. For each simulated configuration, we first determined the principal
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axes as eigenvectors of the covariance matrix

C =


xxT xyT xzT

yxT yyT yzT

zxT zyT zzT

 (S14)

Here, x is the row vector of the shifted Cartesian coordinates along the x−axis for individual

particles x = (x1 − x̄, x2 − x̄, · · · , xN − x̄), where x̄ = 1
N

∑N
i xi. y and z are similarly

defined along the y− and z−axis. All particles from both droplets were used in computing

the covariance matrix. The principal axis with largest (smallest) eigenvalue corresponds to

the direction with most (least) significant particle fluctuation and is noted as ~vl (~vs).

We projected all nucleolar particles onto the principal axes, and computed the width of

the dumbbell as the difference between the maximum and minimum value along the ~vs axis.

As shown in Fig. S13, the resulting width profile along ~vl exhibits double peaks corresponding

to the central position of each droplet. The neck region lies at the minimum of the profile

and the corresponding value provides a measure of the neck radius.

Identifying Clusters along Phase Separation with the DBSCAN Algorithm

We applied the DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

algorithm [3] to identify spatial clusters formed by nucleolar particles. DBSCAN is a density-

based clustering algorithm, which finds “hot regions” or clusters of high spatial density

followed by their gradual expansion with neighboring samples. There are two key parameters

in this algorithm, which correspond to the maximum distance between two samples (rmax)

for them to be considered as neighbors and the minimum number of samples (Nmin) required

for cluster identification. The values for these parameters are system dependent and we used

rmax = σ and Nmin = 5. Varying the values of the two parameters within reasonable ranges

has minimal effect on the results present in the manuscript.

Mapping the Reduced Time Unit to Real Time

We mapped the reduced time unit used in simulations onto the physical unit by matching

the diffusion coefficient from simulations with that in the nucleus. Specifically, from the

Stokes-Einstein (SE) equation, the experimental diffusion coefficient can be calculated as
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D = kBT
6πηr

, where η is the viscosity and r is the radius of spherical beads. The exact value

of nucleoplasmic viscosity is controversial and has been estimated to values that differ by

orders of magnitude. For example, fluorescence recovery after photobleaching (FRAP) [4]

and fluorescence correlation spectroscopy [5] experiments that track protein diffusion have

provided estimations for the nucleoplasmic viscosity on the order of 10−3 Pa·s to 10−2 Pa·s.

On the other hand, studies that tracked the diffusion of Cajal bodies in the intranuclear

region of Hela cells [6] or the diffusion of microinjected nanoparticles [7] has estimated the

nucleoplasmic viscosity to be 10−1 Pa·s to 102 Pa·s. The wide variation of the experimental

measurements might be due to the heterogeneity of the cellular environment [2]. In this

study, we used an intermediate estimation of the nucleoplasmic viscosity as 10−2 Pa·s. At this

value, our simulated timescale for protein exchange (Fig. S8) agrees well with measurements

from FRAP experiments [8].

The diffusion coefficient in our simulations can be estimated from the fluctuation-

dissipation theorem [9] as D = kBT
ζ

, where the friction coefficient ζ = m
γ

. Since the

the damping coefficient γ was set as 10τB in the Langevin dynamics, we have D = kBT
m
· γ =

10kBT
m
·τB = 10 · σ2

τB
. τB is the reduced time unit, and σ is the diameter of the chromatin bead.

Assuming a nucleus of 5 µm in radius, σ can be estimated to be ∼ 0.25µm given the size of

the spherical confinement (RN = 19.7σ) used in simulations. Combining the two expressions

for the diffusion coefficient, we arrive at the expression τB = 10σ2·6πηr
kBT

= 30πησ3

kBT
≈ 3.6s and

the simulation timestep dt = 0.008τB = 0.028s.

