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Web Appendix A

Nonparametric Mazimum Likelihood Estimation with Left-continuous A

We consider the nonparametric maximum likelihood estimation approach where the estimator
for A is a left-continuous function with potential discontinuous points at the ends of the intervals
that bracket the failure times. Specifically, we let A\, A1, ..., Ax be the respective jump sizes
such that A(t) = {:1 A for t € (tj_1,1;], where \g = 0. Write A = (A, ..., A\x). We maximize
the objective function
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Following from the argument in Section 2.2, the number of truncated samples n; follows a

negative binomial distribution with parameter
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A similar EM algorithm can be constructed with E (n;;) replaced by

(1 —t;_1/T)\jexp (BTZZ») exp {— Z{Zl A\ exp (ﬁTZi)}
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To see the numerical difference between different versions, we analyzed the simulated data
sets in the first set of simulation studies (with length-biased assumption) using the proposed
methods. The results are summarized in Web Table 1 and the difference to the right-continuous

is small, especially for large n.

Web Appendix B

Proof of Lemmas

Proof of Lemma 1. Since D), consists of increasing and uniformly bounded functions
on U, Lemma 2.2 of van der Geer (2000) implies that for any € > 0, the bracketing number
satisfies

Ny(e, D, || - [|,) S,
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where ||- ||, denote the Lo-norm with respect to the Lebesgue measure on U, and A < B means
that A < ¢B for a positive constant ¢. For e > 0, we can find exp{O(1/¢)} number of brackets

{[AF, AY]} with [[AF — AV|lz, < eand [AF(7) — AY(7)| < € to cover Dy. In addition, there are

O(e™?) number of brackets {[B]L, 65]]} covering B, such that two ||BJL - B?H < €. Hence, there
are in total exp{O(1/€)} x O(e7?) brackets that covers B x D,;. For any pair of parameters

(81, A1) and (B,, Ag), there exists some constant ¢ such that
[m(B1, A1) —m(Bs, A2)| < [m(By, Ar) = m(Ba, Ar)| + [m(Ba, Ar) — m(Bs, As)]
M
< By = Ball + D A [M(Un) = Aa(Un)|
m=0
+C/OT |A1(a) — Ag(a)| da.
Therefore,

[m(B1, Ar) = m(Ba, M), ) < OLIB1 = Ball + 1A = Asll, + [As(7) = Aa(7)[} = O(e).
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The bracketing number of M then satisfies
Ny < exp{O(1/€)}0(e7"),
such that the entropy integral is finite. The class M is then P-Donsker.

Proof of Lemma 2. By Theorem 1, A is consistent for Ag. Therefore, there exists a
finite constant M such that K(T) < M. By Lemma 1, m(B, K) belongs to a Donsker class with

bracketing integral

Jﬂ(a,M,LQ(P»:/O 1+ 1og Ny(e. M, Lo(P)) < O(5"7).

In addition, by Lemma 1.3 of van der Geer (2000) and the mean-value theorem,
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where H(-,-) is the Hellinger distance defined as

1/2

HA{(B M) (B A0} = | [ (L0810 = LBy A |
with respect to the dominating measure p. By Theorem 3.4.1 of van der Vaart and Wellner
(1996), there exists 7, with r2¢(1/r,) ~ n'/? such that H{(3,1), (B, )} = Op(1/r,), where

J[]((5, M H(-,)) }
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In particular, we can choose r, in the order of n'/3 such that H{(8,A), (Bq, A)} = Op(n=1/3).

én(0) = Jy(0, M, H(-,-)) {1 +

Therefore, there exists finite constants ¢; and ¢y such that

Ztteo S [ex0 {~A(0Un) exp (8 2) } -~ cxp {~Altinn) ex0 (8" 2) ]

Jo Lexp {—A(a) exp (BTZ> } da

o A [exp {—=Ao(Us) exp (85 Z) } — exp {~Ao(Uns1) exp (85 Z) }] }2
Jo Lexp {—Ag(a)exp (,BOTZ)} da




= Cl

L(BO? AO) {Z Am /OT Q(t’ Um7 Um+l§ /607 AO)d(K - AO)<t)}] )

where the last equality follows from the mean-value theorem. We define a norm in BV (i) such

E {Z f(Um>2}
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that for any f € BV (U),
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In addition, we define a seminorm

u ) o\ 1/2
||f||2 = E L(BOaAO) {Z Am/ Q(t’ Unn, Um-l—l;/BOvAO)df(t)}]
m=0 0
Note that if || f||o = 0 for some f € BV (U), then
M T
L(ﬁo; AO) {Z Am/ Q(t7 Uma Um—H; /607 AO)df(t>} =
m=0 0
with probability 1.
For any m € {0,..., M}, we sum over all possible A, with m’ =m, ..., M to obtain

B Um [ exp{—Ao(a)exp (By Z) } da
/0 )+ Jo exp{—Ao(a)exp (8B; Z) } da

Because m is arbitrary, we can replace U,, with any t € . We differentiate both sides with

df () = 0.

respect to ¢ to obtain f’(t) = 0, such that f(t) = 0 for ¢t € U, implying that || - ||2 is a norm in
BV (U).

By the Cauchy-Schwarz inequality, for any f € BV (U),

M
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where c3 is a finite constant. By the bounded inverse theorem in the Banach space, we have

< ¢l flh,

| fll2 > &l f]l1 for some constant ¢§. Therefore,

The lemma thus holds.
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Web Table 1: Summary statistics for the simulation studies with left-continuous A.
Bias SE SEE RMSE CP RMSD
n=100 (A, 0.006 0.168 0.171 0.168 0.957 0.003
B2 0.010 0.293 0.316 0.294 0.966  0.006
n=200 f; 0.003 0.117 0.116 0.117 0.950 0.001
B2 0.003 0.205 0.212 0.205 0.957  0.003
n =400 [y 0.002 0.082 0.081 0.082 0.944 0.001
B2 0.001 0.144 0.146 0.144 0.951 0.001
Note: SE, SEE, RMSE, CP, and RMSD are the empirical
standard error, mean standard error estimator, root mean
squared error, empirical coverage probability of the 95% confi-
dence interval, and root mean squared difference to the right-
continuous version, respectively.
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Web Figure 1: Estimated baseline survival functions in simulation studies with length-biased
assumption. The solid, dashed, and dotted curves pertain to the true value, the nonparametric
maximum likelihood estimation and conditional likelihood estimation, respectively.



