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Web Appendix A

Nonparametric Maximum Likelihood Estimation with Left-continuous Λ̂

We consider the nonparametric maximum likelihood estimation approach where the estimator

for Λ is a left-continuous function with potential discontinuous points at the ends of the intervals

that bracket the failure times. Specifically, we let λ0, λ1, . . . , λk be the respective jump sizes

such that Λ(t) =
∑j

l=1 λl for t ∈ (tj−1, tj], where λ0 = 0. Write λ = (λ1, . . . , λk). We maximize

the objective function

ln(β,λ) ≡
n∑
i=1

log

exp

−∑
tj≤Li

λj exp
(
βTZi

)− I(Ri <∞) exp

−∑
tj≤Ri

λj exp
(
βTZi

)


− log

∫ τ

0

1

τ
exp

− ∑
tj−1<a

λj exp
(
βTZi

) da

 .

Following from the argument in Section 2.2, the number of truncated samples ni follows a

negative binomial distribution with parameter

πi = P (T ∗im < A∗im|Zi) =
k∑
j=1

(1− tj−1/τ)λj exp
(
βTZi

)
exp

{
−

j∑
l=1

λl exp
(
βTZi

)}
,

and

pij = P (T ∗im = tj|T ∗im < A∗im,Zi) =
(1− tj−1/τ)λj exp

(
βTZi

)
exp

{
−
∑j

l=1 λl exp
(
βTZi

)}
πi

.
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A similar EM algorithm can be constructed with Ê(nij) replaced by

Ê(nij) =
(1− tj−1/τ)λj exp

(
βTZi

)
exp

{
−
∑j

l=1 λl exp
(
βTZi

)}
1− πij

.

To see the numerical difference between different versions, we analyzed the simulated data

sets in the first set of simulation studies (with length-biased assumption) using the proposed

methods. The results are summarized in Web Table 1 and the difference to the right-continuous

is small, especially for large n.

Web Appendix B

Proof of Lemmas

Proof of Lemma 1. Since DM consists of increasing and uniformly bounded functions

on U , Lemma 2.2 of van der Geer (2000) implies that for any ε > 0, the bracketing number

satisfies

N[](ε,DM , ‖ · ‖L2) . ε−1,

where ‖·‖L2 denote the L2-norm with respect to the Lebesgue measure on U , and A . B means

that A ≤ cB for a positive constant c. For ε > 0, we can find exp{O(1/ε)} number of brackets

{[ΛL
j ,Λ

U
j ]} with ‖ΛL

j −ΛU
j ‖L2 ≤ ε and |ΛL

j (τ)−ΛU
j (τ)| < ε to cover DM . In addition, there are

O(ε−p) number of brackets {[βLj ,βUj ]} covering B, such that two ‖βLj − βUj ‖ ≤ ε. Hence, there

are in total exp{O(1/ε)} × O(ε−p) brackets that covers B × DM . For any pair of parameters

(β1,Λ1) and (β2,Λ2), there exists some constant c such that

|m(β1,Λ1)−m(β2,Λ2)| ≤ |m(β1,Λ1)−m(β2,Λ1)|+ |m(β2,Λ1)−m(β2,Λ2)|

≤ c‖β1 − β2‖+ c
M∑
m=0

∆m |Λ1(Um)− Λ2(Um)|

+c

∫ τ

0

|Λ1(a)− Λ2(a)| da.

Therefore,

‖m(β1,Λ1)−m(β2,Λ2)‖L2(P) ≤ O{‖β1 − β2‖+ ‖Λ1 − Λ2‖L2
+ |Λ1(τ)− Λ2(τ)|} = O(ε).
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The bracketing number of M then satisfies

N[] ≤ exp{O(1/ε)}O(ε−p),

such that the entropy integral is finite. The class M is then P-Donsker.

Proof of Lemma 2. By Theorem 1, Λ̂ is consistent for Λ0. Therefore, there exists a

finite constant M such that Λ̂(τ) ≤M . By Lemma 1, m(β̂, Λ̂) belongs to a Donsker class with

bracketing integral

J[](δ,M, L2(P)) =

∫ δ

0

√
1 + logN[](ε,M, L2(P)) ≤ O(δ1/2).

In addition, by Lemma 1.3 of van der Geer (2000) and the mean-value theorem,

P
{
m
(
β̂, Λ̂

)
−m

(
β0, Λ̃

)}
. H2

{(
β̂, Λ̂

)
,
(
β0, Λ̃

)}
,

where H(·, ·) is the Hellinger distance defined as

H {(β1,Λ1) , (β2,Λ2)} =

[∫
{L(β1,Λ1)− L(β2,Λ2)}2 dµ

]1/2
,

with respect to the dominating measure µ. By Theorem 3.4.1 of van der Vaart and Wellner

(1996), there exists rn with r2nφ(1/rn) ∼ n1/2 such that H{(β̂, Λ̂), (β0, Λ̃)} = OP (1/rn), where

φn(δ) = J[](δ,M, H(·, ·))
{

1 +
J[](δ,M, H(·, ·))

δ2/
√
n

}
.

