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Table S1 – Participation statistics

CAPRI ID CASP ID Stoichiometry #interfaces Predictors Uploaders Scorers CASP

T164 T1032 A2 1 28 18 23 21
T165 H1036 A:HL 1 27 12 22 25
T166 H1045 AB 1 24 16 19 26
T168 T1052 A3 1 24 11 20 20
T169 T1054 A2 1 27 16 20 22
T170 H1060 A6B12C3D6 9 23 12 17 16
T174 T1070 A3 1 24 13 19 21
T176 T1078 A2 1 27 16 21 23
T177 H1081 A20 3 24 12 18 23
T178 T1083 A2 1 26 13 19 23
T179 T1087 A2 1 25 13 19 22
T180 T1099 A4 2 25 11 18 20

Target and participation statistics. Stoichiometry and #interfaces refer to the assessment entity. Predictors indicates
the number of predictor groups uploading submissions. Whereas all predictor models enter the Scoring experiment,
the number of Uploader groups indicates the number of predictor groups that submitted more than 10 models. The
number of CASP groups excludes the CAPRI groups that also registered with CASP.
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Table S2 – Prediction results for Target/Interface T164.1

Predictors Top-1 Top-5
Gray 1 5/1**
Seok 1 4/1**
Zou 1 5
Venclovas 1 5
Kihara 1 5
Chang 1 5
Bates 1 5
Shen 1 4
Pierce 1 4
Kozakov/Vajda 0 4
Huang 1 4
Nakamura 1 3

CASP-only Predictors Top-1 Top-5
CoDock 1 5
htjcadd 1 4
Baker 1 4
Takeda-Shitaka 0 2
DATE 1 2
Risoluto 1 1
Elofsson 1 1

Servers Top-1 Top-5
MDOCKPP 1 4/1**
SWARMDOCK 1 5
HDOCK 1 4
HAWKDOCK 1 4
CLUSPRO 0 4
GALAXYPPDOCK 1 3
LZERD 0 2

Scorers and Scoring Servers Top-1 Top-5
MDOCKPP 1 5/1**
SWARMDOCK 1** 5/1**
Huang 1** 5/1**
Bates 1** 5/1**
HDOCK 1 4/1**
Zou 1 5
Kihara 1 5
LZERD 1 5
Takeda-Shitaka 1 5
Bonvin 1 5
Shen 1 5
HAWKDOCK 1 5
Chang 1 4
Oliva 1 4
Grudinin 0 3
Fernandez-Recio 0 2
PYDOCKWEB 0 2
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Table S2 – Prediction results for Target/Interface T165.1

Predictors Top-1 Top-5
no acceptable models

CASP-only Predictors Top-1 Top-5
no acceptable models

Servers Top-1 Top-5
no acceptable models

Scorers and Scoring Servers Top-1 Top-5
no acceptable models
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Table S2 – Prediction results for Target/Interface T166.1

Predictors Top-1 Top-5
Vakser 1** 5**
Kozakov/Vajda 1** 5**
Huang 1** 5**
Chang 1 5/3**
Venclovas 0 1***
Shen 1** 3**
Fernandez-Recio 1** 3**
Bates 1** 3**
Zou 1** 5/1**
Pierce 1** 3/2**
Kihara 1** 5/1**
Seok 1 2/1**
Nakamura 0 1**

CASP-only Predictors Top-1 Top-5
Takeda-Shitaka 1** 5/1***/4**
Baker 1** 5/1***/4**
AILON 1** 5/4**
CoDock 1 5/3**
DellaCorte 1 4
Lamoureux 1** 1**
DATE 0 1**

Servers Top-1 Top-5
MDOCKPP 1 5
SWARMDOCK 0 2
GALAXYPPDOCK 1 1
HDOCK 0 1

Scorers and Scoring Servers Top-1 Top-5
Takeda-Shitaka 1*** 4/1***/3**
HDOCK 1** 5**
Huang 1** 5**
Kihara 1*** 3/1***/2**
HAWKDOCK 1** 5/4**
MDOCKPP 1** 4**
Zou 1** 4**
LZERD 1*** 2/1***/1**
Chang 1** 4/3**
Shen 1** 4/3**
Fernandez-Recio 1 3/2**
PYDOCKWEB 1 3/2**
Oliva 1** 2**
Grudinin 0 1
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Table S2 – Prediction results for Target/Interface T168.1

Predictors Top-1 Top-5
Zou 1** 5**
Venclovas 1** 5**
Vakser 1** 5**
Seok 1** 5**
Kozakov/Vajda 1** 5**
Kihara 1** 5**
Chang 1** 5**
Bates 1** 5**
Huang 1** 4/3**
Pierce 1** 5/2**
Fernandez-Recio 0 3**
Liwo 1 4
Lubecka 1 3
Czaplewski 1** 1**

CASP-only Predictors Top-1 Top-5
CoDock 1** 5**
Baker 1** 5/4**
Lamoureux 1** 3**
UNRES 1 4
Takeda-Shitaka 0 1**

Servers Top-1 Top-5
SWARMDOCK 1** 5**
LZERD 1** 5**
MDOCKPP 1** 5/3**
GALAXYPPDOCK 1** 2**

Scorers and Scoring Servers Top-1 Top-5
Chang 1** 5**
Oliva 1** 5**
Bonvin 1** 5**
Venclovas 1** 5**
Kihara 1** 5**
Takeda-Shitaka 1** 5**
LZERD 1** 5**
Shen 1** 5**
Zou 1** 5/4**
MDOCKPP 1** 5/4**
HDOCK 1** 4**
Perthold 1 5/3**
Huang 1** 4/3**
SWARMDOCK 1** 3**
Bates 1** 3**
Fernandez-Recio 1** 3**
PYDOCKWEB 1** 3**
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Table S2 – Prediction results for Target/Interface T169.1

Predictors Top-1 Top-5
no acceptable models

CASP-only Predictors Top-1 Top-5
no acceptable models

Servers Top-1 Top-5
no acceptable models

Scorers and Scoring Servers Top-1 Top-5
no acceptable models
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Table S2 – Prediction results for Target/Interface T170.1

Predictors Top-1 Top-5
Huang 1** 5**
Zou 1 5/1**
Shen 1 5/1**
Venclovas 1 5
Seok 1 5
Kozakov/Vajda 1 5
Fernandez-Recio 1 5
Chang 1 5
Kihara 1 4
Nakamura 1 3

CASP-only Predictors Top-1 Top-5
Takeda-Shitaka 1 4
DATE 1 2

Servers Top-1 Top-5
HDOCK 1** 5**
MDOCKPP 1** 5**
CLUSPRO 0 2

Scorers and Scoring Servers Top-1 Top-5
HDOCK 1** 5/4**
Fernandez-Recio 0 4/3**
PYDOCKWEB 0 4/3**
Huang 1** 5/2**
SWARMDOCK 0 4/2**
Bates 0 4/2**
Zou 1 5/1**
Shen 1 5/1**
Takeda-Shitaka 1 5/1**
MDOCKPP 1 5
Chang 1 5
Venclovas 1 5
LZERD 1 5
Kihara 1 5
Grudinin 1 5
Oliva 0 3
Bonvin 1 2
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Table S2 – Prediction results for Target/Interface T170.2

Predictors Top-1 Top-5
Fernandez-Recio 1 5

CASP-only Predictors Top-1 Top-5
no acceptable models

Servers Top-1 Top-5
no acceptable models

Scorers and Scoring Servers Top-1 Top-5
no acceptable models

Table S2 – Prediction results for Target/Interface T170.3

Predictors Top-1 Top-5
Venclovas 1 5
Seok 1 5
Zou 1 3
Shen 0 3

CASP-only Predictors Top-1 Top-5
no acceptable models

Servers Top-1 Top-5
MDOCKPP 1 5

Scorers and Scoring Servers Top-1 Top-5
Venclovas 1 4
LZERD 1 3
Chang 1 3
Grudinin 0 3
Takeda-Shitaka 1 3
Shen 0 3
Zou 0 2
MDOCKPP 0 2
Oliva 0 1
Kihara 0 1

10

Page 81 of 147



Table S2 – Prediction results for Target/Interface T170.4

Predictors Top-1 Top-5
Huang 1 5
Venclovas 0 4
Chang 1 2

CASP-only Predictors Top-1 Top-5
no acceptable models

Servers Top-1 Top-5
HDOCK 1 5

Scorers and Scoring Servers Top-1 Top-5
HDOCK 1 4
Fernandez-Recio 0 3
PYDOCKWEB 0 3
Venclovas 1 3
Huang 1 2
SWARMDOCK 0 2
Bates 0 2
Chang 0 1
Zou 0 1
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Table S2 – Prediction results for Target/Interface T170.5

Predictors Top-1 Top-5
Shen 1** 5**
Chang 1** 5**
Nakamura 1** 3**
Kozakov/Vajda 1 5/2**
Venclovas 1 5
Seok 1 5
Kihara 1 5
Huang 1 5
Grudinin 1 5
Vakser 1 2

CASP-only Predictors Top-1 Top-5
DATE 1** 2**
Baker 1 5
VoroCNN-select 1 1

Servers Top-1 Top-5
CLUSPRO 1 5/1**
HDOCK 1 5

Scorers and Scoring Servers Top-1 Top-5
Shen 1** 5**
Takeda-Shitaka 1** 5**
Zou 1 4/3**
MDOCKPP 1 5/2**
Chang 1 4/2**
Venclovas 1 5/1**
Fernandez-Recio 1 5/1**
PYDOCKWEB 1 5/1**
Huang 1 5/1**
Grudinin 1 5
HDOCK 1 5
Kihara 1 5
LZERD 1 5
Oliva 0 3/1**
SWARMDOCK 0 4
Bates 0 4
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Table S2 – Prediction results for Target/Interface T170.6

Predictors Top-1 Top-5
Shen 0 1

CASP-only Predictors Top-1 Top-5
no acceptable models

Servers Top-1 Top-5
no acceptable models

Scorers and Scoring Servers Top-1 Top-5
Shen 0 1
Takeda-Shitaka 0 1

Table S2 – Prediction results for Target/Interface T170.7

Predictors Top-1 Top-5
Kihara 1 2

CASP-only Predictors Top-1 Top-5
no acceptable models

Servers Top-1 Top-5
no acceptable models

Scorers and Scoring Servers Top-1 Top-5
Kihara 1 2
Oliva 0 1

13

Page 84 of 147



Table S2 – Prediction results for Target/Interface T170.8

Predictors Top-1 Top-5
Venclovas 1** 5**
Grudinin 1 5
Chang 1 5
Shen 0 3
Seok 1 3
Kihara 0 2

CASP-only Predictors Top-1 Top-5
Baker 1** 5/3**

Servers Top-1 Top-5
LZERD 1 5

Scorers and Scoring Servers Top-1 Top-5
Venclovas 1** 5/4**
Chang 1 4
Oliva 1 4
Bonvin 1 4
LZERD 1 3
MDOCKPP 0 3
Grudinin 0 3
Zou 0 3
Shen 0 3
Fernandez-Recio 1 2
PYDOCKWEB 1 2
Kihara 0 2
Huang 0 2

14

Page 85 of 147



Table S2 – Prediction results for Target/Interface T170.9

Predictors Top-1 Top-5
Shen 0 3
Huang 1 3
Kihara 0 2
Chang 1 2
Seok 1 1

CASP-only Predictors Top-1 Top-5
Takeda-Shitaka 1 3

Servers Top-1 Top-5
HDOCK 0 3

Scorers and Scoring Servers Top-1 Top-5
HDOCK 1 4
Huang 1 3
SWARMDOCK 0 3
Bates 0 3
Shen 0 3
MDOCKPP 0 2
Zou 0 2
Chang 0 2
Grudinin 0 2
LZERD 0 2
Fernandez-Recio 1 1
PYDOCKWEB 1 1
Kihara 0 1

Table S2 – Prediction results for Target/Interface T174.1

Predictors Top-1 Top-5
no acceptable models

CASP-only Predictors Top-1 Top-5
no acceptable models

Servers Top-1 Top-5
no acceptable models

Scorers and Scoring Servers Top-1 Top-5
no acceptable models
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Table S2 – Prediction results for Target/Interface T176.1

Predictors Top-1 Top-5
Zou 0 1
Seok 0 1

CASP-only Predictors Top-1 Top-5
Elofsson 0 1

Servers Top-1 Top-5
MDOCKPP 0 2

Scorers and Scoring Servers Top-1 Top-5
Venclovas 0 1
Zou 0 1
MDOCKPP 0 1
Takeda-Shitaka 0 1
SWARMDOCK 0 1
Chang 0 1
Perthold 0 1
Bates 0 1
HAWKDOCK 0 1
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Table S2 – Prediction results for Target/Interface T177.1

Predictors Top-1 Top-5
Zou 1*** 5***
Vakser 1*** 5***
Pierce 1*** 5***
Kozakov/Vajda 1*** 5***
Kihara 1*** 5***
Huang 1*** 5***
Fernandez-Recio 1*** 5***
Chang 1*** 5***
Bates 1*** 5***
Nakamura 1*** 4***
Grudinin 1*** 5/3***/2**
Venclovas 1** 5/2***/3**
Seok 1** 5**
Czaplewski 1** 5**
Liwo 1 5

CASP-only Predictors Top-1 Top-5
Baker 1*** 5***
VoroCNN-select 1*** 3***
Lamoureux 1*** 2***
DellaCorte 1*** 1***
Ornate-select 1** 2**
UNRES 1 5
SBROD 0 1**
ricardo 1** 1**

Servers Top-1 Top-5
SWARMDOCK 1*** 5***
HDOCK 1*** 5***
LZERD 1*** 5***
MDOCKPP 1*** 5***
CLUSPRO 1*** 5***
GALAXYPPDOCK 1** 5**

Scorers and Scoring Servers Top-1 Top-5
SWARMDOCK 1*** 5***
Oliva 1*** 5***
Bonvin 1*** 5***
Bates 1*** 5***
HAWKDOCK 1*** 5***
Takeda-Shitaka 1*** 5***
MDOCKPP 1*** 5***
Venclovas 1*** 5***
Chang 1*** 5/4***/1**
Zou 1*** 5/4***/1**
HDOCK 1*** 5/4***/1**
Huang 1*** 5/4***/1**
PYDOCKWEB 1 5/4***
Shen 1*** 4***
LZERD 1*** 5/3***/2**
Grudinin 1 5/3***
Fernandez-Recio 1** 5**
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Table S2 – Prediction results for Target/Interface T177.2

Predictors Top-1 Top-5
Zou 1*** 5***
Venclovas 1*** 5***
Vakser 1*** 5***
Seok 1*** 5***
Pierce 1*** 5***
Kozakov/Vajda 1*** 5***
Kihara 1*** 5***
Huang 1*** 5***
Fernandez-Recio 1*** 5***
DelCarpio 1*** 5***
Chang 1*** 5***
Bates 1*** 5***
Nakamura 1*** 4***
Czaplewski 1*** 5/2***/3**
Liwo 1 5
Shen 1** 2/1**

CASP-only Predictors Top-1 Top-5
Zhang-Assembly 1*** 5***
DELCLAB 1*** 5***
Baker 1*** 5/4***/1**
Lamoureux 1*** 2***
Takeda-Shitaka 1*** 4/1***/1**
DellaCorte 1** 2/1***/1**
Risoluto 1*** 1***
ricardo 1*** 1***
UNRES 1 5
VoroCNN-select 0 1**
SBROD 0 1**
Ornate-select 0 1**