Estimating Radial Distribution of Chromosomes

The radial probability density distribution ρ(r) presented in Fig. 2D of the main text was

calculated based on the following expression

ρi(r) =
〈Ni(r)〉UModel

(r)

4πr2∆r ·Ni

(S15)

where Ni(r) is the number of beads of type i located in the spherical shell from radial

distance r to r + ∆r. The angular bracket 〈·〉 stands for the ensemble average over all

simulated configurations. Ni is the total number of beads of type i.
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Simulating Phase Separation with a Tumor Genome Model

To validate the generality of our results and mechanisms with respect to cell types, we

parameterized an independent diploid genome model to carry out additional simulations of

phase separation. Hi-C data generated from clinical tissue samples with colorectal cancer

were used for model parameterization [10]. As shown in Fig. S17A and B, the average contact

frequencies at the compartmental level calculated using tumor Hi-C data differ significantly

from those determined using the GM12878 data, i.e., the one used in the main text. We

applied the same algorithm introduced in Ref. 1, which was used to derive the genome model

presented in the main text, to optimize the tumor genome model.

The 3D organization of the tumor genome differs significantly from that of GM12878

cells. While chromosomal territories are still clearly present (Fig. S17C), the preferential

localization of B compartments at the nuclear periphery is lost (Fig. S17E). Furthermore,

the radial positions of tumor chromosomes correlate poorly with that of GM12878 cells

(Fig. S17D). The dramatic differences in the genome organization of the two cell types

render the tumor genome model a good test system for validating the robustness of the

mechanism of nucleoli formation.

With the newly optimized interactions for the tumor genome, we introduced nucleolar

particles to the system. The number of nucleolar particles and the strength of nucleolar

particle-nucleolar particle and nucleolar particle-chromatin interactions were kept the same

as those used in the main text. Following the same protocol as in the main text, we performed

12 independent 20-million-step-long simulations to probe phase separation. The distribution

for the number of droplets recorded at the end of these simulations is shown in Fig. S17F.

The multi-droplet state is again favored. Notably, the average number of droplets observed

in tumor simulations is higher than that for GM12878 cells. Cancer nuclei are indeed known

to have higher nucleoli numbers [11–13]. A possible reason for this increase could be due

to the reduced inter-chromosome interactions in tumor cells (Fig. S17B). Chromosomes are

less constrained with weaker interactions, and the entropic penalty for bringing them into

close contact upon droplet coalescence is conceivably higher.

Therefore, the chromatin network for the tumor genome, while differing significantly

from that for GM12878 cells, stabilizes the formation of multiple droplets. Furthermore, our

model succeeds in capturing the qualitative change in nucleoli number upon tumorigenesis.
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FIG. S1: Average number of droplets at various combinations of specific and

non-specific interactions between nucleolar particles and chromatin. For each pa-

rameter set, we followed the same protocol as in the main text to simulate phase separation.

For example, twelve independent 20-million-step-long trajectories were performed, and the

droplet number at the end of each simulation trajectory was recorded to compute the aver-

ages. The star indicates the value used in simulations presented in the main text. From the

above figure, it is evident that as soon as the strength of specific interactions becomes strong

enough to promote phase separation, the multi-droplet state emerges. At the strength of 1.4

kBT , though droplets begin to emerge in some simulations, there are still significant sim-

ulations without phase separation. The average number of droplets is, therefore, less than

one. Droplets appear in all simulations at 1.6 kBT , and many trajectories produce multiple

droplets. We decided to use 1.8 kBT , which leads to multiple droplets in most simulations.

Furthermore, the surface tension of the resulting droplets is comparable to the experimental

value as well. The non-specific interaction was chosen as 1.0 kT, but as the phase diagram

shows, it has little impact on the results.
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FIG. S2: The correlation time of representative collective variables is much

shorter than the length of simulated trajectories, supporting their equilibra-

tion. Autocorrelation function of the center of mass distance between chromosome 11 and

17 (blue), the radius of gyration of chromosome 11 (red) and chromosome 17 (green) as

a function of time. Numbers in the parentheses are the value of the characteristic decay

timescale (τ) fitted using the function exp(−t/τ).
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FIG. S3: Dissolving the chromatin network leads to single droplet formation.

(A) Representative initial (left) and final (right) configurations obtained from dynamical

simulations of the nucleus model with a dissolved chromatin network, with nucleolar particles

in yellow and the rest of the genome in grey. (B) Probability distribution of the number

of droplets observed at the end of simulation trajectories. (C) Free energy profile as a

function of Rg for simulations performed with a dissolved chromatin network. Error bars

were calculated as standard deviation of the mean. See text Section:Details for Simulations

with a Dissolved Chromatin Network for further discussion.
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FIG. S4: Probability distribution of the number of droplets observed at the end

of simulation trajectories initialized with different chromosome conformations.