In particular, we can choose rn in the order of n1/3 such that H{(β̂, Λ̂), (β0, Λ̃)} = OP (n−1/3).

Therefore, there exists finite constants c1 and c2 such that

OP (n−2/3)

= E


∑M

m=0 ∆m

[
exp

{
−Λ̂(Um) exp

(
β̂

T
Z
)}
− exp

{
−Λ̂(Um+1) exp

(
β̂

T
Z
)}]

∫ τ
0

1
τ

exp
{
−Λ̂(a) exp

(
β̂

T
Z
)}

da

−
∑M

m=0 ∆m

[
exp

{
−Λ0(Um) exp

(
βT

0Z
)}
− exp

{
−Λ0(Um+1) exp

(
βT

0Z
)}]∫ τ

0
1
τ

exp
{
−Λ0(a) exp

(
βT

0Z
)}
da

}2

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= c1

∥∥∥β̂ − β0

∥∥∥2 + c2E

[L(β0,Λ0)

{
M∑
m=0

∆m

∫ τ

0

Q(t, Um, Um+1;β0,Λ0)d(Λ̂− Λ0)(t)

}]2 ,

where the last equality follows from the mean-value theorem. We define a norm in BV (U) such

that for any f ∈ BV (U),

‖f‖1 =

[
E

{
M∑
m=0

f(Um)2

}]1/2
.

In addition, we define a seminorm

‖f‖2 = E

[L(β0,Λ0)

{
M∑
m=0

∆m

∫ τ

0

Q(t, Um, Um+1;β0,Λ0)df(t)

}]21/2

.

Note that if ‖f‖2 = 0 for some f ∈ BV (U), then

L(β0,Λ0)

{
M∑
m=0

∆m

∫ τ

0

Q(t, Um, Um+1;β0,Λ0)df(t)

}
= 0

with probability 1.

For any m ∈ {0, . . . ,M}, we sum over all possible ∆m′ with m′ = m, . . . ,M to obtain

−
∫ Um

0

df(t) +

∫ ∫ a
0

exp
{
−Λ0(a) exp

(
βT

0Z
)}
da∫ τ

0
exp

{
−Λ0(a) exp

(
βT

0Z
)}
da
df(t) = 0.

Because m is arbitrary, we can replace Um with any t ∈ U . We differentiate both sides with

respect to t to obtain f ′(t) = 0, such that f(t) = 0 for t ∈ U , implying that ‖ · ‖2 is a norm in

BV (U).

By the Cauchy-Schwarz inequality, for any f ∈ BV (U),

‖f‖2 ≤

E [L(β0,Λ0)

{
M∑
m=0

∆m

∫ τ

0

Q(t, Um, Um+1;β0,Λ0)dt

}]2
E

{
M∑
m=0

f(Um)2

}1/2

≤ c3‖f‖1,

where c3 is a finite constant. By the bounded inverse theorem in the Banach space, we have

‖f‖2 ≥ c′3‖f‖1 for some constant c′3. Therefore,

OP (n−2/3) +O

(∥∥∥β̂ − β0

∥∥∥2) ≥ c2c
′
3
2
E

[
M∑
m=0

{
Λ̂(Um)− Λ0(Um)

}2
]
.

The lemma thus holds.
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Web Table 1: Summary statistics for the simulation studies with left-continuous Λ̂.
Bias SE SEE RMSE CP RMSD

n = 100 β1 0.006 0.168 0.171 0.168 0.957 0.003
β2 0.010 0.293 0.316 0.294 0.966 0.006

n = 200 β1 0.003 0.117 0.116 0.117 0.950 0.001
β2 0.003 0.205 0.212 0.205 0.957 0.003

n = 400 β1 0.002 0.082 0.081 0.082 0.944 0.001
β2 0.001 0.144 0.146 0.144 0.951 0.001

Note: SE, SEE, RMSE, CP, and RMSD are the empirical
standard error, mean standard error estimator, root mean
squared error, empirical coverage probability of the 95% confi-
dence interval, and root mean squared difference to the right-
continuous version, respectively.

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n =  400

t

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

True

NPMLE

MCLE

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n =  800

t

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

True

NPMLE

MCLE

Web Figure 1: Estimated baseline survival functions in simulation studies with length-biased
assumption. The solid, dashed, and dotted curves pertain to the true value, the nonparametric
maximum likelihood estimation and conditional likelihood estimation, respectively.
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