Servers Top-1 Top-5
SWARMDOCK 1*** 5***
HDOCK 1*** 5***
GALAXYPPDOCK 1*** 5***
LZERD 1*** 5***
MDOCKPP 1*** 5***
CLUSPRO 1*** 5***

Scorers and Scoring Servers Top-1 Top-5
SWARMDOCK 1*** 5***
Chang 1*** 5***
Oliva 1*** 5***
HDOCK 1*** 5***
Huang 1*** 5***
Bonvin 1*** 5***
Bates 1*** 5***
LZERD 1*** 5***
Zou 1*** 5***
MDOCKPP 1*** 5***
HAWKDOCK 1*** 5***
Takeda-Shitaka 1*** 5***
Venclovas 1*** 5***
PYDOCKWEB 1 5/4***
Shen 1*** 4***
Grudinin 1 5/3***
Fernandez-Recio 1*** 3/2***
Kihara 1** 3**
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Table S2 – Prediction results for Target/Interface T177.3

Predictors Top-1 Top-5
Venclovas 1** 4**
Zou 1** 4/3**
Grudinin 0 3**
Bates 1 5
Kozakov/Vajda 0 2/1**
Pierce 0 1**
Seok 1 2
Nakamura 0 1
Huang 1 1
DelCarpio 1 1

CASP-only Predictors Top-1 Top-5
VoroCNN-select 0 2**
Ornate-select 1** 1**
Zhang-Assembly 0 2
DellaCorte 1 2
ricardo 1 1
DELCLAB 1 1
Baker 1 1

Servers Top-1 Top-5
MDOCKPP 1** 5/1***/4**
SWARMDOCK 1 5
CLUSPRO 0 2/1**
HDOCK 1 1

Scorers and Scoring Servers Top-1 Top-5
SWARMDOCK 1** 5/1***/2**
Bates 1** 5/1***/2**
HAWKDOCK 1** 3/1***/1**
Zou 1** 5/3**
MDOCKPP 1** 4/3**
LZERD 1** 3**
Bonvin 1 3/1**
Fernandez-Recio 1 3/1**
Chang 0 2/1**
Takeda-Shitaka 1** 2/1**
Venclovas 1 4
Oliva 1** 1**
HDOCK 1 2
Huang 1 2
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Table S2 – Prediction results for Target/Interface T178.1

Predictors Top-1 Top-5
Venclovas 1 4/1**
Seok 1 4
Lubecka 1 4
Pierce 1 3
Kihara 0 2
Chang 1 2
Zou 0 1
Liwo 0 1
Fernandez-Recio 0 1
Bates 0 1

CASP-only Predictors Top-1 Top-5
UNRES contact 1 4
htjcadd 0 2
CoDock 1 2
Baker 1 2
UNRES 0 1
McGuffin 1 1

Servers Top-1 Top-5
LZERD 1 2
HAWKDOCK 0 2
MDOCKPP 0 1

Scorers and Scoring Servers Top-1 Top-5
Takeda-Shitaka 1 5/1**
Chang 1 4/1**
LZERD 1 4
Kihara 0 4
HAWKDOCK 0 2/1**
Venclovas 1 3
MDOCKPP 0 3
Oliva 1 2
Zou 0 2
Shen 0 2
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Table S2 – Prediction results for Target/Interface T179.1

Predictors Top-1 Top-5
Zou 1 4
Venclovas 1 3
Shen 0 2
Liwo 1 2
Chang 0 2
Vakser 0 1
Seok 1 1
Pierce 0 1

CASP-only Predictors Top-1 Top-5
Baker 1** 1**
UNRES 1 2
CoDock 0 2

Servers Top-1 Top-5
MDOCKPP 0 1
LZERD 0 1

Scorers and Scoring Servers Top-1 Top-5
Venclovas 1 3
Fernandez-Recio 1 3
PYDOCKWEB 1 3
MDOCKPP 0 2
Takeda-Shitaka 0 2
Zou 0 2
LZERD 1 2
Kihara 1 2
Grudinin 1 2
Bonvin 0 2
Shen 1 2
Chang 0 1
HAWKDOCK 0 1
Oliva 1 1
SWARMDOCK 0 1
Huang 0 1
Bates 0 1
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Table S2 – Prediction results for Target/Interface T180.1

Predictors Top-1 Top-5
Seok 0 1

CASP-only Predictors Top-1 Top-5
no acceptable models

Servers Top-1 Top-5
no acceptable models

Scorers and Scoring Servers Top-1 Top-5
PYDOCKWEB 1 1
Venclovas 1 1
Huang 0 1
Fernandez-Recio 0 1
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Table S2 – Prediction results for Target/Interface T180.2

Predictors Top-1 Top-5
Venclovas 1** 5/2***/3**
Kihara 1** 5/1***/4**
Shen 1** 5/4**
Kozakov/Vajda 1** 5/4**
Chang 1** 5/3**
Fernandez-Recio 1** 4/2**
Zou 1 5/1**
Seok 1** 5/1**
Pierce 1** 3/2**
Huang 1** 2**
Lubecka 1 5
Czaplewski 1 5
Liwo 0 4
Vakser 1 1
Grudinin 0 1

CASP-only Predictors Top-1 Top-5
Baker 1 5/4**
CoDock 1** 5/3**
UNRES 1 5
UNRES contact 1 4
Ornate-select 0 2
VoroCNN-select 0 1
SBROD 0 1
Lamoureux 1 1

Servers Top-1 Top-5
CLUSPRO 1** 5**
LZERD 1** 4**
GALAXYPPDOCK 1** 1**
MDOCKPP 0 1

Scorers and Scoring Servers Top-1 Top-5
LZERD 1** 5**
Zou 1** 5**
MDOCKPP 1** 5**
Kihara 1** 5/4**
Huang 1** 5/4**
Chang 1** 5/3**
HDOCK 1** 4/2**
SWARMDOCK 1** 4/1**
Bates 1** 4/1**
Fernandez-Recio 1 4/1**
Venclovas 1 5
Perthold 1 5
Grudinin 0 4
Shen 0 2/1**
PYDOCKWEB 1 3
Oliva 1 2
Takeda-Shitaka 0 2
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Table S3 – Assembly target performance for T170

Predictors 1 2 3 4 5 6 7 8 9 total
Shen ** 0 * 0 ** * 0 * * 6/2**
Venclovas * 0 * * * 0 0 ** 0 5/1**
Chang * 0 0 * ** 0 0 * * 5/1**
Seok * 0 * 0 * 0 0 * * 5
Kihara * 0 0 0 * 0 * * * 5
Huang ** 0 0 * * 0 0 0 * 4/1**
Zou ** 0 * 0 0 0 0 0 0 2/1**
Nakamura * 0 0 0 ** 0 0 0 0 2/1**
Kozakov/Vajda * 0 0 0 ** 0 0 0 0 2/1**
Grudinin 0 0 0 0 * 0 0 * 0 2
Fernandez-Recio * * 0 0 0 0 0 0 0 2
Vakser 0 0 0 0 * 0 0 0 0 1

CASP-only Predictors
DATE * 0 0 0 ** 0 0 0 0 2/1**
Baker 0 0 0 0 * 0 0 ** 0 2/1**
Takeda-Shitaka * 0 0 0 0 0 0 0 * 2
VoroCNN-select 0 0 0 0 * 0 0 0 0 1
Kiharalab-assembly 0 0 0 0 0 0 0 * 0 1

Docking Servers
HDOCK ** 0 0 * * 0 0 0 * 4/1**
MDOCKPP ** 0 * 0 0 0 0 0 0 2/1**
CLUSPRO * 0 0 0 ** 0 0 0 0 2/1**
LZERD 0 0 0 0 0 0 0 * 0 1

Scorers and Scoring Servers
Zou ** 0 * * ** 0 0 * * 6/2**
Shen ** 0 * 0 ** * 0 * * 6/2**
Venclovas * 0 * * ** 0 0 ** 0 5/2**
PYDOCKWEB ** 0 0 * ** 0 0 * * 5/2**
Huang ** 0 0 * ** 0 0 * * 5/2**
Fernandez-Recio ** 0 0 * ** 0 0 * * 5/2**
Chang * 0 * * ** 0 0 * * 6/1**
Takeda-Shitaka ** 0 * 0 ** * 0 0 0 4/2**
Oliva * 0 * 0 ** 0 * * 0 5/1**
MDOCKPP * 0 * 0 ** 0 0 * * 5/1**
Kihara * 0 * 0 * 0 * * * 6
SWARMDOCK ** 0 0 * * 0 0 0 * 4/1**
LZERD * 0 * 0 * 0 0 * * 5
HDOCK ** 0 0 * * 0 0 0 * 4/1**
Grudinin * 0 * 0 * 0 0 * * 5
Bates ** 0 0 * * 0 0 0 * 4/1**
Bonvin * 0 0 0 0 0 0 * 0 2
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Table S3 – Assembly target performance for T177

Predictors 1 2 3 total
Zou *** *** ** 3/2***/1**
Venclovas *** *** ** 3/2***/1**
Pierce *** *** ** 3/2***/1**
Kozakov/Vajda *** *** ** 3/2***/1**
Nakamura *** *** * 3/2***
Huang *** *** * 3/2***
Bates *** *** * 3/2***
Vakser *** *** 0 2***
Seok ** *** * 3/1***/1**
Kihara *** *** 0 2***
Fernandez-Recio *** *** 0 2***
Chang *** *** 0 2***
Grudinin *** 0 ** 2/1***/1**
Czaplewski ** *** 0 2/1***/1**
DelCarpio 0 *** * 2/1***
Shen 0 ** 0 1/1**
Liwo * * 0 2

CASP-only Predictors
VoroCNN-select *** ** ** 3/1***/2**
DellaCorte *** *** * 3/2***
Baker *** *** * 3/2***
ricardo ** *** * 3/1***/1**
Ornate-select ** ** ** 3/3**
Lamoureux *** *** 0 2***
UNRES ** *** 0 2/1***/1**
Seok-assembly ** *** 0 2/1***/1**
Zhang-Assembly 0 *** * 2/1***
SBROD ** ** 0 2/2**
DELCLAB 0 *** * 2/1***
Takeda-Shitaka 0 *** 0 1***
Risoluto 0 *** 0 1***

Docking Servers
MDOCKPP *** *** *** 3***
CLUSPRO *** *** ** 3/2***/1**
SWARMDOCK *** *** * 3/2***
HDOCK *** *** * 3/2***
LZERD *** *** 0 2***
GALAXYPPDOCK ** *** 0 2/1***/1**

Scorers and Scoring Servers
SWARMDOCK *** *** *** 3***
HAWKDOCK *** *** *** 3***
Bates *** *** *** 3***
Zou *** *** ** 3/2***/1**
Takeda-Shitaka *** *** ** 3/2***/1**
Oliva *** *** ** 3/2***/1**
MDOCKPP *** *** ** 3/2***/1**
LZERD *** *** ** 3/2***/1**
Chang *** *** ** 3/2***/1**
Bonvin *** *** ** 3/2***/1**
Venclovas *** *** * 3/2***
Huang *** *** * 3/2***
HDOCK *** *** * 3/2***
Fernandez-Recio ** *** ** 3/1***/2**
Shen *** *** 0 2***
PYDOCKWEB *** *** 0 2***
Grudinin *** *** 0 2***
Kihara 0 ** 0 1/1**
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Table S3 – Assembly target performance for T180

Predictors 1 2 total
Venclovas 0 *** 1***
Seok * ** 2/1**
Zou 0 ** 1/1**
Shen 0 ** 1/1**
Pierce 0 ** 1/1**
Kozakov/Vajda 0 ** 1/1**
Kihara 0 ** 1/1**
Huang 0 ** 1/1**
Chang 0 ** 1/1**
Vakser 0 * 1
Lubecka 0 * 1
Liwo 0 * 1
Fernandez-Recio 0 * 1

CASP-only Predictors
Seok-assembly 0 ** 1/1**
Kiharalab-assembly 0 ** 1/1**
CoDock 0 ** 1/1**
Baker 0 ** 1/1**
UNRES contact 0 * 1
UNRES 0 * 1
Seok-naive 0 * 1
Lamoureux 0 * 1

Docking Servers
LZERD 0 ** 1/1**
GALAXYPPDOCK 0 ** 1/1**
CLUSPRO 0 ** 1/1**

Scorers and Scoring Servers
Huang * ** 2/1**
Zou 0 ** 1/1**
Venclovas * * 2
SWARMDOCK 0 ** 1/1**
Shen 0 ** 1/1**
PYDOCKWEB * * 2
MDOCKPP 0 ** 1/1**
LZERD 0 ** 1/1**
Kihara 0 ** 1/1**
HDOCK 0 ** 1/1**
Fernandez-Recio * * 2
Chang 0 ** 1/1**
Bates 0 ** 1/1**
Takeda-Shitaka 0 * 1
Perthold 0 * 1
Oliva 0 * 1
Grudinin 0 * 1
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Table S4 – Complete participant performance

Rank Predictors Participation Top-1 Top-5 Score
1 Seok 14 8/2** 9/4** 13

Venclovas 14 7/2** 8/1***/3** 13
3 Chang 14 7/2** 8/3** 11

Zou 14 5/3** 8/3** 11
5 Kihara 14 5/3** 7/3** 10

Pierce 13 6/3** 7/3** 10
7 Huang 14 5/3** 5/3** 8

Bates, Kozakov/Vajda 14 4/3** 5/3** 8
Fernandez-Recio 14 3/2** 5/3** 8

11 Shen 14 3/1** 6/1** 7
Vakser 14 3** 4/3** 7

13 Nakamura 11 2/1** 3/2** 5
14 Liwo 12 2 3 3

Czaplewski 13 2/1** 2/1** 3
16 Lubecka 8 2 2 2

Gray 1 1 1** 2
18 Del Carpio 9 1 1 1

Grudinin 13 1 1 1
CASP-only Predictors Participation Top-1 Top-5 Score

Baker 14 7/4** 8/1***/3** 13
CoDock 10 5/1** 6/2** 8
Takeda-Shitaka 14 2/1** 4/1***/1** 7
Seok-assembly 14 5/1** 5/1** 6
Kiharalab-assembly 13 3/1** 5/1** 6
Lamoureux 11 3** 3** 6
UNRES 13 2 3 3
DellaCorte 6 2/1** 2/1** 3
DATE 11 1 2/1** 3
Risoluto 14 2 2 2
Elofsson 13 1 2 2
htjcadd 6 1 2 2
AILON 6 1** 1** 2
ricardo 3 1** 1** 2
VoroCNN-select 13 1 1** 2
Ornate-select 10 1 1** 2
Seok-naive 6 0 1** 2
SBROD 11 0 1 1
DELCLAB 9 1 1 1
McGuffin, UNRES contact 7 1 1 1
Zhang-Assembly 5 1 1 1

Rank Servers Participation Top-1 Top-5 Score
1 MDOCKPP 14 4/2** 7/1***/2** 11
2 LZERD 14 4/2** 6/2** 8
3 GALAXYPPDOCK 14 5/1** 5/1** 6

SWARMDOCK 14 3/2** 4/2** 6
5 HDOCK, CLUSPRO 14 2/1** 3/1** 4
7 HAWKDOCK 6 1 2 2

Rank Scorers and Scoring Servers Participation Top-1 Top-5 Score
1 Zou 14 5/3** 10/3** 13

Chang 14 6/3** 9/4** 13
MDOCKPP 14 5/3** 9/4** 13
Takeda-Shitaka 14 5/1***/2** 8/1***/3** 13