The simulations presented in Fig. 2B of the main text were initialized with the same config-

uration but different random velocities. We carried out 12 additional 20-million-step-long

simulations to further evaluate the robustness of our results with respect to the initial con-

figuration. These new simulations were initialized with different configurations prepared as

following. We first collected 12 uncorrelated sets of chromosome conformations from a long

simulation trajectory of the genome-only model at equal time intervals. For each set of

conformations, we then introduced nucleolar particles and relaxed the resulting structures

following the same procedure detailed in the Methods Section of the main text. The distri-

bution for the number of droplets recorded at the end of these simulations is quantitatively

comparable to that shown in Fig 2B. Therefore, results presented in the main text are not

sensitive to the initial conformations of chromosomes.
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FIG. S5: The genome organization obtained after removing Hi-C optimized inter-

chromosome interactions, while differs significantly from the one presented in

the main text, supports the stability of the multi-droplet state. We followed the

same protocols as those used to produce Fig. 2 of the main text to carry out 12 additional

independent 20-million-step-long simulations with αinter defined in Eq. S8 and Eq. S10 set

to 0. (A) Representative configuration of the genome that illustrates the formation of

chromosome territories. (B) Correlation between chromosome radial positions obtained

using the perturbed model and the original results presented in the main text. Error bars

correspond to the standard deviation of the 12 mean values estimated using individual

simulation trajectories. Homologous chromosomes were averaged together. RN is the radius

of the nucleus used in polymer simulations. (C) Radial distributions of A/B compartments.

An example genome configuration is shown as the inset, with the two compartments colored

in red (A) and blue (B) respectively. (D) Probability distribution of the number of droplets

observed at the end of simulation trajectories.
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FIG. S6: The genome organization obtained after removing Hi-C optimized intra-

and inter-chromosome interactions, while differs significantly from the one pre-

sented in the main text, supports the stability of the multi-droplet state. We

followed the same protocols as those used to produce Fig. 2 of the main text to carry out

12 additional independent 20-million-step-long simulations with αinter defined in Eq. S8 and

Eq. S10 and αintra defined in Eq. S6 all set to 0. (A) Representative configuration of the

genome that illustrates the formation of chromosome territories. (B) Correlation between

chromosome radial positions obtained using the perturbed model and the original results

presented in the main text. Error bars correspond to the standard deviation of the 12 mean

values estimated using individual simulation trajectories. Homologous chromosomes were

averaged together. RN is the radius of the nucleus used in polymer simulations. (C) Radial

distributions of A/B compartments. An example genome configuration is shown as the inset,

with the two compartments colored in red (A) and blue (B) respectively. (D) Probability

distribution of the number of droplets observed at the end of simulation trajectories.
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FIG. S7: A 100kb resolution genome model supports the stability of the multi-

droplet state. (A) Overview of the 100kb resolution model. Similar to the model presented

in the main text, chromosomes are represented as strings of coarse-grained beads, each one

of which represents a genomic region of 100kb in length. Each bead was further labeled as

compartment A, B, or I. As detailed in Ref. 10, compartment I differs from both A and

B with unique histone modification and DNA methylation patterns. The energy function

of this model is similar to Ugenome(r) defined in the Supplementary Material. One notable

difference is our differentiation of interactions within individual topologically associating

domains (TAD) from those across different TADs. Together with the model’s higher reso-

lution, this differentiation allows it to recapitulate high-resolution structural motifs of the

genome seen in Hi-C data. Due to the computational cost with increased resolution, we only

modeled a single copy of each chromosome, i.e., the haploid genome. The exact expression

of the energy function can be found in Ref. 10. Parameters in the energy function were

again derived using the maximum entropy optimization algorithm based on the Hi-C data

for normal human colon tissue samples processed at the 100kb resolution. (B) Comparison

between experimental (bottom left) and simulated contact map (top right) for a representa-

tive genomic region from chromosome 1 (27Mb to 57Mb). Dotted blocks along the diagonal

are TAD boundaries determined using experimental data with the software TADbit [14].

