Web-based Supplementary Materials for

Semiparametric Regression Analysis of Length-Biased Interval-Censored Data

by

Fei Gao* and Kwun Chuen Gary Chan Chan**

Department of Biostatistics, University of Washington, Seattle, Washington, U.S.A.

*email: feigao@uw.edu

**email: kcgchan@u.washington.edu

Web Appendix A

Nonparametric Maximum Likelihood Estimation with Left-continuous $\widehat{\Lambda}$

We consider the nonparametric maximum likelihood estimation approach where the estimator for Λ is a left-continuous function with potential discontinuous points at the ends of the intervals that bracket the failure times. Specifically, we let $\lambda_0, \lambda_1, \ldots, \lambda_k$ be the respective jump sizes such that $\Lambda(t) = \sum_{l=1}^{j} \lambda_l$ for $t \in (t_{j-1}, t_j]$, where $\lambda_0 = 0$. Write $\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_k)$. We maximize the objective function

$$l_n(\boldsymbol{\beta}, \boldsymbol{\lambda}) \equiv \sum_{i=1}^n \left(\log \left[\exp \left\{ -\sum_{t_j \leq L_i} \lambda_j \exp \left(\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{Z}_i \right) \right\} - I(R_i < \infty) \exp \left\{ -\sum_{t_j \leq R_i} \lambda_j \exp \left(\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{Z}_i \right) \right\} \right] - \log \int_0^\tau \frac{1}{\tau} \exp \left\{ -\sum_{t_{j-1} < a} \lambda_j \exp \left(\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{Z}_i \right) \right\} da \right).$$

Following from the argument in Section 2.2, the number of truncated samples n_i follows a negative binomial distribution with parameter

$$\pi_i = P(T_{im}^* < A_{im}^* | \mathbf{Z}_i) = \sum_{j=1}^k (1 - t_{j-1}/\tau) \lambda_j \exp\left(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{Z}_i\right) \exp\left\{-\sum_{l=1}^j \lambda_l \exp\left(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{Z}_i\right)\right\},$$

and

$$p_{ij} = P(T_{im}^* = t_j | T_{im}^* < A_{im}^*, \mathbf{Z}_i) = \frac{(1 - t_{j-1}/\tau)\lambda_j \exp\left(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{Z}_i\right) \exp\left\{-\sum_{l=1}^j \lambda_l \exp\left(\boldsymbol{\beta}^{\mathrm{T}} \mathbf{Z}_i\right)\right\}}{\pi_i}.$$

A similar EM algorithm can be constructed with $\widehat{E}(n_{ij})$ replaced by

$$\widehat{E}(n_{ij}) = \frac{(1 - t_{j-1}/\tau)\lambda_j \exp\left(\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{Z}_i\right) \exp\left\{-\sum_{l=1}^j \lambda_l \exp\left(\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{Z}_i\right)\right\}}{1 - \pi_{ij}}$$

To see the numerical difference between different versions, we analyzed the simulated data sets in the first set of simulation studies (with length-biased assumption) using the proposed methods. The results are summarized in Web Table 1 and the difference to the right-continuous is small, especially for large n.

Web Appendix B

Proof of Lemmas

Proof of Lemma 1. Since \mathcal{D}_M consists of increasing and uniformly bounded functions on \mathcal{U} , Lemma 2.2 of van der Geer (2000) implies that for any $\epsilon > 0$, the bracketing number satisfies