5 Shen 14 5/3** 9/3** 12
LZERD 14 7/1***/2** 8/1***/2** 12

7 Huang 14 5/4** 7/4** 11
8 Oliva 14 6/3** 7/3** 10

Fernandez-Recio 14 5/2** 7/3** 10
PYDOCKWEB 14 5/1** 7/3** 10
Kihara 14 5/1***/1** 7/1***/1** 10
Bates, SWARMDOCK 14 4/3** 6/1***/2** 10
HAWKDOCK 10 3/2** 6/1***/2** 10

15 Venclovas 13 6/2** 7/2** 9
HDOCK 14 5/3** 5/4** 9

17 Grudinin 14 1 5/1** 6
Bonvin 14 3/2** 4/2** 6

19 Perthold 9 1 2/1** 3
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Table S5 – Interface prediction accuracy
fraction of

correct Recall Precision
Rank Name #correct #total #interface #target interfaces µ σ µ σ

Predictors
1 - Huang 30 111 23 12 0.27 48.4% 30% 52.0% 31%
2 - Liwo 27 100 20 10 0.27 39.1% 31% 32.6% 21%
3 - Czaplewski 28 105 21 11 0.27 31.1% 30% 38.3% 27%
4 - Venclovas 28 115 23 12 0.24 55.2% 29% 59.8% 27%
5 - Kozakov/Vajda 27 115 23 12 0.23 42.9% 29% 54.1% 27%
6 - Shen 24 109 23 12 0.22 52.5% 27% 52.4% 24%
7 - Zou 25 115 23 12 0.22 41.2% 31% 56.2% 32%
8 - Bates 24 115 23 12 0.21 38.3% 32% 45.5% 30%
9 - Grudinin 23 110 22 11 0.21 33.5% 23% 51.4% 30%

10 - Vakser 18 94 23 12 0.19 45.4% 31% 51.9% 29%
11 - Kihara 21 115 23 12 0.18 54.9% 27% 50.0% 25%
12 - Pierce 20 110 22 11 0.18 42.9% 28% 53.9% 26%
13 - Chang 19 115 23 12 0.17 56.1% 27% 58.0% 26%
14 - Seok 18 115 23 12 0.16 54.0% 28% 49.2% 26%
15 - DelCarpio 9 56 12 9 0.16 33.0% 29% 31.9% 26%
16 - Nakamura 10 73 20 9 0.14 50.9% 29% 54.6% 25%
17 - Lubecka 6 45 9 8 0.13 42.1% 23% 36.0% 17%
18 - Fernandez-Recio 12 115 23 12 0.10 35.8% 28% 52.8% 27%
CASP-only Predictors
1 - Risoluto 15 54 23 12 0.28 34.4% 26% 37.2% 26%
2 - Elofsson 8 30 22 11 0.27 40.9% 28% 40.1% 24%
3 - Seok-assembly 25 95 22 12 0.26 31.4% 27% 30.2% 23%
4 - UNRES 27 105 21 11 0.26 38.7% 30% 31.6% 21%
5 - Kiharalab-assembly 22 100 20 11 0.22 36.9% 27% 39.0% 28%
6 - Ornate-select 14 65 13 10 0.22 36.4% 24% 48.3% 28%
7 - Lamoureux 10 51 14 11 0.20 50.8% 29% 46.5% 26%
8 - DATE 10 54 18 9 0.19 47.6% 27% 48.9% 23%
9 - VoroCNN-select 13 77 21 12 0.17 31.3% 23% 45.0% 30%

10 - bioinsilico sbi 5 30 6 6 0.17 21.4% 13% 43.8% 24%
11 - MULTICOM-AI 7 45 9 7 0.16 33.1% 21% 31.6% 21%
12 - CoDock 8 55 11 10 0.15 52.8% 26% 51.1% 23%
13 - UNRES contact 6 40 8 7 0.15 39.0% 22% 34.2% 17%
14 - Takeda-Shitaka 14 106 23 12 0.13 46.6% 27% 56.2% 26%
15 - DELCLAB 7 55 11 9 0.13 33.9% 28% 35.9% 26%
16 - htjcadd 4 30 6 6 0.13 33.1% 22% 43.4% 20%
17 - Baker 13 115 23 12 0.11 46.1% 29% 58.1% 27%
18 - SBROD 8 70 14 11 0.11 32.3% 22% 47.7% 30%
19 - Seok-naive 3 29 7 6 0.10 33.9% 24% 42.8% 21%
Servers
1 - MULTICOM-CLUSTER 23 90 18 12 0.26 24.0% 24% 22.8% 22%
2 - HDOCK 27 109 23 12 0.25 48.2% 27% 49.2% 30%
3 - GALAXYPPDOCK 25 104 22 12 0.24 34.8% 30% 33.6% 26%
4 - LZERD 27 115 23 12 0.23 40.2% 30% 42.5% 30%
5 - CLUSPRO 20 109 23 12 0.18 45.2% 27% 53.0% 25%
6 - SWARMDOCK 16 100 20 12 0.16 32.7% 31% 42.4% 31%
7 - MDOCKPP 17 114 23 12 0.15 38.1% 31% 53.3% 34%
8 - HAWKDOCK 4 30 6 6 0.13 33.1% 22% 43.4% 20%

Scorers
1 - Bonvin 35 115 23 12 0.30 44.3% 29% 43.7% 29%
2 - Perthold 15 50 10 9 0.30 50.0% 27% 39.8% 22%
3 - Zou 29 115 23 12 0.25 52.8% 29% 53.0% 26%
4 - Takeda-Shitaka 24 100 23 12 0.24 56.0% 27% 57.4% 26%
5 - Huang 27 115 23 12 0.23 57.8% 26% 50.3% 26%
6 - Venclovas 25 110 22 11 0.23 51.3% 30% 56.5% 29%
7 - Chang 25 115 23 12 0.22 55.8% 28% 54.7% 26%
8 - Shen 25 115 23 12 0.22 47.9% 29% 53.0% 26%
9 - Grudinin 22 115 23 12 0.19 45.3% 28% 46.6% 27%

10 - Fernandez-Recio 21 114 23 12 0.18 51.3% 29% 52.2% 29%
11 - Oliva 19 115 23 12 0.17 47.1% 28% 50.6% 28%
12 - Kihara 18 115 23 12 0.16 52.7% 26% 49.3% 26%
13 - Bates 17 113 23 12 0.15 58.4% 28% 48.3% 26%
Scoring Servers
1 - MDOCKPP 29 115 23 12 0.25 57.9% 26% 54.0% 24%
2 - HDOCK 25 112 23 12 0.22 53.2% 28% 51.9% 28%
3 - PYDOCKWEB 21 114 23 12 0.18 51.8% 30% 50.8% 28%
4 - SWARMDOCK 17 113 23 12 0.15 58.4% 28% 48.3% 26%
5 - LZERD 15 114 23 12 0.13 53.8% 29% 50.8% 27%
6 - HAWKDOCK 4 60 12 10 0.07 68.4% 24% 56.0% 24%

Table S5 – Interface prediction accuracy. Interface rank based on the fraction of correctly predicted interfaces. Interfaces are defined as correct
when both recall and precision values exceed 50%. Recall and precision values are averaged over ligand and receptor entities. Columns list the
number of correct interfaces (#correct), the total number of interfaces (#total), and the target (#target) and interface (#interface) participation. µ

and σ values are average and standard deviation of recall and precision values over all predicted interfaces.
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I. Protein complex assembly by employing particle swarm optimization 

Raphael.A.G. Chaleil, Tereza Clarence and Paul.A.Bates 

 
Biomolecular Modelling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK 

paul.bates@crick.ac.uk 

 

The construction, optimization and docking of protein models remains challenging. All 

require extensive sampling of the high dimensional conformational space, which is 

intractable with methods based on exhaustive enumeration of all possible solutions. 

Moreover, the exact contributions of the two recognized mechanisms for protein-protein 

complex formation, ‘conformational selection’ and ‘induced fit’, are not known for any 

specific interaction. In order to address these problems, we have developed a series of 

heuristic methods based on Particle Swarm Optimization (PSO). 

 

Methods 

 

Our general methodology for protein fold construction and docking can be described as 

follows: 

 

i) Fold construction using our automatic server 3D-Jigsaw-SL 

The protocol first searches for homologous sequences to the query sequence using 

HHBlits
1
 against a sequence profile database of known structures clustered at 70% 

sequence identity. A linear ab initio polypeptide corresponding to the query sequence is 

constructed, taking into account the bond lengths, angles and torsion angles accordingly 

to identified homologous fragments. All the coil regions that are not matched with a 

structural template are automatically adjusted in torsion angle space. The central core of 

the algorithm is a constricted PSO
2
, which searches for a minimal Dfire

3
 statistical pair 

potential energy. When distance information was available, either from PSICOV
4
 or from 

discontinuous templates, a Hookean force was applied as a distance restraint mechanism. 

Two strategies were applied for folding the structures, the first one adjusts all the torsion 

angles between all the fragments at once, whereas the second one adjusts the torsion of 

each linker region (i.e., regions between fragments from templates) one at a time, starting 

from the N-terminal. The latter technique is computationally more expensive; however, it 

achieves to generate structures with a smaller radius of gyration (i.e., the structures are 

more globular). This property allows to generate better, i.e., biophysically sound, models. 

Finally, the top 10 ranking models from 100 replicates of the algorithm at 10000 

iterations (according to Dfire) are then minimized with CHARMM
5
 (version 22) and the 

top structure, identified as having the best CHARMM energy after minimization, is 

selected for subsequent submission to our protein docking server, SwarmDock. For each 

section of a protein model different templates might have been chosen; therefore, relating 

models to single templates is not always possible with this methodology. 

 

ii) Docking using SwarmDock 
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For the modelling of all protein complexes, we used a modification to our binary protein-

docking algorithm SwarmDock
6
. Our method uses the principles of PSO to search the 

parameter docking space. The innovations added to our automated binary server is, for 

homo-oligomers, to treat each particle within the swarm as an instance of a packed homo-

oligomer, constrained by the appropriate symmetry operators. The objective is to 

optimize the particle space in order to find the most energetically favourable homo-

oligomer. Particles move through a multi-parameter space by the optimization of two sets 

of parameters: orientations and translations of each monomeric unit relative to the 

imposed symmetry and linear combinations of normal modes that adjust the conformation 

of each monomer, in the presence of the other monomers, in this simultaneous docking 

process. For hetero-oligomeric structures we employed our standard SwarmDock 

(https://bmm.crick.ac.uk/~svc-bmm-swarmdock) protocol
6
. This docking methodology 

isn’t template based. Moreover, additional information, such as potential sequence 

conservation at the protein-protein interface, was not considered.  The ranking of docked 

poses was obtained using our ‘democratic’ scoring system, as previously described
7
.  To 

an extent, we considered both the principle of ‘conformational selection’ and ‘induced fit’ 

in our docking procedure. Conformational selection, by using a variety of starting protein 

conformations
8
, obtained either by our own protein modelling server, 3D-Jigsaw-SL, or 

protein models taken from the CASP14 server tar file. Induced fit, is considered too since 

small adjustments are made in both the backbones and sidechains of the interacting 

proteins upon docking via the employment of our PSO procedure. 

 

Results  

For this round of CASP-CAPRI our results show substantial room for improvement. Only for 

targets classified as easy (T164, T166, T177), and on one target classified as Difficult (T178, 

manual model), did the above method show some utility. Interestingly, our manual 

submissions ranked slightly better than for our server, SwarmDock. This we attribute to 

having more accurately built models to feed into the docking procedure. For the automated 

server runs, we didn’t have the time to consider alternative input model protein folds to those 

produced by our fold construction software, 3D-Jigsaw-SL, a software package in the early 

stages of development. For the manual submission phase, we were able to test other input 

model constructs from the CASP14 server tar file. Perhaps not surprisingly, this seems to 

have made a noticeable difference; the accuracy of the output depends upon the accuracy of 

the input.  

 

Conclusion 

It is not formally a requirement that docking servers in CASP-CAPRI should both build 

protein folds as well as dock them. However, since success in docking, at least in our hands,  

requires high quality input models, and high quality protein fold modelling servers around the 

world tend to have long queues and waiting times, to keep a cutting edge in developing our 

docking server, our own input models, generated from primary amino acid sequences of the 

unbound component parts, must be developed to a higher standard; therefore, to facilitate and 

end-to-end docking methodology, as much time will need to be invested in producing 

accurate input models as to developing further the actual docking modules. 

 

Availability  
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Our automated binary protein-protein docking server, SwarmDock, can be located at: 

https://bmm.crick.ac.uk/~svc-bmm-swarmdock/ 
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II. Summary, Chang group, CAPRI Round 50 (CASP14-CAPRI) 
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Technology, Changzhou 213001, China. E-mail: schang@jsut.edu.cn 

 

In CASP14-CAPRI, our group combined template-based modeling and ab-initio docking protocol as 

hybrid docking strategy called CoDock [1, 2] for the docking and scoring experiments. For each target, 

we queried Protein Data Bank (PDB) for structures of protein homologs that can be used as template 

for modeling the homo and hetero protein complexes. The templates for each target are listed in Table 

1. If no proper template was available, we used the ab-initio docking protocol to perform the global 

searching, such as T172 and T173. For T170, we partly modeled the hetero 15-mer complex according 

to the template 6J0N and applied ab-initio docking to obtain the final structure of the hetero 27-mer 

complex. Then, two different binding modes are submitted by our group, as shown in Figure 1. 

A knowledge-based scoring function was trained based on the statistical mechanics-based iterative 

method [3] and used in CoDock program. This knowledge-based scoring function included much more 

information of near-native structures in the observed pair distribution function, enabling it more robust 

for conformational changes. Since the scorer results for all targets in Round 50 are evaluated by 

CAPRI, we summarized our performance in Table 1. For T165, T169 and T174, no group obtained 

acceptable models. For T167, T175 and T181, there are no evaluated data provided by CAPRI. The 3 

targets of T171-173 are canceled by CASP. Only 9 targets have available data for analysis. For 8 

targets of T164, T166, T168, T170, T176, T177, T178, and T179, our docking protocol achieved 

acceptable quality or better models in the scoring competitions. Our group failed mainly in the target of 

T180. The minimum number of subunits of T180 may not be chosen correctly in our submissions. 
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Table 1. List of templates and scoring performance of our group (S3) for each target 

CAPRI ID 

(CASP ID) 
Template  Stocihiometry 

Scoring performance of Top-5
 

a
 

T164 (T1032)
 b
 1GXL, 6OIS A2 *

 
 

T165 (H1036)
 c
 

5ZS0, 4OT1, 
5C6T 

A3B3C3 -- 

T166 (H1045) 
2Y9M, 4BWF, 

5NKZ 
A1B1 ** 

T167 (T1050) 
4A2L, 3V9F, 
4A2M, 3OTT, 

3VA6 

A2 No data 

T168 (T1052) 6F7D, 6F7K A3 ** 

T169 (T1054) 
4QO6, 2OBV, 

4ODJ 
A2 -- 

T170 (H1060) 6J0N A6B3C12D6 * 

T171( T1063) 2MVW, 6QAJ A4 Canceled 

T172 (H1066) --
d
 A1B1 Canceled 

T173 (H1069) -- A1B1 Canceled 

T174 (T1070) 
1S2E, 5IV5, 
5IV7, 1QEX 

A3 -- 

T175 (T1073) 4G6Q A4 No data 

T176 (T1078) 3V0R A2 * 

T177(H1081) 2VYC, 5XX1 A20 ** 

T178 (T1083) 
1U4Q, 3GWK, 
5MTO, 5ME8 

A2 ** 

T179 (T1087) 3GWK, 5LOS A2 * 

T180(T1099) 3J2V, 6HTX 
The minimum 

number of subunits 
-- 

T181 (H1103) 6XDC A1B1 No data 

Total   8/4** 
a
 ‘**’ and ‘*’ indicate medium and acceptable quality models achieved by our group, respectively. ‘--’ 

represents no acceptable models obtained by our group. ‘No data’ represents no evaluated data 

provided by CAPRI. ‘Canceled’ represents the target canceled by CASP. 
b
 In these 8 targets, our group achieved acceptable or better models in scoring experiments. 

c
 No groups obtained acceptable models in T165, T169 and T174. 

d
 No proper template was available for T172 and T173. 
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Figure 1. Two different binding modes of T170 are predicted by the ab-initio docking of CoDock. The 

hetero 15-mer is colored brown and the homo 12-mer is colored blue. 
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III. Reconstructing Protein Complex Structure from Predicted Inter-Chain Contacts in 

CAPRI-Round50  
 

 

Raj S. Roy, Farhan Quadir, Jian Liu and Jianlin Cheng 

Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 

65211, USA 

 

Our MULTICOM-AI protein complex structure predictor uses ab initio deep learning-based interchain 

contact prediction tool (DNCON2_Inter
1
) as well as a template-based prediction method (TBP) to 

predict interchain contacts for complex targets in CASP14 and CAPRI50. The predicted inter-chain 

contacts are then used to create the quaternary structure of the target by a custom distance-geometry 

protocol based on Crystallography & NMR System (CNS)
2
.  