(C) Probability distribution of the number of droplets observed at the end of twelve inde-

pendent 12-million-step-long simulation trajectories. Insets are representative snapshots for

the two-droplet and the three-droplet states. We followed the same simulation protocols as

in the main text to simulate phase separation with the 100kb model. We introduced the

same number of nucleolar particles into the model as what we have in the 1Mb model, but

scaled the size of each protein bead similarly according to the procedure in the Methods:

Estimating the Size and Number of Nucleolar Particles Section in the main text. All the

interaction strengths for protein-protein and protein-chromatin interactions were set to be

the same as those in the 1Mb model.
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FIG. S8: Nucleolar particles undergo dynamic exchange with surrounding nucle-

oplasm while maintaining the droplet size. (A) Fraction of nucleolar particles that

have left the original droplet as a function time for the two representative trajectories with

3 (red) and 2 (blue) droplets. (B) Droplet sizes calculated as the radius of gyration (Rg) as

a function of time along the two trajectories shown in (A).
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FIG. S9: NADs are in general closer to nuclear interior than other heterochro-

matin but a significant fraction of them localizes towards the nuclear envelope.

(A) Radial distribution profile of compartment B loci, compartment B loci that are not

identified as NADs, and NADs. (B) Probability of each NAD (x-axis) to be in close contact

with simulated droplets (nucleoli) in different trajectories (y-axis). Two types of NADs are

evident. We identified type I NADs as those that show high probability of nucleoli associa-

tion in all trajectories with an average probability larger than 0.5. The rest is classified as

type II NADs. (C) Radial distribution profiles of different NADs support their differential

nuclear localization. RN is the radius of the nucleus used in polymer simulations.
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FIG. S10: The radius of gyration (Rg) succeeds at driving the separation of

droplets. (A) Illustration of the problem of using a fixed set of nucleolar particles to com-

pute the center of mass (COM) distance between two droplets. As the particles from two

droplets exchange as shown in the bottom panel, the COM distance between red and blue

particles will decrease even when the two droplets are far apart from each other. (B,C,D)

The COM distance obtained from post-analysis of simulation trajectories with the nucleolar

particles in each droplet identified on the fly (B), the COM distance using a fixed set of

nucleolar particles in each droplet identified at the beginning of simulations, and Rg as a

function of simulation time. Different colors represent different trajectories.
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FIG. S11: Free energy profiles as a function of Rg calculated at temperatures from 1.00 to

1.14 with an increment of 0.02. The temperature increases as the color varies from blue to

red.
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FIG. S12: Variation of the center of mass distance between chromosomes (x-axis) and one

of the simulated droplets (nucleoli) in different configurations (y-axis) used to initialize the

dynamical simulations in Fig. 4A of the main text. The unit of distance is σ. The noticeable

differences among configurations support significant rearrangement of chromosome positions.
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FIG. S13: Identifying the neck region between two merging droplets from princi-

pal axes. Left Panel: representative configurations at the initial (top) and final (bottom)

stage of droplet coalescence shown in the original Cartesian space. ~vl (~vs) is the principal

axis with largest (smallest) eigenvalue and corresponds to the direction with most (least)

significant particle fluctuation. Right Panel: The width profiles obtained after projecting

nucleolar particles onto the principal axes. See text Section:Identifying the Neck Region

between Two Merging Droplets for further discussions.
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FIG. S14: Coarsening dynamics for phase separation with a dissolved chromatin

network. (A) Time evolution of the number of clusters observed along a simulated tra-

jectory. (B) Power-law scaling of the average cluster size as a function of time. See text

Section:Details for Simulations with a Dissolved Chromatin Network for further discussion.
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FIG. S15: Bar plot for the average size of the clusters that undergo Brownian motion-

induced coalescence (BMC) and diffusion-limited Ostwald ripening (DOR) pathways. The

statistics were done on 92 BMC events and 13 DOR events. Error bars correspond to

standard deviations of all clusters that undergo each pathway.
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FIG. S16: Clusters exhibit sub-diffusive motion. Mean-square displacement (MSD)

of the center-of-mass of clusters as a function of time. Error bars correspond to standard

deviations of the MSD for all clusters across all 12 independent simulated trajectories.
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FIG. S17: Tumor genome organization, while differs significantly from the one

presented in the main text, supports the stability of the multi-droplet state. See

text Simulating Phase Separation with a Tumor Genome Model for details. (A, B) Average

intra (A) and inter (B) chromosome contact probabilities between various compartments

estimated using Hi-C data for GM12878 (blue) and tumor (red) cells. (C) Representative

configuration of the genome that illustrates the formation of chromosome territories. (D)