$$N_{[]}(\epsilon, \mathcal{D}_M, \|\cdot\|_{L_2}) \lesssim \epsilon^{-1}$$

where $\|\cdot\|_{L_2}$ denote the L_2 -norm with respect to the Lebesgue measure on \mathcal{U} , and $A \leq B$ means that $A \leq cB$ for a positive constant c. For $\epsilon > 0$, we can find $\exp\{O(1/\epsilon)\}$ number of brackets $\{[\Lambda_j^L, \Lambda_j^U]\}$ with $\|\Lambda_j^L - \Lambda_j^U\|_{L_2} \leq \epsilon$ and $|\Lambda_j^L(\tau) - \Lambda_j^U(\tau)| < \epsilon$ to cover \mathcal{D}_M . In addition, there are $O(\epsilon^{-p})$ number of brackets $\{[\beta_j^L, \beta_j^U]\}$ covering \mathcal{B} , such that two $\|\beta_j^L - \beta_j^U\| \leq \epsilon$. Hence, there are in total $\exp\{O(1/\epsilon)\} \times O(\epsilon^{-p})$ brackets that covers $\mathcal{B} \times \mathcal{D}_M$. For any pair of parameters (β_1, Λ_1) and (β_2, Λ_2) , there exists some constant c such that

$$\begin{aligned} |m(\boldsymbol{\beta}_{1},\Lambda_{1}) - m(\boldsymbol{\beta}_{2},\Lambda_{2})| &\leq |m(\boldsymbol{\beta}_{1},\Lambda_{1}) - m(\boldsymbol{\beta}_{2},\Lambda_{1})| + |m(\boldsymbol{\beta}_{2},\Lambda_{1}) - m(\boldsymbol{\beta}_{2},\Lambda_{2})| \\ &\leq c \|\boldsymbol{\beta}_{1} - \boldsymbol{\beta}_{2}\| + c \sum_{m=0}^{M} \Delta_{m} |\Lambda_{1}(U_{m}) - \Lambda_{2}(U_{m})| \\ &+ c \int_{0}^{\tau} |\Lambda_{1}(a) - \Lambda_{2}(a)| \, da. \end{aligned}$$

Therefore,

$$\|m(\beta_{1},\Lambda_{1}) - m(\beta_{2},\Lambda_{2})\|_{L_{2}(\mathbb{P})} \leq O\{\|\beta_{1} - \beta_{2}\| + \|\Lambda_{1} - \Lambda_{2}\|_{L_{2}} + |\Lambda_{1}(\tau) - \Lambda_{2}(\tau)|\} = O(\epsilon).$$

The bracketing number of \mathcal{M} then satisfies

$$N_{\parallel} \le \exp\{O(1/\epsilon)\}O(\epsilon^{-p}),$$

such that the entropy integral is finite. The class \mathcal{M} is then \mathbb{P} -Donsker.

Proof of Lemma 2. By Theorem 1, $\widehat{\Lambda}$ is consistent for Λ_0 . Therefore, there exists a finite constant M such that $\widehat{\Lambda}(\tau) \leq M$. By Lemma 1, $m(\widehat{\beta}, \widehat{\Lambda})$ belongs to a Donsker class with bracketing integral

$$J_{[]}(\delta, \mathcal{M}, L_2(\mathbb{P})) = \int_0^{\delta} \sqrt{1 + \log N_{[]}(\epsilon, \mathcal{M}, L_2(\mathbb{P}))} \le O(\delta^{1/2}).$$

In addition, by Lemma 1.3 of van der Geer (2000) and the mean-value theorem,

$$\mathbb{P}\left\{m\left(\widehat{\boldsymbol{\beta}},\widehat{\boldsymbol{\Lambda}}\right)-m\left(\boldsymbol{\beta}_{0},\widetilde{\boldsymbol{\Lambda}}\right)\right\} \lesssim H^{2}\left\{\left(\widehat{\boldsymbol{\beta}},\widehat{\boldsymbol{\Lambda}}\right),\left(\boldsymbol{\beta}_{0},\widetilde{\boldsymbol{\Lambda}}\right)\right\},\$$

where $H(\cdot, \cdot)$ is the Hellinger distance defined as

$$H\left\{\left(\boldsymbol{\beta}_{1},\Lambda_{1}\right),\left(\boldsymbol{\beta}_{2},\Lambda_{2}\right)\right\}=\left[\int\left\{L(\boldsymbol{\beta}_{1},\Lambda_{1})-L(\boldsymbol{\beta}_{2},\Lambda_{2})\right\}^{2}d\mu\right]^{1/2},$$

with respect to the dominating measure μ . By Theorem 3.4.1 of van der Vaart and Wellner (1996), there exists r_n with $r_n^2 \phi(1/r_n) \sim n^{1/2}$ such that $H\{(\widehat{\beta}, \widehat{\Lambda}), (\beta_0, \widetilde{\Lambda})\} = O_P(1/r_n)$, where

$$\phi_n(\delta) = J_{[]}(\delta, \mathcal{M}, H(\cdot, \cdot)) \left\{ 1 + \frac{J_{[]}(\delta, \mathcal{M}, H(\cdot, \cdot))}{\delta^2 / \sqrt{n}} \right\}$$