Availability: https://github.com/jianlin-cheng/DNCON2_Inter 
 

Methods 

The individual sequences and predicted (“known”) tertiary structures of the subunits of a target protein 

complex are given to the MULTICOM-AI system as input. Its prediction workflow is illustrated in 

Figure 1.   
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  Figure 1: The workflow of the MULTICOM-AI complex structure prediction system. The box on 

the left illustrates the deep learning prediction of inter-chain contacts for homodimers, the box in the 

middle the deep learning prediction of inter-chain contacts for heterodimers, and the box on the right 

the template-based prediction of inter-chain contacts. The predicted contacts are used to generate the 

quaternary structure of a dimer. Interchain residue pairs are considered interchain contacts if the 

Euclidean distance between the two closest heavy atoms of the two residues is ≤ 6.0 Å
1,4

. 
 

Interchain Contact Prediction. The pairs of chains in a complex are treated as dimers - homodimer if 

two chains are identical and heterodimer otherwise. Since the multiple sequence alignment (MSA) of a 

monomer in a homodimer is essentially the same as that of the homodimer itself, the deep learning-

based contact predictor (DNCON2_Inter) using the MSA of a monomer in a homodimer as input 

predicts both interchain and intrachain contacts
3
. The intra-chain contacts are then filtered out 

according to the “known” tertiary structure of the monomer to keep interchain contacts only (pink box 

in Figure 1). The tertiary structure is predicted by MULTICOM
4
. The process for heterodimer contact 

prediction is slightly different (green box in Figure 1). We concatenate the individual sequences of the 

two chains and generate MSA for heterodimers by searching the combined sequence against a custom 

database of concatenated sequences of interacting dimers derived from the Protein Data Bank (PDB). It 

is then fed to our deep learning predictor to generate the interchain contact map. For TBP (blue box in 

Figure 1), we search the tertiary structures of the protein chains against the custom dimer structure 

database to find complex templates and then extract the interchain contacts from them. The tertiary 

structures of individual chains and the predicted interchain contact maps are then fed to the complex 

structure construction system based on CNS to generate the final structures of the complex as follows. 

Inter-Chain Contact-Guided Complex Structure Generation.  The method is implemented on top of the 

distance geometry protocol of CNS, which uses a stochastic simulated annealing method to build the 

complex structure of protein dimers, leveraging predicted interchain protein contacts and tertiary 

structures of individual protein chains. It can build complex structures consisting of two or more 

protein chains, keeping the individual protein chains unchanged and trying to satisfy inter-chain 

contacts as well as possible. It generates 100 models, which are then sorted in the ascending order of 

the distance-restrain energy.  The top 5 models with minimum energy are selected. 
 

Results 

Table 1 shows the precision of the inter-chain contact prediction for a good example - Target T164. It 

is a homodimer, where each chain contains 284 residues. Figures 2 (A) and (B) depict the contact map 

predicted by DNCON2_Inter and TBP in comparison with the true contact map, respectively. 
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Table 1: The precision of top k contact predictions by DNCON2_Inter and TBP for T164, where k = 

{5, 10, L/10, …, 2L} and L: length of protein sequence. 
Precision (%) 

Method Top 5 Top 10 Top L/10 Top L/5 Top L/2 Top L Top 2L 

Dncon2_Inter 100 100 100 100 52.8 26.4 13.2 

TBP 100 100 100 100 100 54.6 27.3 
 

 
Figure 2: (A) Inter-chain contacts predicted by DNCON2_Inter (green) versus true contacts (blue); (B) 

Inter-chain contacts predicted by TBP (green) versus true contacts (blue).  
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We participated in CAPRI Round 50 as three groups: UNRES (group 55; 22 predictions), UNRES-contact 

(group 53; 12 predictions), and UNRES-template (group 04; 22 predictions), respectively, all of which used the 

latest version of the coarse-grained UNRES force field [1]. The UNRES group used plain UNRES force field 

with only weak restraints on secondary structure [2] obtained from PSIPRED, the UNRES-contact group used 

contact prediction accomplished by using the DNCON2 method [3] or extracted from server models, while the 

UNRES-template group used distance- and local-structure restraints extracted from server models, as described 

previously [4]. The restraints were imposed only on monomers. The UNRES software was modified to handle 

large oligomeric targets. 

 

The protocol for oligomer-structure prediction. Initial multimeric models were built from monomer 

structures. The monomers were, in turn, modeled, within the CASP14 experiment, by using our hierarchical 

protocol, in which restrained MREMD (Multiplexed Replica Exchange Molecular Dynamics) [5] simulations 

with the coarse-grained UNRES force field [1] were carried out. Simulations of monomers were started from 

multiple server models.  

 Targets 177 (CASP14 target H1081) and 180 (CASP14 target T1099) were special cases. The initial 20-

mer of target 177 was obtained as two stacked rings of the experimental decamer (PDB: 3n75), rotated with 

respect to each other structure to avoid overlaps. The initial structure of target 180 was built using symmetry 

constraints from the i-TASSER model of monomer selected to avoid overlaps, for which purpose the C-terminal 

part of each oligomer had to be regenerated, subject to symmetry constraints. Whole structure of this target was 

simulated, while the minimal asymmetric unit was submitted.  

When good oligomer templates were available (as found by HHpred [6]), the initial structures of 

oligomers were modeled on template scaffold, while in other cases the monomers were assembled into the initial 

oligomer structures by using the random-oligomer-positioning algorithm of UNRES-dock [7]. For each target, 

multiple oligomer structures were constructed. The starting structures were subjected to restrained MREMD 

simulations with the UNRES force field [1], as described previously [2,4]. Subsequently, simulation results were 

processed by using the Weighted Histogram Analysis Method  (WHAM) [8] and cluster analysis to extract 10 

families of conformations [2,4]. The families are ranked based on their free energies (each computed over the 

entire conformational sub-ensemble constituting a family [1]). Coarse-grained structures which were closest to 

the cluster centers were subsequently converted to all-atom representation by using the PULCHRA [9] and 

SCWRL [10] knowledge-based algorithms, and subjected to final refinement at the all-atom level with the 

AMBER ff14SB force field [11].    

 

Results 
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 (a)      (b) 

Figure 1. (a) Violin plots of the distributions of the F1 measure of fitting the modeled structures to the experimental 

structures of the targets treated by the three UNRES-based groups. (b) The experimental 2vgh structure of the duck 

hepatitis virus capsid (target 180) (left) and the structure modeled by UNRES (right). 

 

As shown from Figure 1a, including knowledge-based restraints on monomers results in much better quality of 

the best models; however its influence on the average F1 value is less significant.  

 In our experience [4], round 50 was more difficult compared to the previous rounds of CAPRI because 

of lesser availability of good templates for the oligomers and because of significantly greater size of the targets.  
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V. INCORPORATING FLEXIBILITY BY SOFT DOCKING IN MIAX  
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Introduction: 

Incorporating flexibility in protein docking algorithms has become a key issue in 

computational methodologies oriented to solve the protein-protein interaction (PPI) prediction 

problem in molecular biology. Backbone rearrangement and, to a larger extent, amino acid 

side chain rearrangement shape the interacting subunits at the interface of the complex, post-

docking re-modeling of the interfaces being required when rigid docking algorithms are 

applied to solve the PPI problem for unbound subunits. The difficulty arises in predicting and 

scoring high the best decoys (closest to the native structure), the interfaces of which may 

undergo extensive rearrangement at interaction. Here we propose a genuine methodology to 

undertake this problem that consists in an a-priori treatment of the molecules to dock that 

combines a softening technique of the surface of the molecules, and the utilization of graph 

morphological operations to deal with protein flexibility resulting in a new concept of  “soft  

docking” that mainly targets the docking of  unbound protein molecules (reported at the 

isolated state).  

  The methodology is embeded as an independent module into our system for 

macromolecular interaction assessment system MIAX (Macromolecular Interaction 

Assessment Computer System)
1,2,3

, that has been in continuous development for the last 

decade. Results of applying the newly proposed soft docking technique to the set of 

benchmark protein complexes reported in the literature illustrate its ability to generate close-

to-native decoys even before re-modeling the interaction interfaces. 

Methodology: 

The key strategy is the mapping of a characteristic shape from the unbound conformation 

for the protein by applying a three dimensional filter to the function representing the surface. 

The high flexibility of the amino acids on the molecular surface can be expressed  introducing 

in this way  “softness” in the rigid docking algorithm, allowing some unrealistic penetrations 

among the interacting proteins that may lead to better prediction of the complex configuration. 

Moreover, the elimination of the atomistic detail of the molecular surface  by replacing it with 

a smoother function enables the treatment of the protein as a three dimensional graph, to which 

morphological operations can be applied in order to accentuate or smooth protuberances or 

groofs on the surface that may play the main roles in the interaction process. This allows the 

manipulation of flexible docking in a way mimicking induced fit in PPI.  

Results and Discussion:  

If only the geometrical features of the interacting monomers are used to dock the structures, 

the system performs well for a set of difficult docking problems. We show, thus, that a priori 

knowledge on the binding sites or the automatic identification of binding regions on the 

surfaces of the interacting macromolecules can substantially improve the ranking of the 

decoys output by the rigid body docking of the unbound proteins. Moreover, a refinement of 

the structures can be performed to deal with the most flexible chains in the interacting 

interface of the best decoys. The optimization process would be confined to a relatively small 

section of the conformational space as we have shown in previous reports about flexible 

docking; the algorithm constitutes therefore a powerful tool to predict those starting 

conformations. Nonetheless, since more and more structures resulting from large scale 

genome sequencing projects may have to be modeled rather than determined by experimental 

methods, containing therefore several significant structural errors, methodologies like the one 

presented here may probe of great assistance   in structure-based functional studies requiring 
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computational techniques with the capacity of docking large number of protein models within 

acceptable limits of accuracy as our methodology does before the refinement process by 

flexible docking. Indeed, the methodology proposed here was validated with monomers that 

in several cases are not 100% similar in amino acid sequence, the effectiveness of the 

methodology having been proven and the results are described in a paper under publication.   
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VI. Rosetta docking strategies in the CASP14-CAPRI experiment 
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Introduction 

Performance of docking methods in prior CAPRI challenges have revealed that the intrinsic 

flexibility of proteins still hampers the accuracy of docking predictions1. In this edition of 

CASP14-CAPRI, we expanded and evaluated our docking methods in Rosetta to tackle the 

binding-induced conformational flexibility in protein-protein docking. To model the targets in 

this round, we employed our recent progress in RosettaDock2 and SymDock3; along with our 

upcoming replica-exchange method, ReplicaDock 2.0 (built upon work from Zhang, 

Schindler, Lange and Zacharias4,5), that utilizes induced-fit with docking. 

 

Model Curation 

From the given amino acid sequence, we used the BLAST program to identify homologous 

proteins. Based on the availability of a suitable template, we determined the three-

dimensional structure of a target or the monomer with MODELLER6. If no template was 

available, we built models using the Robetta web server. For antibody targets such as T165, 

modeling the complementarity-determining region is challenging as it is less conserved. In 

order to improve our predictions with antibody targets, we employed RosettaAntibody7 and 

DeepH38 developed by our group. 

 

Docking Methods 

Rigid-docking for identification of binding sites: To obtain putative binding sites, we 

performed ab-initio docking using rigid-body Fast Fourier Transform (FFT) based docking 

using the ClusPro9 web server. We also performed rigid-body global sampling using our 

ReplicaDock protocol and clustered the lowest energy decoys. As both of these tools 

generate multiple bound structures, we compared the ligand root mean square deviations 

(L_rmsd) and chose those poses that had the ligand in same relative neighborhood for local 

docking. By using this pipeline, we were able to narrow down the global search into a local 

search, where it was feasible to sample conformational changes near putative binding 

regions.  

 

RosettaDock 4.0: Our recent work on protein docking uses a conformer-selection based 

Monte Carlo Minimization (MCM) approach. Starting from a putative binding region obtained 
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post global search, we dock the targets using our RosettaDock 4.0 protocol that adaptively 

swaps receptor and ligand conformers from a pre-generated ensemble of structures in the 

coarse-grained stage followed by an all-atom refinement in the high-resolution stage. To 

diversify the backbone conformations in the ensemble, we generate structures using Rosetta 

Relax, backbone flexing with Backrub10 and normal-modes. Further, we use an updated 

coarse-grained energy function i.e. Motif Dock Score (MDS)2 obtained from 6-dimensional 

residue pair data to efficiently discriminate non-native decoys from native ones.  

 

ReplicaDock 2.0: We recently developed a new, aggressive conformational sampling 

methodology incorporating temperature and Hamiltonian-replica exchange Monte Carlo (T-

REMC4 and H-REMC5) techniques coupled with the induced-fit (IF) mechanism of protein 

binding. By capturing backbone motions of putative interface residues on-the-fly, we mimic 

the partner-specific moves of IF approaches within our docking protocol. This approach 

communicates between multiple replicas with different energy functions and temperatures to 

better explore the backbone conformational space. For this CASP14-CAPRI round, we first 

performed a global docking with the replica exchange protocol restricting motion to only rigid 

body moves to sample the protein energy landscape. Upon narrowing down putative local 

binding sites, we performed replica exchange docking with IF-backbone motion. We initiated 

8 trajectories of the docking simulation, each trajectory spanning over 3 temperature replicas, 

run for 2.5 x 105 MC steps. With inverse temperatures set to , of 1.5-1 kcal-1.mol, 3-1 kcal-

1.mol and 5-1 kcal-1.mol, replica exchange swaps are attempted every 1000 MC steps 

generating 6,000 decoys at a local binding site.  

 

SymDock 2.0: To navigate the challenges pertaining to targets with point symmetries, we 

utilize the symmetry framework in our docking protocol SymDock23. We dock monomer 

chains related by a symmetry-axis. The use of a new scoring function (MDS) and an all-atom 

backbone flexibility in the high-resolution stage allows us to obtain tighter interface packing 

for symmetric targets, and in turn improve the quality of our predictions. This is reflected in 

our medium quality targets obtained for target T164, a symmetric homo-dimer with C2 

symmetry.  

