Supporting Information

Sulfonation of natural carbonaceous bentonite as low-cost acidic catalyst for effective

transesterification of used sunflower oil into diesel; statistical modeling and kinetic

properties

Walaa A. Hassan[§], Ezzat A. Ahmed[§], Mohamed A. Moneim[§], Mohamed S. Shaban[¥], Ahmed M. El-Sherbeeny[&], Nahid Siddiqui^ɛ, Jae-Jin Shim^β, Mostafa R.

Abukhadra*^{T,¶}

[§]Geology Department, Faculty of Science, Assiut University, Egypt
 [§]Geology Department, Faculty of Science, New Valley University, Egypt
 [§]Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
 [§]Amity Institute of Biotechnology, Amity University, NOIDA, India
 [§]School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
 [§]Geology Department, Faculty of Science, Beni-Suef University, Egypt
 [¶]Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Egypt
 [©]Corresponding Email address*: <u>Abukhadra89@Science.bsu.edu.eg</u>

Content

1.	Figure S1. the petrographic studies of oil shale in thin sections using polarized transmitted
	microscope
2.	Figure S2. SEM image of the S-CB catalyst after the transesterification reactions (Spent catalyst)
3.	Figure S3. the normal probability plot for studentized residuals for the suggested experimental
	conditionsS3
4.	Table S1. The optimization test scheme constraints for the suggested optimizing conditions for the
	transesterification of SFO over S-CB catalystS3
5.	Table S2. the determination coefficient and the rate constant for the studied Pseudo-first order kinetic
	modelS3
6.	Table S3. the Fatty acid content and physical properties of the inspected spent sunflower
	oil
7.	Table S4. the upper and lower values of the inputs in their actual and coded
	valuesS4

(S1)

Figure S2. SEM image of the S-CB catalyst after the transesterification reactions (Spent catalyst)

(S2)

Figure S3. the normal probability plot for studentized residuals for the suggested experimental conditions

Table S1. The optimization test scheme constraints for the suggested optimizing conditions for the transesterification of

 SFO over S-CB catalyst

Optimization test scheme constraints							
Name		Lower	Upper	Lower	Upper	Importance	
		Limit	Limit	coded	coded		
Time	Is in range	20 min	150 min	1	1	3	
Temperature	Is in range	25 °C	75 °C	1	1	3	
Methanol:oil ratio	Is in range	4:1	15:1	1	1	3	
Catalyst loading	Is in range	2 wt.,%	5 wt.,%	1	1	3	
Biodiesel yield	Maximum						

Table S2. the determination coefficient and the rate constant for the studied Pseudo-first order kineticmodel

Temperature	Determination	Rate constant (k)
	coefficient (R ²)	
50 °C	0.98	0.02992
60 °C	0.98	0.03651
70 °C	0.95	0.04156

Table S3. the Fatty acid content and physical properties of the inspected spent sunflower oil

Fatty acid composition			
Fatty acid composition	Percent		
Myristic acid (C ₁₄ H ₂₈ O ₂) (C14:0)	11.3 %		
Linoleic acid(C ₁₈ H ₃₂ O ₂) (C18:3)	15 %		

(S3)

Palmitoleic (C ₁₆ H ₃₀ O ₂) (C16:1)	33.8 %		
Oleic acid (C ₁₈ H ₃₄ O ₂) (C18:1)	30.6 %		
Palmitic acid (C ₁₆ H ₃₂ O ₂) (C16:0)	2.3 %		
Eicosanoic acid (C ₂₄ H ₄₈ O ₂) (C20:1)	2.5 %		
Stearic acid (C ₁₈ H ₃₆ O ₂) (C18:0)	1.8 %		
Physical properties			
Molecular weight	922 g/mol		
Saponification value	187 mg KOH/gm		
Acid value	2.23 mg KOH/gm		
Cinematic viscosity	45.2 cSt		

Table S4. the upper and lower values of the inputs in their actual and coded values

Factor	Name	Low	Medium	High actual	Low	Medium	High
		actual	actual		coded	coded	coded
Α	Temperature (°C)	25	50	75	-1	0	1
в	Time (min)	20	85	150	-1	0	1
с	Methanol/oil ratio	4/1	9.5/1	15/1	-1	0	1
D	Loading (wt.,%)	2	3.5	5	-1	0	1