Correlation between chromosome radial positions obtained using simulations of the GM12878

and tumor genome model. Error bars correspond to the standard deviation of the mean

values estimated using individual simulation trajectories. Homologous chromosomes were

averaged together. RN is the radius of the nucleus used in polymer simulations. (E) Radial

distributions of A/B compartments. An example genome configuration is shown as the inset,

with the two compartments colored in red (A) and blue (B) respectively. (F) Probability

distribution of the number of droplets observed at the end of simulation trajectories.
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FIG. S18: The stability of the multi-droplet state is robust with respect to

nucleolar particle size. To examine the dependence of simulation results on the size of

nucleolar particles, we altered its value (σP) from 0.3σ to 0.3σ, 0.4σ, 0.6σ, 0.7σ, 0.8σ. All other

parameters in the model were kept the same. For each value of σP, we followed the same

protocols as those used to produce Fig. 2 of the main text to carry out 12 independent 20-

million-step-long simulations. The number of droplets formed at the end of each simulation

was then recorded to compute the corresponding probability distributions shown above. As

can be seen in this figure, the multi-droplet state appears for all parameter values. It is also

more populated than the mono-droplet state except for σP = 0.8σ. However, at σP = 0.8σ,

the estimated nucleoli size would be out of the reasonable range estimated from microscopic

images.
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FIG. S19: Removing nucleolar particle-chromatin interactions destabilizes the

multi-droplet state. To examine the dependence of simulation results on the interaction

between nucleolar particles and chromatin, we set the specific interaction strength, i.e., ε

defined in Eq. 1 of the main text, to 1.0 kBT . The nucleolar particle-nucleolar particle

interaction and other parameters for interactions among chromosomes were kept the same.

We followed the same protocols as those used to produce Fig. 2 of the main text to carry out

12 independent 20-million-step-long simulations. The number of droplets formed at the end

of each simulation was then recorded to compute the corresponding probability distributions

shown above.

29



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rg ( m)

0

2

4

6

8

P
re

s
s
u

re
 (

P
a

)

FIG. S20: Pressure as a function of the droplet size. We computed the pressure

for all the droplets formed in phase separation simulations using the expression introduced

by Lion and Allen [15]: P (~r) = 1
3Ω

〈∑N
i=1

|~pi|2
mi

Λi +
∑N−1

i=1

∑
j>i(

~fij · ~rij)lij
〉

. Here, Ω is the

volume of the region of interest, centred on ~r, Λi is the unity if particle i lies within the

volume Ω, and zero otherwise. lij is the fraction (0 ≤ lij ≤ 1) of the line joining particles

i and j that lies within Ω. ~ri and ~rj are the positions of particles i and j, ~rij = ~ri − ~rj,

and ~fij denotes the force exerted on particle i by particle j. ~pi and mi are the momentum

and mass of particle i. The bracket 〈·〉 represents the ensemble average over independent

configurations with droplet size that are within ±0.0534µm of the presented values. For

simplicity, we approximated the first term as NdkBT/Ω = ρdkBT using the equal partition

theorem |~pi|2
mi

= mi|~vi|2 = 3kBT , where Nd and ρd are the number of particles and density

of droplets. The dependence of pressure on droplet size differs from the result obtained

by Zhang et al. [16], where the pressure was found to increase for larger droplets. There,

the authors used a cross-linked network and repulsive interactions between phase-separating

agents and polymers.
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FIG. S21: Frequent exchanges between replicas were observed during molecular

dynamics simulations. (A) Temperature ID assigned to each one of the eight replicas as

a function of simulation time. The temperature varies from 1 to 1.14 with an increment of

0.02 from ID 1 to 8. (B) The average dwell time at various temperatures for each replica.

The black line corresponds to the average across replicas with errorbars indicating standard

deviations across all trajectories in 16 umbrella windows.
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