 
Successes and Failures 

We participated in 2 targets of the CASP14-CAPRI blind prediction experiment. For target 

T164 (Fig. 1), we were one of the only two groups that generated medium-quality predictions 

(and multiple acceptable-quality predictions). This was particularly interesting as we fused 

the SymDock2 ensembles with monomer chains obtained from the ReplicaDock2 IF-based 

docking approach. The method of induced-fit outperformed other methods, perhaps by 

capturing putative native-like conformations in the presence of the partner. For target T165 

(Fig. 2) which involved a glycoprotein-antibody complex with C3 symmetry, like all other 

groups we were unable to obtain acceptable predictions. The failure in modeling target T165 

stems from the limitations in our ability to accurately model the H3 loop of the antibody.  
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VII. HADDOCK scoring of CAPRI Round50 models. 

 

 
Figure 1: Our medium quality prediction for 
T164 (human predictor group). This model 
had an i-RMSD under 2 Å. Only two CAPRI 
human participants achieved medium quality 
predictions. 

 
 

 
Figure 2: Our top models for Target T165, superimposed 
over the native. In box, the H-L chains of the Ab 
superimposed over the Ab crystal structure (grey), showing 
the challenge of modeling H3 loops.  
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Scoring methodology 

The HADDOCK team only participated as scorers in this CASP/CAPRI round. The scoring 

was purely based on energetics considerations, not making use of any experimental and/or 

bioinformatics information such as conservation or co-evolution. In this section, we describe 

the followed scoring pipeline, consisting of the following steps: 

 

1) Pre-processing of models. This initial step consists of identifying possible problematic 

models (e.g., cases with missing chains, missing atoms, etc) and correcting for amino-acid 

nomenclature (e.g., renaming HSD/HSE, AMBER nomenclature, to HIS). 

 

2) Short energy minimisation.  Each model is subjected to a short energy minimisation using 

HADDOCK2.4
1
 (https://www.bonvinlab.org/software/haddock2.4). For each model, any 

missing atoms (but not missing segments) are built, the protonation state of histidines is 

automatically set by comparing the electrostatic energies of the various histidine states 

(charged or neutral with the proton attached to either the N or E nitrogen atom on the ring) 

and disulphide bridges are automatically detected based on a distance cut-off. Once all 

missing atoms have been built, the model is subjected to 50 steps of energy minimisation 

with the OPLS forcefield
2
 with a non-bonded cutoff of 8.5Å. 

 

3) Scoring. The energy minimized models generated by the last step are scored with the 

simple HADDOCK scoring function (HS)
3
, which is a linear weighted sum of energetic and 

structural terms: 

 

    

 

        

 

         
           

 

 

 

 

where    

 

,     
  and      

 

 

 stand for van der Waals, Coulomb electrostatics and 

desolvation energies, respectively. The non-bonded components of the score (   

 

,     
 ) 

were calculated with the OPLS forcefield
2
. The desolvation energy is a solvent accessible 

surface area-dependent empirical term
4
, which estimates the energetic gain or penalty of 

burying specific sidechains upon complex formation. 

 

4) Clustering. Despite the possible heterogeneity in model numbering, we perform a 

clustering of all models based on the fraction of common contacts 
5
 using a 0.65 cutoff. Two 

different clusterings are performed requiring a minimum of 4 and 2 models per cluster, 

respectively. 
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5) Cluster-based scoring.  For each cluster we calculate an average score based on the top 2 

or top 4 models. Clusters are then ranked based on their average HADDOCK score. 

 

6) Model selection.  Depending on the degree of clustering, the final selection of models is 

based either on cluster statistics obtained with a minimum of 2 or 4 models per cluster. A 

short visual inspection of the cluster is done to exclude “suspect models”. Those are often 

models scoring much better than any other models, which upon visual inspection appear to be 

unrealistic models with highly intertwined chains and optimized energetics. Although the 

origin of the models is unknown to us, we venture to speculate that those most likely 

originate from fold and dock approaches. The final submission consists of 1 model per cluster 

for the top5 re-scored set, and depending on the scoring statistic, more models from the top 

cluster might be included in positions 6 to 10, or models from new clusters are included. 

 

Scoring performance 

Table 1 summarises our scoring results for the 12 targets that were assessed, for a total of 23 

different interfaces (with T170, T177 and T180 assessed as nine, three and two different 

interfaces respectively). Overall, we got acceptable or better models for 11 of the 23 

interfaces (48%) in the top 10 predictions, which drops to 8 (35%) and 7 (30%) for the top5 

and top1, respectively. Note that in our scoring procedures all interfaces are considered 

simultaneously, and we do not score per interface.  

 

We generally observe that our short minimisation strategy is unable to refine strongly 

clashing models which end up with very high positive scores. Such models often originate 

from rigid body docking approaches and might well contain good predictions when it comes 

to the backbone orientations. Due to their potential high clash content at the interfaces, those 

models are however severely penalized by our energy-based scoring procedure. Further, 

comparing our results with others, while we do identify acceptable models for close to 50% 

of the interfaces in the top10 (the best groups reach ~64% in this round), there is room for 

improvement since our top5 and top1 performance is dropping. A more aggressive 

refinement might be needed to further remove clashes and improve the scoring of models 

together potentially with a re-optimisation of our scoring function. 

 

 

Table1 – HADDOCK scoring performance per interface. The stars indicate the quality of the 

selected models and the number before those the number of models of a given quality (*: 

acceptable; **: medium; ***: high) based on CAPRI criteria.  

 

TARGET/INTERFACE  TOP1 TOP5 TOP10 

T164 1* 5* 9* 

T165 - - - 

T166 - - 1** 

T168 1** 5** 10** 
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T169 - - - 

T170/1 1* 2* 5* 

T170/2-7 - - - 

T170/8 1* 4* 7* 

T170/9 - - 1* 

T174 - - - 

T176 - - - 

T177/1 1*** 5*** 10*** 

T177/2 1*** 5*** 10*** 

T177/3 1* 2*/1** 2*/2** 

T178 - - 2* 

T179 - 2* 3* 

T180/1 - - - 

T180/2 - - - 

OVERALL 4*/1**/2*** 4*/3**/2*** 6*/3**/2*** 
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VIII. Hybrid ClusPro approach in 2020 CASP-CAPRI round: template-assisted 
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In the latest joint CASP-CAPRI assembly round our group used two modeling methods, one 
of them being a template-based method recently updated and implemented as a fully 
automated public server ClusPro TBM1,2 (tbm.cluspro.org) and the other being the original 
ClusPro3–6 server (cluspro.bu.edu) that performs rigid-body docking. Here we briefly 
describe the basic features of these protocols and present some of the applications and 
performance highlights. 
 
Methods 
Model Preparation 
Given the sequences and expected stoichiometry of the target protein complex, we search 
for available templates in the pdb100 database using HHsearch7 and identify those that 
contain homologs of the interacting biological unit to be predicted (it is also possible to use 
manually pre-selected templates as input). If no template of the complex is found, we 
perform free docking using ClusPro. Since free docking requires three-dimensional 
structures as input, we use the HHpred8,9 top template to build a homology model of the 
subunits using Modeller10,11.  Unaligned regions of the target sequence are removed to 
avoid the addition of unstructured loops and tails into the model, while aligned portions of 
the target are built with fixed backbone atoms. In difficult cases, we build an “ab initio” 
model of the subunit using TrRosetta12. 
 
Template-based docking 
Once potential templates containing homologs for all subunits have been identified, the 

method performs a stoichiometry check, testing whether the template can accommodate 

the required number of copies of each subunit type. This includes some nontrivial cases like 

the use of homomeric templates for heteromeric targets or the use of single-chain 

templates for multimers. If a template of the biological complex satisfying the required 

stoichiometry is found then we choose the best template for each unique subunit of the 

complex, align multiple copies of this subunit template to the complex template and then 

model the whole complex of full-sequence chains using Modeller. In order to diversify the 

pool of models, we also used the CASP server models of the subunits by aligning those onto 

our initial template-based models and minimizing the resulting structures. To remove 

structural redundancy in the final set of resulting assembly models we calculate Cα RMSD 
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between all pairs of models taking into account complex stoichiometry and symmetry (there 

might be several ways to align the chains of one model onto the other, the minimal RMSD is 

calculated) and perform greedy clustering at 10 Å radius. Finally, we report the centers of up 

to 10 largest clusters ranked by the cluster size. 

 
Free Docking 
Our free docking protocol starts from running PIPER13 - a global rigid-body docking program 
that performs a systematic search of protein complex conformations on a grid using the fast 
Fourier transform (FFT). It represents the energy score as a sum of correlation terms that 
includes vdW interaction energy, electrostatic energy, and desolvation energy contributions 
calculated by a DARS14 structure-based statistical pairwise potential. The docking run can be 
additionally informed by XL-MS cross-links15 and SAXS data16,17 that helps to guide and 
restrain the search. The top 1000 lowest energy docked complex conformations generated 
by PIPER are used to compute a matrix of pairwise ligand interface Cα RMSD values. Namely, 
for each docked conformation, we select ligand residues with at least one atom within 10 Å 
of receptor and calculate Cα RMSD for these residues against the remaining 999 ligand 
poses. Using this not necessarily symmetric matrix as a distance measure we perform 
greedy clustering of the poses with a clustering radius of 9 Å. After removing potential side 
chain clashes by fixed backbone minimization of CHARMM18 vdW energy, we report the 
centers of the 10 largest clusters as predictions. They are ranked by the cluster size. 
 
Results 
Performance highlights 

 
Figure 1. A model of CASP-CAPRI target H1081/T177 generated by a combined TBM/free docking approach. 

The two identical partial assemblies of A10 stoichiometry modeled with ClusProTBM (shown in green and cyan) 

were docked to each other using free docking ClusPro capabilities to produce a near-native model.  

 

As mentioned above, in CAPRI/CASP14 we used both template-based and free modeling 

approaches. A particularly interesting case in which the two methodologies needed to be 

combined was CASP-CAPRI target H1081/T177, representing a homomultimer of A20 

stoichiometry. Here, we found no reasonable template for the whole assembly, and thus a 
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straightforward TBM approach was not a way forward. However, templates for partial (A10) 

assembly were abundantly available. 

We, therefore, modeled an A10 subcomponent of the target using ClusproTBM based on 

available templates and then docked two copies of this partial model using the free docking 

functionality of the ClusPro server. This approach thus represented a synthesis of the two 

methodologies and resulted in a near-native model of the full target assembly as a result 

(see Fig. 1). 

 

 
Figure 2. Comparison of free docking results for a set of CASP14 multimeric cases using models generated by 

top CASP14 predictors as inputs. For each group, the number of acceptable or better predictions in top-5 is 

given. Docking results obtained by re-docking the subunits taken from the X-ray structure of the complex are 

provided as a baseline. 

 

Another observation we make in CASP/CASP14 is how the improvement in the quality of 

folding models leads to a dramatic improvement in the quality of free docking results. When 

using subunit models produced by the top-performing CASP14 groups as inputs to free 

docking, the number of modeled interfaces with acceptable or better quality (as estimated 

by DockQ19) is comparable to those obtained by re-docking subunits taken from the X-ray 

structures. Fig. 2 provides the summary of docking results for a set of CASP14 multimeric 

targets. 

 

Encountered difficulties 
Despite the progress in the development of scoring functions, template-based modeling of 
protein assemblies generally outperforms free docking when good templates are available.  
However, working with some of the CASP-CAPRI targets demonstrated that even in 
presence of good but remotely homologous templates, modeling quality might be 
significantly affected by the quality of sequence alignment, especially in key regions such as 
complex interfaces. 
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We have participated as human predictors, human scorers, and server scorers, in all the 12 

evaluated targets, comprising a total of 14 assessed interfaces. We applied a similar strategy 

to that in the CASP13-CAPRI experiment, combining ab initio docking, template-based 

modeling, and energy-based scoring [1]. 

 

Methods 
 

The models of the individual subunits were taken from the best predictions of ZHANG, 

RaptorX, and QUARK CASP-hosted servers, except for target T170, which had available 

structures for two of the subunits (see Results).   

We applied our pyDock [2] docking pipeline to the models of the individual subunits, 

in order to build the binary interactions in each assembly. In homo-oligomers, only docking 

poses satisfying the expected symmetry (e.g. cyclic C2 symmetry for homo-dimers; C3 for 

homo-trimers) were selected. For that, rotation angles and translation distances along the 
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symmetry axis between two docked subunits were calculated by ICM-Browser 

(www.molsoft.com) as previously described [3]. A given docking pair was defined as C2 or 

C3 symmetry when rotation angle was 180
o 
 5

o
 or 120

o 
 1

o
, respectively, and translation 

along symmetry axis < 5 Å.   

Additionally, we searched for available templates for the assembly interfaces, using 

BLAST as well as the top five released predictions from the ZHANG, QUARK, RaptorX, 

MULTICOM-CONSTRUCT and ROSETTA CASP-hosted servers. The models for the 

individual subunits were superimposed on each template (template-based docking) and 

minimized with AMBER 12. In targets T165 and T177, some interfaces were modelled with 

MODELLERv9.19 (template-based modeling) because there were not available models at the 

CASP-hosted servers (see Results). 

 Finally, all the (ab initio or template-based) modelled interfaces were scored with 

pyDock. The number of available templates and their reliability determined the proportion of 

template-based complex models included in the set of submitted models. We eliminated 

redundant predictions and minimized the top ten submitted models. 

In the scorers experiment, we first removed models with more than 250 clashes (i.e., 

intermolecular pairs of atoms closer than 3 Å). Then, we scored the models with pyDock (or 

pyDockWEB [4] as servers) and applied the same additional criteria as in predictors (i.e. in 

case of reliable templates we favored models similar to such templates, we checked for 

symmetry, we applied ad-hoc distance restraints for specific targets, etc., more details in the 

Results section). As human scorers we introduced more manual intervention than as server 

scorers, i.e., removing loops with non-realistic conformations, and re-scoring some of these 

models afterwards. 

 

Results 
 

In targets for which we could not find available templates (T169, T174, T178, T179), we 

applied our automatic pyDock docking and scoring pipeline as predictors, and the built-in 

scoring function of pyDock or pyDockWEB as human or server scorers, respectively, 

selecting only symmetric orientations (C2 in T169, T178 and T179; C3 in T174). We got 

acceptable results in two of these difficult targets, T178 (as predictors) and T179 (both as 

human and as server scorers). For the two failing targets, no other participant group was 

successful. 

For the rest of targets, we could find potentially suitable templates for all or some of 

the predicted interfaces. In most of these cases, we generated models by ab initio docking and 

by template-based modeling independently, and the final proportion of models derived from 

these two approaches was determined by pyDock scoring and/or by the reliability of the 

available templates. Thus, ab initio docking was favored in target T176, with unsuccessful 

results (indeed, this was a difficult case, with few successful participants). In target T164, we 

also favoured ab initio docking, since we incorrectly focused on the potential dimerization of 

the helices. As a consequence, we had unsuccessful results as predictors, but got acceptable 

models as human and server scores. On the other side, template-based modeling was favored 

in targets T166, and T168, for which we got medium-quality models as predictors, human 

scorers and server scorers. Finally, only template-based modeling was applied in target T180, 

consisting in the assembly of a virus capsid with icosahedral symmetry. We modelled a 

homo-tetramer, as the minimal number of subunits necessary to define the unique interfaces, 

and got acceptable results (averaged over the two evaluated interfaces) as predictors, human 

scorers and server scorers (together with Venclovas, our server scorers were the only 

acceptable rank 1 submissions of all participants for this target). 