In particular, we can choose r_n in the order of $n^{1/3}$ such that $H\{(\widehat{\beta}, \widehat{\Lambda}), (\beta_0, \widetilde{\Lambda})\} = O_P(n^{-1/3})$.

Therefore, there exists finite constants c_1 and c_2 such that

$$O_{P}(n^{-2/3}) = E\left[\left\{\frac{\sum_{m=0}^{M} \Delta_{m}\left[\exp\left\{-\widehat{\Lambda}(U_{m})\exp\left(\widehat{\boldsymbol{\beta}}^{\mathrm{T}}\boldsymbol{Z}\right)\right\} - \exp\left\{-\widehat{\Lambda}(U_{m+1})\exp\left(\widehat{\boldsymbol{\beta}}^{\mathrm{T}}\boldsymbol{Z}\right)\right\}\right]}{\int_{0}^{\tau} \frac{1}{\tau}\exp\left\{-\widehat{\Lambda}(a)\exp\left(\widehat{\boldsymbol{\beta}}^{\mathrm{T}}\boldsymbol{Z}\right)\right\}da} - \frac{\sum_{m=0}^{M} \Delta_{m}\left[\exp\left\{-\Lambda_{0}(U_{m})\exp\left(\boldsymbol{\beta}_{0}^{\mathrm{T}}\boldsymbol{Z}\right)\right\} - \exp\left\{-\Lambda_{0}(U_{m+1})\exp\left(\boldsymbol{\beta}_{0}^{\mathrm{T}}\boldsymbol{Z}\right)\right\}\right]}{\int_{0}^{\tau} \frac{1}{\tau}\exp\left\{-\Lambda_{0}(a)\exp\left(\boldsymbol{\beta}_{0}^{\mathrm{T}}\boldsymbol{Z}\right)\right\}da}\right\}^{2}\right]$$

$$= c_1 \left\| \widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0 \right\|^2 + c_2 E \left(\left[L(\boldsymbol{\beta}_0, \Lambda_0) \left\{ \sum_{m=0}^M \Delta_m \int_0^\tau Q(t, U_m, U_{m+1}; \boldsymbol{\beta}_0, \Lambda_0) d(\widehat{\Lambda} - \Lambda_0)(t) \right\} \right]^2 \right),$$

where the last equality follows from the mean-value theorem. We define a norm in $BV(\mathcal{U})$ such that for any $f \in BV(\mathcal{U})$,

$$||f||_1 = \left[E\left\{ \sum_{m=0}^M f(U_m)^2 \right\} \right]^{1/2}$$

In addition, we define a seminorm

$$||f||_{2} = E\left(\left[L(\beta_{0}, \Lambda_{0})\left\{\sum_{m=0}^{M} \Delta_{m} \int_{0}^{\tau} Q(t, U_{m}, U_{m+1}; \beta_{0}, \Lambda_{0}) df(t)\right\}\right]^{2}\right)^{1/2}$$

Note that if $||f||_2 = 0$ for some $f \in BV(\mathcal{U})$, then

$$L(\boldsymbol{\beta}_0, \Lambda_0) \left\{ \sum_{m=0}^M \Delta_m \int_0^\tau Q(t, U_m, U_{m+1}; \boldsymbol{\beta}_0, \Lambda_0) df(t) \right\} = 0$$

with probability 1.