49

Page 120 of 147



In the most challenging multi-molecular targets, in order to build the full assembly we 

combined template-based docking for some interfaces and ab initio docking for the other 

ones. This is the case of the homo-20mer T177, in which the homo-decamer was modelled 

with MODELLERv9.19 based on available templates, followed by pyDock scoring, and the 

final assembly was built by docking two decamers. For this target, we obtained medium-

quality results (averaged over the 3 interfaces) as predictors, human scorers and server 

scorers. In the hetero-nonameric target T165, the homo-trimeric glycoprotein was modelled 

by template-based docking (i.e. superimposing the subunit models from the CASP-hosted 

servers on the available templates), and the hetero-dimeric antibody was modelled with 

MODELLERv9.19 because there were not available models at the CASP-hosted servers. 

Then, they were docked to form the evaluated hetero-trimeric interface. However, we got 

unsuccessful results, as the rest of participants. 

  In the same line, target T170 was a challenging hetero-27mer, in which we applied an 

ad-hoc modeling procedure, also combining ab initio docking and template-based modeling. 

This assembly was formed by three rings with different composition and stoichiometry. The 

first ring was a homo-hexamer arranged as a dimer of trimers (A3:A3) and was modelled by 

manually fitting (Figure 1) the monomeric x-ray structure (PDB 5NGJ, chain A) into the 

available cryo-EM map of bacteriophage T5 tail (EMDB ID: 3689) [5] (trimers built by ab 

initio docking did not fit well into the cryo-EM map). In the final hexameric ring, residues 3-

5 and 216-220 were removed due to steric clashes between rings. Interestingly, in the 

evaluated interface #2 (A3:A3) we submitted the only acceptable model among all 

participants, as predictors. The second ring was formed by three subunits of one protein and 

twelve subunits of a second protein (B3:C12) and was modelled by a combination of ab initio 

docking, symmetry restraints, and template-based docking. The third homo-hexameric ring 

(D6) was modelled by superimposing the x-ray structure of the monomer (PDB 4JMQ) on 

available templates (PDB 4DIV and 2X8K), followed by minimization and pyDock scoring 

(Figure 1). The final assembly of the modelled rings was done by ab initio docking, selecting 

only models in which the symmetry axes of the rings were aligned. The same criteria was 

used in the scorers experiment. The different interfaces in this target were evaluated in three 

separate groups. In the average evaluation over interfaces #1 (A3), #2 (A3:A3), #3 (B3) and 

#4 (A3:B3), we got unsuccessful results (despite having acceptable models for interfaces #1 

and #2 as predictors). In the averaged evaluation over interfaces #5 (C12), #6 (B3:C12) and 

#7 (B3:C12), we also got unsuccessful results. However, in the averaged evaluation for 

interfaces 8 (D6) and 9 (B3:D6), we obtained acceptable results as human and server scorers 

(together with Venclovas, these were the only acceptable rank 1 submissions of all 

participants). 
 

In summary, our results for the modeling of multi-meric assemblies in CASP14 were 

in line with those in the past CASP13-CAPRI edition. Interestingly, our performance as 

human predictors, human scorers, and human servers has been quite consistent, and in the 

majority of cases our successful predictions were achieved with our rank 1 submissions, 

which is an improvement with respect to past editions. However, in the interfaces without 

suitable template or experimental information we had significantly worse predictions, which 

shows that ab initio docking of multi-meric assemblies is far from being solved. 
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Figure 1. Modeling strategies for the three major rings in target T170. 
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In the CAPRI round 50, we combined rigid-body free docking with several quality 

assessment (QA) methods developed in our lab. We extensively used the symmetry 

assembler SAM
4
 and the binary docking method Hex

5
. Some targets also motivated us to 

develop novel methods. For example, we extended SAM
4
 symmetry assembler for helical 

symmetries, we introduced new options into the symmetry analyzer AnAnaS
10,11

, we 

developed a novel rigid-body replica-exchange Markov-chain Monte Carlo simulation 

technique, we introduced symmetry constraints into the interactive docking engine
12

, and 

more. 

 

Methods: 

Prediction round: 

Firstly, we selected best-scored CASP14 stage-2 server predictions according to QA methods 

developed in our lab: VoroCNN
1
, VoroCNN-sh

8
, Ornate

2
, and SBROD

3
. Next, we used them 

as initial monomeric models for molecular docking. For each target, we used around 40 

initial monomeric models. For the homo-oligomeric targets, we ran SAM
4
 on each model, 

specifying the desired symmetry. For the hetero-dimers, we performed cross-docking using 

the Hex program. We generated from 5,000 to 20,000 docking poses, depending on the size 

of the target, and then we scored them using our QA methods. Finally, we submitted the best 

assembly predictions based on the competition rank. More precisely, for each of the models, 

we computed weighted interface scores as Sinterface = (SAB*NAB – SA*NA – SB*NB ) / NAB, 

where SAB is a QA score of the multimeric model, NAB is the number of residues in the 

multimeric model, SA and SB are the individual QA scores of the assembly components A and 

B, and NA and NB are the corresponding numbers of residues. We then ranked all the 

interfaces by the standard competition ranking. We repeated this procedure for each QA 

method. The 100 assembly models with the highest number of summed up ranking points 

were submitted to CAPRI as our predictions. 

Scoring round: 

For the scoring round, we calculated scores using our QA methods for each provided 

complex model and its subunits. Then, we computed the interface score for each model and 

rank them according to the standard competition ranking described above. 

 

Performance: 

Predictions: We participated in 13 prediction targets (all except T168). According to results 

presented at the CASP14 meeting, our method correctly predicted structures for targets: T177 

(Interface 3, **) and T170 (Interfaces: Z:Z and D:D both *). Final models for both targets 

were selected based on either Hex or KSENIA
9
 scores, which were specifically developed for 

scoring oligomeric structures. 

Scoring: We participated in all 14 scoring targets and our general performance is as follows: 

1* hit per Top-1 model, 5*/1** hits per Top-5 models, and 5*/1** hits per Top-10 models. 

To score the models, we combined our 4 QA methods. All of them were initially designed for 

scoring monomeric models only. Therefore, the interface scores in the assemblies can be 

incorrect and noisy. 

 

Difficulties encountered: 
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For several targets, we did not follow our 

standard protocol because of their 

specificity. For the T165/H1036 target 

with the stoichiometry (ABC)3, firstly 

we ran our trimeric docking algorithm 

DockTrina (a protein docking method 

for modeling the 3D structures of 

nonsymmetrical triangular trimers)
13  

for 

the trimer ABC. Initial models for 

subunit A were taken from the CASP’s 

T1036s1 stage-2 server predictions. Subunits B and C were modeled with iTASSER
6
 v.5.1. 

Then, we applied SAM using the C3 symmetry on top of the obtained DockTrina predictions 

to generate the required stoichiometry. 

 The T190/H1099 target was modeled using an exhaustive scan of all 150 CASP14 

stage-2 server submissions using SAM for the 2-fold and 3-fold symmetry axes in the 

asymmetric subunit. Then, the predictions were supplemented with 60 icosahedral symmetry 

operators between the asymmetric subunits, and a local optimization with the KSENIA 

potential
9
, sidechain repacking, and an interactive in-house docking application applied

12
. We 

ranked the predictions according to the KSENIA scores. 

 We modeled the T170/H1060 and T177/H1081 targets starting from the general 

protocol for the homo-oligomers. To generate a monomeric subunit of H1081, we used 

Swiss-Model
7
 with 2VYC as a template. We used experimental structures for subunits in 

rings A and D. We applied D5 symmetry to H1081, C3 symmetry to the A and B subunits of 

H1060, C12 symmetry to the C subunit of T170/H1060, and C6 symmetry to the D subunit of 

T170/H1060. We stacked the two D5 dimers of T177/H1081 and the rings A and B of 

T170/H1060 using SAM extended to helical symmetries. The other rings in T170/H1060 

were stacked along the symmetry axis using the Hex docking engine with only 2 degrees of 

freedom active, the translation between the subunits, and the twist angle between them. We 

ranked the T170/H1060 models based on the Hex docking scores. The T177/H1081 models 

were additionally optimized and ranked using KSENIA
9
. 

 

Availability 

More information about our methods can be found at https://team.inria.fr/nano-d/software.  
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Methods 

During the CASP14-CAPRI experiment, we integrated template-based docking and ab-initio 

docking into a hybrid docking protocol, which is similar to that used in our HDOCK 

webserver [1, 2] and that used by our group in CASP 13-CAPRI [3], to predict the complex 

structures for the given targets. Specially, for a given protein sequence, the HHblits [4] 

program was first used to search against the PDB database for the monomer templates. Then 

the searched templates were filtered by 20% cutoff of sequence identity and 80% cutoff of 

sequence coverage. If no templates were found through the filter, the cutoff of the sequence 

identity was relaxed to 15%-20%. For the hetero-oligomer target, the complex template was 

selected from the common PDB templates of receptor and ligand according to the sequence 

identity, sequence coverage and the resolution of the template structure. For the homo-

oligomer target, the homo-oligomeric template with the same stoichiometry given by CAPRI 

organizers was selected. If a complex template was found, MODELLER[5] was subsequently 

adopted to construct the monomer structure(s) of the target using the corresponding 

component(s) as monomer template(s). Otherwise, the best monomer template(s) was/were 

used for homology modeling. Then template-based docking was performed by superimposing 

the modeled monomer structure(s) onto the complex template if found. The ab-initio docking 

was performed using our HDOCK-lite [6] for hetero-complex target or our HSYMDOCK-lite 

[7] for homo-complex. A new hybrid scoring function was used to rank the sampled binding 

modes of ab-initio docking. The hybrid scoring function is a linear combination of our 

distance-based iterative scoring function ITScorePP [8] and the contact-based scoring 

function IFACE previously used in ZDOCK [9]. At last, the template-based model of the 

complex and the ranked ab-initio docking models were combined together and clustered with 

an Lrmsd cutoff of 5 Å. The selected models were further refined and then submitted. For 

homo-oligomer targets, a deep learning model, named as DeepHomo [10], was used to 

predict the inter-protein residue-residue contacts, by integrating evolutionary coupling, 

sequence conservation, distance map, docking pattern, and physic-chemical information of 

monomers. Then the top prediction was used to filter the ab-initio docking models in the last 

step. The overall workflow of our hybrid docking protocol is shown in Figure 1. 

Performance 

The hybrid scoring function has been tested in protein-protein docking benchmark 4.0 and 

outperformed the previous scoring function ITScorePP. When separately tested on the 

benchmark, IFACE and ITScorePP have shown a complementary effect in terms of 

characterizing protein-protein interactions. Therefore, the combination of two scoring 

functions improved the top 1 success rate from 7.4% to 12.5% in unbound docking. 

DeepHomo model has been tested on a test set of 300 targets with experimental monomer 

structures and 28 CASP-CAPRI targets with predicted monomer structures. It has shown a 

much better performance than direct-coupling analysis (DCA) and machine learning (ML)-

based approaches, and obtained the precisions of top 1 prediction more than 60%. Integrating 

the predicted contacts into ab-initio docking also significantly improved the top 5 success 

rate from 42.9% to 64.3% when tested on the 28 realistic CASP-CAPRI targets. 
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Difficulties 

The most difficult thing we encountered in this round was how to integrate the residue-

residue contact predictions into the docking protocol efficiently. As now, we only use the top 

prediction to filter the sampled binding modes. Another challenge was the refinement of the 

complex models especially the template-based complex model.   

 

Figure 1: Workflow of our hybrid docking 
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XII. Kihara human team and LZerD server performance in CAPRI 50 / CASP 14 
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Xiao Wang1, & Daisuke Kihara1,2,* 

 

1Department of Computer Science, Purdue University, USA 
2Department of Biological Sciences, Purdue University, USA 
 
We report the protein docking prediction pipeline of our group and the results for 
CAPRI50/CASP14. The pipeline integrates programs developed in our group as well as other 
existing scoring functions and modeling tools. HHpred1 and PSI-BLAST2 with default settings 
were used to search for template structures for the complex structure. If one or more 
templates of the complex are found, models were generated using MODELLER3. When 
subunit structures were otherwise unavailable, structures generated by our CASP14 free 
modeling (de novo) pipeline were used4. 
If templates of the full complex were not found in the PDB, we generated ab initio docking 
models using the LZerD protein-protein docking algorithm developed in our group5. In cases 
of complexes with more than two subunits, a restricted and modified version of the 
multiple-chain docking protocol Multi-LZerD6, developed in our group, was used on top of 
LZerD. Partial complex templates and symmetry information were integrated. In the case of 
human group prediction, we surveyed the literature to find information to guide the 
modeling, such as protein-protein interface information. We also integrated available SAXS 
data, but the applicable target was canceled. In addition to any literature information, 
generated docking decoys were selected by a combination of scoring functions, including 
DFIRE7, GOAP8, and ITScorePro9. These scores were combined by the simple rank 
aggregation scheme of adding their numerical rank values, called ranksum10. The top ten 
decoys were relaxed by a short molecular dynamics simulation before submission to remove 
atom clashes and improve side-chain conformations. 
 
Performance Summary 
In CAPRI50/CASP14, our groups ranked near the top of the preliminary assessment released 
in December 2020. For prediction, our human and server groups produced models of at 
least acceptable quality for 7 and 6 targets respectively, as well as models of at least 
medium quality for 3 and 2. Broken down by modeling category, our human and server 
groups achieved at least acceptable quality for 9 and 3 target-interfaces respectively for 
targets where ab initio docking was used. Of the 3 targets where de novo subunit structure 
prediction was relied on exclusively, we were able to achieve acceptable complex models 
for 2 of them. Templates used are listed in Table 1. 
 
Sucess 
Our docking pipeline achieved acceptable model quality for T179, a bacterial prototoxin, 
although no templates for either the complex or for the subunit were found. Our T179 
models were generated by modeling the subunit de novo and then docking de novo models 
using LZerD in C2 symmetry mode (see Figure 1). LZerD was one of only two servers to 
acceptably model this target. 
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Failure/Challenges 
T170 was a particularly challenging target. This phage tail complex with A6B3C12D6 
stoichiometry would have likely been impossible as a completely ab initio target. Of the 9 
interfaces in this target, we were able to acceptably model 5. Particularly, 2 of the interfaces 
that we modeled acceptably were classified as difficult by the organizers; only one other 
group was able to model 2 difficult interfaces, and no groups were able to model all the 
difficult interfaces. These difficult interfaces were within the 12-chain cyclic ring, between 
that cyclic ring and the concentric 3-chain cyclic ring, and within that 3-chain ring. We were 
the only group to successfully model one of the specific interfaces between the two rings. 
However, the other such interface was missed. Furthermore, we missed 3 of the 4 easy 
interfaces among the two stacked 3-chain cyclic identical-sequence rings, despite the fact 
that most groups which succeeded on any interface of this target were able to model at 
least 2 of those interfaces. 
 
Figure 1. T179 acceptable LZerD server model. 
LZerD server model #4 is shown in green and cyan. At 78% sequence recovery, this model is 
of acceptable quality with an    

 

 of 0.30 and an L-RMSD of 9.1 Å. At time of writing, the 
native structure was not publicly available and so is omitted here. 

 
Table 1. Templates used for all evaluated CAPRI 50 submissions. 
Targets where no template was used for subunit modeling as well as for the assembly are 
marked “n/a”. A template being listed does not indicate that de novo models were not also 
used for that target. 
Target List of templates 

T164 4RSJ 

T165 2GUM, 4PFE, 5JYM, 5C6T, 3FVC, 3NWA, 5V2S, 6ESC 

T166 4BWF, 5NKZ 

T168 3DC7, 6F7D 

T169 n/a 

T170 3UH8, 5NGJ, 6F2M, 5IV5 

T174 1S2E 

T176 3V0R 

T177 2VYC 

T178 n/a 

T179 n/a 
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T180 3J2V 
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In CAPRI 50 (CASP 14), we used a multiple sequence alignment (MSA) generated by our 

method
1
 as a seed input for HHblits

2
 to a perform profile–profile sequence search, and we 

also used the template profile database created in a similar method. To construct 3D-models, 

we used template-based structure prediction by MODELLER
3
, interresidue distances and 

orientations prediction-based structure prediction by trRosetta
4
, and combined them in some 

targets. In addition, we predicted quaternary structures that replicate experimental evidence 

based on a literature search. 

 

Methods 
To execute a sequence search of a target, we used SSearch

5
 with MIQS

6
 against the latest 

NCBI nr database. Then we made an MSA by using MPI-parallelized MAFFT
7,8

 with 
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homologous sequences. With the MSA as input, we used HHblits to execute an iterative 

profile–profile sequence search against the UniClust30
9
 and BFD

10
 databases. 

 To execute a template search and acquire profile–profile alignment between target 

and templates, we used HHsearch
2
 against the latest PDB70 and an in-house profile database 

that was made by three iterations of HHblits with MSAs as input. These MSAs were made 

with PDB98 against NCBI nr in a similar manner for target sequences. However, we made 

the MSAs partly by stacking pairwise sequence alignments by SSearch instead of using MPI-

parallelized MAFFT. 

 In our 3D-model construction step, we used MODELLER with the result of the 

profile–profile alignment against PDBs and trRosetta with the result of the sequence search. 

We intervened in the processes of trRosetta by partly substituting the input with the distances 

and orientations of 3D-models made by MODELLER in some targets that had good 

templates and made 3D-models well. 

 In our model selection step, we used VoroMQA
11

 mainly, dDFire
12

, ProQ4
13

, and the 

rate of fit with the servers’ distance predictions. 

 For multimeric targets, the stoichiometry of the template protein was considered to 

select a model. Also, experimental evidence (e.g., the number of disulfide bonds by mass 

spectrometry and interacting regions by pull-down assay) based on a literature search was 

heavily considered and we tried to replicate the evidence in 3D-models by adding restraints 

manually. If we needed to perform free-docking, we used Haddock
14

 and ZDOCK
15

. If we 

considered that the target must be coiled-coil but it was hard to construct a model, we used 

ISAMBARD
16

. 

 
Performance 
In CAPRI 50, our group was able to submit models for 9 out of the 12 targets (if including 

cancelled and no structure targets, 15 out of the 18 targets). In the preliminary assessment, 

our models achieved medium quality for 2 targets (T166, T170K:L(Z:Z)) and acceptable 

quality for 3 targets (T164, T170A:B(A:A), T177). Regarding T166, we superimposed a 

good server model for PEX4 and a model which we produced for PEX22 to the interface 

structure of 2y9m. Regarding T170K:L, we superimposed a good server model to 6v8i. 

Regarding T170A:B, we used Fit in Map of UCSF Chimera with EMD-3691 and 5ngj. 

 

Failure 

In the case of T168, although we produced the multimeric structure of domain 1 (1-539) 

based on 6f7k, we misplaced the other domains and it caused too many clashes (presumably 

more than the disqualification threshold). 
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 Our team submitted models for 17 out of 18 targets, and 11 of our submitted targets 

were evaluated out of the 12 evaluated targets. Our basic modeling strategy for this CAPRI 

round entailed these main steps: 1) Select monomer structure(s) from the CASP server model 

sets, 2) Utilize one or more of the following docking protocols: RosettaDock
1
, ZDOCK 3.0.2

2
, 

SymDock
3
 and M-ZDOCK

4
 (the latter two for Cn symmetric docking), 3) Refinement and 

model selection, including one or more of the following protocols: clustering using FCC
5
, 

model refinement using Rosetta FastRelax
6
 or local RosettaDock, and re-scoring with 

ZRANK2
7
 and Rosetta REF15

8
 scoring functions. For ZDOCK and M-ZDOCK docking 

input, certain residues or regions were blocked to avoid their participation in modeled 

interfaces, when information from known structures or the literature was identified by our 

team. 

Table 1 summarizes the methods and results for all evaluated targets from our team. 

Our multi-stage strategy, which utilized a range of available tools, achieved Acceptable or 
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better models for 7 targets, including Medium or higher quality models for four targets (T166, 

T168, T177, T180). Also, for two homodimeric targets classified as Difficult, we generated 

Acceptable quality models (T178, T179). Among 47 CASP teams that participated in CASP-

CAPRI targets, our team was ranked 7
th

 based on average z-score (> 0.0). While for most 

targets we used major docking and refinement tools, for the large ring-shaped assemblies of 

T170 and T177 we performed template-based homomultimer modeling with SWISS-

MODEL
9
, in conjunction with PyMOL (Schrodinger, Inc.) to position the rings in the 

respective assemblies. Lack of successful predictions for four Difficult targets (T169, T170, 

T174, T176) highlights the need for improved docking protocols in scenarios with 

conformational changes in unbound or modeled input structures. 
Table 1. Prediction methods and results for evaluated targets. 
 

Target Assembly Quality
1
 Server Model(s)

2
 Methods

3
 Difficulty 

T164 Homodimer Acceptable 

Zhang-Server 
BAKER-

ROSETTASERVER 
MULTICOM-DEEP 

RaptorX 

SymDock, M-ZDOCK, 
FastRelax 

Easy 

T166 Heterodimer Medium 
Zhang-Server 

ZhangS 

RosettaDock 
ZDOCK 

FastRelax 
Easy 

T168 Homotrimer Medium 
ZhangS 
MultiAI 

FastRelax Easy 

T169 Homodimer Incorrect 
RaptorX, 

Zhang_Ab_Initio 

M-ZDOCK, FastRelax, 

ZRANK2, FCC 
Difficult 

T170.1-9 
Homultimer/H
eteromultimer 

rings 

Incorrect 
(Interface 1-9) 

SWISS-MODEL 
Templates: 5NGJ 

MZDOCK, PyMOL Difficult 

T174 Homotrimer Incorrect 
Zhang-Server, Zhang-

CEthreader, Quark 

Assembly templates: 5HX2, 

1QEX 

FastRelax, ZRANK2 

Difficult 

T176 Homodimer Incorrect 
BAKER_ROSETTAS

ERVER 

M-ZDOCK, SymDock, 

FastRelax, ZRANK2 
Difficult 

T177.1 
T177.2 
T177.3 

Two stacked 
decamers 

High 
(Interface 1) 

High 
(Interface 2) 

Medium 

(Interface 3) 

SWISS-MODEL 
Template: 2VYC 

PyMOL Easy 

T178 Homodimer Acceptable 
Zhang-Server 

MUFOLD2 
M-ZDOCK, SymDock Difficult 

T179 Homodimer Acceptable 
BAKER-

ROSETTASERVER 

M-ZDOCK, FastRelax, 

SymDock, FloppyTail, 

ZRANK2 

Difficult 

T180.1 
T180.2 

Capsid 

Incorrect 
(Interface 1) 

Medium 
(Interface 2) 

BAKER-
ROSETTASERVER 

Zhang-Server 
Yang-Server 

MULTICOM-DIST 

Assembly templates: 6HTX, 
1QGT 

SymDock, FastRelax, 
ZRANK2 

Easy 
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1
Best CAPRI model rating in top 5 submitted structures. 

2
CASP server model used as docking/modeling input. In most cases, the top model from the specified 

server (“TS1”) was used in modeling. 
3
Methods used for docking and/or refinement: RosettaDock

1
, ZDOCK

2
, SymDock

3
, M-ZDOCK

4
 , 

FCC
5
, Rosetta FastRelax

6
, ZRANK2

7
, PyMOL (Schrodinger, Inc.), SWISS-MODEL

9
. PDB codes for 

multimeric structures used to guide or fit assemblies are also noted. 
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XV. Oliva team performance, CASP14-CAPRI, Round 50 

 

Didier Barradas-Bautista1, Zhen Cao1, Luigi Cavallo1 and Romina Oliva2*  
 
1
 King Abdullah University of Science and Technology, Saudi Arabia 

2
 University of Naples “Parthenope”, Italy 

 

*E-mail: romina.oliva@uniparthenope.it 

  
Scoring function/scheme used  

We submitted scoring predictions for all the 14 targets assessed in the scoring experiment, 

using an approach similar to the one we first applied in the CASP13/CAPRI round. In order 

to assign a tentative easy/difficult classification to each target, as a preliminary step, we used 

HHPRED [1] to search for possible templates for the modeling of the single proteins and of 

the assembly. All the targets (with the partial exception of T170 and T177, see below) were 

scored with our tools CONSRANK (CONSensus RANKing) and Clust-CONSRANK. 

CONSRANK is a pure consensus method for the ranking of docking decoys [2-3]. It 

calculates the frequency of inter-molecular contacts in a decoys ensemble and then ranks 

each decoy based on its ability to match the most frequent contacts. Clust-CONSRANK is a 

CONSRANK implementation introducing a contact-based clustering of the models as a 

preliminary step of the scoring process [4]. For the clustering, a threshold on the number of 

clusters was set as 1/10 of the total number of models per target.  

For each target, the ≈20-30 models with the highest CONSRANK score and the 3-4 

top ranked models for the 15 most populated clusters from the Clust-CONSRANK output 

were further analyzed with CoCoMaps [5], a web tool we developed for the analysis of the 
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interface in macromolecular complexes. Models showing a large number of clashes were 

removed from the selection. The weaker was the overall consensus highlighted by 

CONSRANK, the higher was the number of models we selected from the Clust-CONSRANK 

output. Ranking of the selected models from the top-1 to the top-10 position was guided by 

results of the interface analysis, especially in terms of extension of the contacts network and 

of the interface area.  

Models for the hetero 27-mer T170 and the homo 20-mer T177 target were analysed 

by CONSRANK focusing on single interfaces and also subjected to short in vacuo molecular 

dynamics (MD) simulations, carried out with GROMACS in a microcanonical (NVE) 

ensemble [6]. The MD simulations were followed by a clustering step to single out 

representatives of the different clusters. Submitted models for these two targets were partially 

selected from the CONSRANK results, partially from the MD approach. 

 

Short description of successes and failures 

Our performance was especially effective in the top-1 ranking, where we were second, with 

at least one correct solution for 6 targets, of which 3 of medium quality (see Figure 1), on a 

par with Takeda-Shitaka, and second after LZERD, which exceeded our performance for 

having one target with a top-1 high quality model instead of a medium-quality one. 

Our performance for the top-5 ranking coincides with that for the top-1 ranking. As for the 

top-10 ranking, we submitted correct models for 7 targets, for 1 of them of high quality- and 

for 2 of them of medium-quality. This compares with the 9 targets with at least one correct 

model, of which 4 of medium quality, of the best performing scorers in this CAPRI Round.  

Our successful targets (both in the top-1 and top-5 rankings) correspond to T164, 

T166, T168, T177, T178 and T179, which include different types of homo- and hetero-

assemblies. The targets for which we could not submit any correct solutions (at the top-10 

positions), while at least another scorer could, were instead T176 and T180. These targets, a 

homodimer and a 240-mer assembly, respectively, were particularly difficult ones, for which 

most of the scorer groups could not identify any correct solution. These are most probably 

targets whose scoring sets included only very few correct models and remain the critical 

cases for us.  

 

 

 
Figure 1. Our performance (Oliva’s group) as scorers for the 14 assessed targets of the 

CASP14/CAPRI50 joint experiment. The presence of high, medium quality, acceptable or 

incorrect models in each ranking is reported in a green-to-gray color code. Targets for which 

no acceptable solutions were available are colored white. 
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XVI. Performance of the Shen team in CASP14-CAPRI Round 50 
 
Yuanfei Sun, Shaowen Zhu, and Yang Shen* 
 
Department of Electrical and Computer Engineering, Texas A&M University,  
College Station, TX 77843, USA 
 
* E-mail: yshen@tamu.edu 
 
 
Methods  
 

We first adopted monomer structures from CASP14 tar ball (stage 2 webserver predictions, 
specifically “Zhang-Server”, “BAKER-ROSETTASERVER”, and “RaptorX”) and performed 
rigid docking using the web server ClusPro.  Multimer docking, antibody mode, and 
attractions were used in ClusPro whenever applicable.  Homology models are built if 
oligomer templates are identified (we used HHpred for monomer sequences).   
 
We then refined oligomer models using our BAL (Bayesian Active Learning) [1] and rescored 
the refined models using our EGCN (Energy-based Graph Convolutional Networks) [2].   
 
Our innovations include: 
1. Conformational flexibility: basis directions and ranges.  We used encounter complex-
based normal mode analysis, incorporating both effects of conformational selection and 
induced fit, to predict the directions and the ranges of conformational change (first proposed 
in [3][4] and then upgraded in BAL [1]).  
2. Conformational search with uncertainty awareness.  By directly modeling the posterior 

distribution of the unknown global optimum (the native structure), we guide conformational 
search and improve model scoring with uncertainty estimation [1].  
3. Absolute and relative quality estimation.  In BAL [1], we had developed a funnel-like 

energy function using random forest of MM-PBSA features, which is used for both absolute 
quality estimation (iRMSD estimation) and relative quality estimation (ranking/scoring of 
structure models).  For this round of CASP/CAPRI, we have adopted the newly-developed 
EGCN [2] for both absolute and relative quality estimation, which is the first graph neural 
networks for the purpose.  Compared to our earlier shallow models (random forest in [1]), 
the new deep-learning model [2] directly learns energy values from 3D structures 
represented as graphs rather than indirectly doing so from structure-based semi-empirical 
energy calculations.  EGCN was used for both re-scoring our models in the docking 
experiment and re-scoring community submissions in the scoring experiment.   
 
Performances 
 

In the CASP multimeric evaluation on CAPRI targets only, our submissions for 10 targets led 
to a sum of Z score (      being 5.94, placing us 14th out of 47 CASP+CAPRI groups.  In 
particular, our CASP ranking on three hard (FM) targets were 8th/34.   
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In the CAPRI docking evaluation, our submissions for 12 targets (not counting 2 canceled 
targets and 4 targets without structures determined) led to at least acceptable prediction for 
6 of the 12 targets, including medium-accuracy prediction for 1 target.  The docking 
performance (a sum score of 7) placed us tied 15th out of 28 teams, being 1-point shy of the 
top 10.   
 
Target-based break downs of our docking performances are as follows.  First, for 2 easy 
dimers, we had one acceptable (T164/T1032) and one medium-accuracy (T166/H1045) 
prediction.  Second, for 4 difficult dimers (T169/T1054, T176/T1078, T178/T1083, 
T179/T1087), we had acceptable prediction for T169 and T179 whereas the community had 
at least acceptable prediction for 3 of the 4 (the one where we didn’t succeed was T178).  
Third, for 3 homo-trimers (T165/H1036, T168/T1052, and T174/T1070), we had no 
acceptable prediction and the community had only such for T168; however, T168 turned out 
to be easy for the community (19 teams had acceptable prediction, including 2 teams with 
high accuracy and 9 with medium accuracy).  Last, for the 3 remaining targets of cryo-EM 
hetero-oligomer assemblies including T177/H1081 (the decarboxylase), T180/T1099 (viral 
capsid), and T170/H1060 (T5 phage tail distal complex), we had at least acceptable 
prediction for T180 and T170, but we missed T177 which turned out to be easy for the 
community (16 teams had at least acceptable predictions including 8 teams with medium 
accuracy and 1 with high accuracy).  Taken together, we did well for difficult dimers and the 
240-mer T170.  In particular, we had at least acceptable prediction for 6 of the 9 interfaces of 
T170, including 2 interfaces with medium-accuracy prediction, which was the community 
best.  Our models for the difficult T170 interfaces of C3/C5 and min unit also had the highest 
TM scores among all CASP-assessed submissions.  However, our performance was poor 
for the easy cases of T168 and T177, for which the reasons remain to be validated and may 
include interfacial clashes in the models.   
 