For any $m \in \{0, \dots, M\}$, we sum over all possible $\Delta_{m'}$ with $m' = m, \dots, M$ to obtain $-\int_{0}^{U_{m}} df(t) + \int \frac{\int_{0}^{a} \exp\left\{-\Lambda_{0}(a) \exp\left(\boldsymbol{\beta}_{0}^{\mathrm{T}}\boldsymbol{Z}\right)\right\} da}{\int_{0}^{\tau} \exp\left\{-\Lambda_{0}(a) \exp\left(\boldsymbol{\beta}_{0}^{\mathrm{T}}\boldsymbol{Z}\right)\right\} da} df(t) = 0.$

Because *m* is arbitrary, we can replace U_m with any $t \in \mathcal{U}$. We differentiate both sides with respect to *t* to obtain f'(t) = 0, such that f(t) = 0 for $t \in \mathcal{U}$, implying that $\|\cdot\|_2$ is a norm in $BV(\mathcal{U})$.

By the Cauchy-Schwarz inequality, for any $f \in BV(\mathcal{U})$,

$$||f||_{2} \leq \left(E \left[L(\boldsymbol{\beta}_{0}, \Lambda_{0}) \left\{ \sum_{m=0}^{M} \Delta_{m} \int_{0}^{\tau} Q(t, U_{m}, U_{m+1}; \boldsymbol{\beta}_{0}, \Lambda_{0}) dt \right\} \right]^{2} E \left\{ \sum_{m=0}^{M} f(U_{m})^{2} \right\} \right)^{1/2} \leq c_{3} ||f||_{1},$$

where c_3 is a finite constant. By the bounded inverse theorem in the Banach space, we have $\|f\|_2 \ge c'_3 \|f\|_1$ for some constant c'_3 . Therefore,

$$O_P(n^{-2/3}) + O\left(\left\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0\right\|^2\right) \ge c_2 {c'_3}^2 E\left[\sum_{m=0}^M \left\{\widehat{\Lambda}(U_m) - \Lambda_0(U_m)\right\}^2\right].$$

The lemma thus holds.

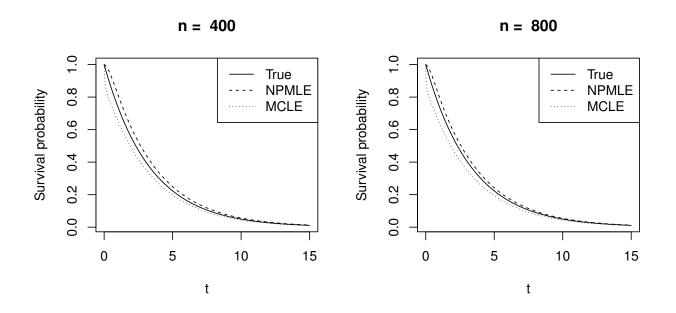
References

- van der Geer, S. A. (2000). *Empirical Processes in M-estimation*. Cambridge: Cambridge University Press.
- van der Vaart, A. W. and Wellner, J. A. (1996). *Weak Convergence and Empirical Processes*. New York: Springer.

Web Table 1: Summary statistics for the simulation studies with left-continuous $\widehat{\Lambda}$.

	•						
		Bias	SE	SEE	RMSE	CP	RMSD
n = 100	β_1	0.006	0.168	0.171	0.168	0.957	0.003
	β_2	0.010	0.293	0.316	0.294	0.966	0.006
n = 200	β_1	0.003	0.117	0.116	0.117	0.950	0.001
	β_2	0.003	0.205	0.212	0.205	0.957	0.003
n = 400	β_1	0.002	0.082	0.081	0.082	0.944	0.001
	β_2	0.001	0.144	0.146	0.144	0.951	0.001

Note: SE, SEE, RMSE, CP, and RMSD are the empirical standard error, mean standard error estimator, root mean squared error, empirical coverage probability of the 95% confidence interval, and root mean squared difference to the right-continuous version, respectively.



Web Figure 1: Estimated baseline survival functions in simulation studies with length-biased assumption. The solid, dashed, and dotted curves pertain to the true value, the nonparametric maximum likelihood estimation and conditional likelihood estimation, respectively.