In the CAPRI scoring evaluation, our submissions for 12 targets (14 interfaces) had 
identified (among top-5 models) at least acceptable prediction for 7 targets/interfaces, 
including medium-accuracy prediction for 3 of the 7.  The scoring performance placed us 
tied 7th out of 19 teams.  We note that our scoring results included medium-accuracy top-5 
models for both T168 and T177.   
 
Challenge   
 

Regardless of the performances, the cryo-EM hetero-assemblies present a major challenge 
(and potential opportunity) to our pipeline that has mainly been developed for dimers.    
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XVII.  Predicting protein complex structures using GALAXY in CAPRI round 50 

Taeyong Park, Hyeonuk Woo, Jinsol Yang, Sohee Kwon, Jonghun Won, and Chaok Seok 
Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea chaok@snu.ac.kr 

 

We participated in CAPRI round 50 as a server group GalaxyPPDock and a human group 

Seok. GalaxyPPDock submitted server predictions generated by GALAXY programs with 

minimal human intervention. Human intervention was made only when the stoichiometry of 

the target did not correspond to An or A1B1 or when additional information was provided. 

Human predictions submitted by Seok were also generated by GALAXY, but human 

intuitions were utilized in selecting monomer models, using information obtained from the 

literature search, scoring complex models, etc. 

 

Methods 

 The newly developed GalaxyHomomer2 and GalaxyHeteromer were used to predict the 

structures of homo-oligomers and hetero-oligomers, respectively, from sequences. These 

oligomer structure prediction pipelines were run following the monomer modeling pipeline of 

CASP14 Seok-server. Monomer models, selected among those predicted by template-based 

modeling GalaxyTBM and by an in-house distance-based modeling method that employs 

distance prediction from sequence coevolution, were further subject to quaternary structure 

prediction. 

 GalaxyHomomer2 performed homo-oligomer structure prediction by template-based and ab 

initio docking depending on template availability, just like GalaxyHomomer. In 

GalaxyHomomer2, the two template-based modeling methods, sequence-based template 

detection followed by restraint-based modeling-building and structure-based template 

detection followed by superimposition-based model building, were re-balanced, considering 

improved monomer structure prediction owing to improved distance prediction. 

 GalaxyHeteromer performed automatic hetero-dimer structure prediction also by template-

based and ab initio docking depending on the availability of hetero-dimer templates. 

Templates to be used for hetero-dimer modeling were selected from HHsearch high-rankers 

including monomers and homo-oligomers as well as from a hetero-dimer structure database 

based on structure similarity between the monomer models and the templates. The hetero-

dimer structure database consisted of non-redundant hetero-dimer structures prepared by 

compiling all hetero-dimers with atomic contacts in PDB and sequence- and structure-based 

clustering. Hetero-dimer models generated by superimposing the monomer models on the 

templates were ranked by monomer structure similarity, with additional consideration of the 

number of clashes, the number of contacting residue pairs, and interface area. If template-

based modeling produces less than five models, ab initio asymmetric docking method 

GalaxyTongDock_A was used to generate more models to get a total of five models. 

 

Results and Discussion 

 We confirmed that there remains a large gap between performances of human and server 

predictions. In most cases, manual prediction showed higher performance than server 

prediction, as shown in Figure 1. In the case of T174, incorrect complex structure prediction 

originated from incorrect monomer structure prediction by the server. However, human 

prediction started with manual domain splitting of the monomer into four domains, and the 

trimer structure of each domain was predicted first before full domain docking. The human 

predictions resulted in a trimer interface of the 2nd domain (Fnat=0.667) and the 4th domain 

(Fnat=0.417) with acceptable quality. In the case of T180, incorporation of key interactions 
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extracted from mutagenesis studies of capsid protein assembly resulted in an acceptable 

model, which turned out to be the only acceptable model submitted by all. 

 As a post-analysis, monomer structures of AlphaFold2 (AF2) were subject to ab initio 

docking with TongDock for eight targets of stoichiometry An or A1B1 to assess the effect of 

improved monomer structure quality. In one case (T179), docking of the AF2 monomer 

model resulted in a medium quality model (Fnat=0.81) compared to an acceptable quality 

model (Fnat=0.18) obtained previously. In the remaining seven cases, AF2 monomer 

structures had incorrect interface structures, and resulted in incorrect complex structure 

prediction by docking. In six of the seven cases, superposition of AF2 monomers to the 

crystal complex structures caused severe steric clashes. So, the current AF2 monomer models 

do not seem to be enough to be accurately docked by rigid-body docking. 

 
 
 
 
 
 
 

XVIII.  Performance of Takeda-Shitaka Team in CASP14-CAPRI Round 50 
 

Yasuomi Kiyota, Shinpei Kobayashi, Yoshiki Harada and Mayuko Takeda-Shitaka 

 

School of Pharmacy, Kitasato University, Tokyo, Japan 

 
Introduction 

We participated in the assembly category of CASP14-CAPRI50. We predicted both homo- and 
hetero-oligomeric protein structures according to the oligomeric state in the CASP14-CAPRI50 target 

list. Our modeling procedure was based on template-based docking method. 

Figure 1. Performance comparison of the server and human predictions in terms of 

the fraction of native contacts (Fnat) for the best of top 5 models. Targets mentioned 

in the text, T174 and T180.1 (interface 1), are marked with their target numbers.  
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Methods (Human Predictor) 

Monomer model selection 
We basically used CASP14 server models (Stage 2) as monomer models. We selected high quality 

monomer models using combined score of ProQ3
1
, ProQ3D

2
 and VoroMQA

3
. The score was adjusted 

to pick up high quality models. When we could not obtain high quality server models, we constructed 
the monomer models by MODELLER

4
 based on alignments from HHalign

5
. 

Oligomeric template search 

To find reliable oligomeric templates, we carried out two-step template search. Firstly, the 

oligomeric templates were searched by HHblits
5
 against PDB70 database. Secondly, to search 

oligomeric templates more widely, we ran PSI-BLAST
6
 on PDBaa using HHblits hits as inputs. 

According to the results of two-step template search and information of biological unit, oligomeric 

templates were selected. 

Oligomeric model construction 

To construct oligomeric models, we performed template-based docking. We superposed the 

monomer models onto the oligomeric templates using TM-align
7
 or CAB-align

8
. When we could not 

obtain the oligomeric templates, we used DOCKGROUND
9
 database as templates. For some targets, 

we used SymDock2
10

 to construct the oligomeric models. 

Quality assessment and refinement of oligomeric models 

The quality of oligomeric models were assessed by combined score of VoroMQA and SOAP-PP
11

.
 

The selected 5 models were refined using MODELLER to remove steric clashes. 

 

Methods (Scorer) 
When oligomeric templates were available, oligomeric models were superposed onto oligomeric 

templates using MM-align
12

. Models with insufficient TMscore or many clashes in the interface were 

removed before scoring. The same scoring method for human prediction was used for scoring models. 

Based on the results, 10 models were selected. 
 
Successes and Failures 

For T166, our model was assessed as high (***) by the CAPRI measure. We could find a good 

oligomeric template (PDB ID: 2Y9M) and select good monomer models from the CASP14 server 

models (step2) for both chains using our method described above. 

T170 was a challenging target because it was 27-mer and had many interfaces. This hetero-complex 
target had ring A (A3), ring B (A3), ring C (B3/C12) and ring D (D6). We prepared ring-shaped 

templates for each ring (5NGJ for ring A and B, 6F2M for ring C, and 4JMQ for ring D). After 

constructing these rings, we assembled whole structure based on two templates (6V8I and 4V96). It 
was difficult to remove steric clashes. As a result, two out of nine interfaces of our model were 

assessed as acceptable (*) by the CAPRI measure. 
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XIX. Modeling CAPRI and Oligomeric CASP Targets by Template-Based and 

Free Docking 

Petras J. Kundrotas, Amar Singh, and Ilya A. Vakser 

Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, 

KS, USA  

We performed the initial alignment of the CAPRI and CASP targets by HHpred.
1
 If the 

alignment had > 90% probability and covered > 80% of the target sequence, we utilized 

NEST
2
 to build the protein models for the docking. Otherwise, we used CASP stage 2 server 

models of the individual proteins, except those with loose packing. For the template-based 

docking, the structure alignment by TM-align
3
 was scored by a combination of structure 

similarity metrics, normalized AACE18
4
 values for the interface, fraction of shared 

target/template contacts, target/template interface sequence identity, interface solvation score, 

and the extent of clashes in the unrefined predictions.
5
 The free docking by GRAMM was 

performed at lower resolution (3.5 Å grid step) to accommodate structural inaccuracies of the 

modeled proteins. The predicted matches were scored by the AACE18 potential. The text-

mining procedure
6
 was used to identify the binding site residues, which served as additional 

docking constraints. All final predictions were minimized by TINKER.
7
 The results are 

summarized in Table 1. 

Table 1. Docking of CASP14-CAPRI targets 

CAPRI 
target 

CASP 
target 

Proteins Organism Assembly Experimental 
method 

Number of residues Number of 
HHpred 

templates 

Rank of the 
best model 
by CASP 

T164 T1032 smchD1 Human A2 X-ray 284 107 95 

T165 H1036 Glycoprotein 
gB/antibody 93k 

Varicella-zoster 
virus/human 

A3B3C3 EM 622/128/106 9/250/250 N/A 

T166 H1045 PEX4/PEX22 Arabidopsis 
Thaliana 

A1B1 X-ray 157/173 22 19 

T167 T1050 ATPase Bacteroides Ovatus A2 X-ray 779 250 N/A 

T168 T1052 Tail spike protein Salmonella phage 
epsilon15 

A3 X-ray 832 250 11 

T169 T1054 Outer-membrane 
lipoprotein 

Acinetobacter 
baumannii 

A2 X-ray 190 18 105 

T170 H1060 tail subcomplex T5 phage A6B3C12D6 EM 464/298/140/204 11/1/4/6 9 

T171 T1063 CCNB1IP1 Human A4 X-ray 196 208 N/A 

T172 H1066 CCPol/MP-2 - A1B1 X-ray 366/123 11/0  

T173 H1069 CCPol/MP-1 - A1B1 X-ray 369/122 11/0  

T174 T1070 Tail spike protein Escherichia virus 
CBA120 

A3 X-ray 335 2 11 

T175 T1073 DUF4423 Bdellovibrio 
bacteriovorus 

A4 X-ray 255 250 9 
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T176 T1078 Tsp1 Trichoderma virens A2 X-ray 138 1 24 

T177 H1081 Arginine 
decarboxylase 

Providencia stuartii A20 EM 758 250 N/A 

T178 T1083 Nitro Nitrosococcus oceani A2 X-ray 98 0 48 

T179 T1087 Tuna Methylobacter 
tundripaludum 

A2 X-ray 93 1 18 

T180 T1099 Capsid protein Duck hepatitis B 
virus 

A? EM 262 4 17 

T181 H1103 Orf3a-HMOX1 SARS2-Human A1B1 X-ray 275/288 1/37 N/A 

 

Table 1. Continued 

CAPRI 
target 

CASP 
target 

Proteins Organism Assembly Experimental 
method 

Number of 
residues 

Number of 
HHpred 

templates 

Rank of the 
best model 
by CASP 

CASP only oligomeric targets  

 T1034 BIL2 Tetrahymena 
thermophila 

A4 X-ray 156 0 41 

 T1038 TSWV 
glycoprotein 

Tomato spotted wilt 
virus 

A2 X-ray 199 0 13 

 H1047 FlgH-FlgI Shigella sonnei A1B1? EM 232/365 1/0 7 

 T1048 HD_1495 Haemophilus ducreyi A4 X-ray 109 0 23 

 T1061 tail subcomplex T5 phage A3 EM 949 192 36 

 T1062 tail subcomplex T5 phage A3 EM 35 0 N/A 

 H1065 Cytosine 
Methyltransferase 

Serratia marcescens A1B1 X-ray 127/98 0/0 8 

 H1072 SYCE2/TEX12 Human A2B2 X-ray 101/69 0/2 17 

 T1080 Bd3182 Bdellovibrio 
bacteriovorus 

A3 X-ray 922 129 14 

 T1084 Meio Meiothermus 
silvanus 

A2 X-ray 73 0 48 

 H1097 AR9 Bacillus 
phage PBS1 

ABCDE EM 426/631/49
6/665/464 

14/16/0/12/0 44 

For n-homomeric targets, we performed spatial rearrangement of the target protein to match 

the monomers in the experimentally determined complexes either from the full-structure 

template library
8
 or from an ad hoc library generated from PDB for a particular target. The ad 

hoc library contained structures which (a) were identified by the HHpred as likely templates (> 

90% probability) and (b) had oligomeric state in the biounit corresponding to that of the 

target. For target T177/H1081, due to anticipated conformational changes and large size of 

the putative interface, the free docking of the two 10-mers was performed with C

 atoms only. 

For n-heteromeric targets, we looked for common HHpred templates, when the templates for 

the target monomers were identified either as interacting chains in a PDB entry, or non-

overlapping parts of the same chain. If no reliable templates were found, we performed free 

docking, including cross-docking of all selected CASP stage 2 server models. 
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XX. Modeling of protein complexes in CAPRI Round 50 

 

Justas Dapkūnas, Kliment Olechnovič and Česlovas Venclovas 

 

Institute of Biotechnology, Life Sciences Center, Vilnius University 

Saulėtekio av. 7, LT-10257 Vilnius, Lithuania 

ceslovas.venclovas@bti.vu.lt, justas.dapkunas@bti.vu.lt, kliment.olechnovic@bti.vu.lt 

 

Methods 

In CASP14-CAPRI round 50 we used the same general modeling workflow as in CASP13
1
 

with several improvements. For every target we initially attempted to identify multimeric 

templates. If sequence-based searches using PPI3D
2
 and HHpred

3
 failed, we employed 

structure-based searches against PDB by submitting CASP server models to the DALI server
4
. 

If templates were identified, structural models were generated using MODELLER plugin 

AltMod
5, 6

. Otherwise, free docking of five selected monomeric CASP server models was 

done using Hex
7
 for hetero-complexes and Sam

8
 for homomultimers. For some larger target 

protein complexes templates were available only for some of the subunits or domains. In such 

cases a hybrid strategy was used, where part of the complex was generated by homology 

modeling, whereas remaining subunits were docked either by simply using TM-align
9
 or by 

free docking. If the reliability of identified templates was questionable, we used a different 

hybrid strategy, performing both template-based modeling and free docking. In those cases 

we submitted best models generated by both approaches. 

For model selection we utilized VoroMQA
10

 taking into account both global scores 

and interface scores as described previously
1
 with some modifications. More specifically, we 

used an improved version of VoroMQA (VoroMQA-dark) for global structure evaluation and 

an improved tournament-based ranking algorithm. Standard automated procedure was used to 

select the best template-based models and 10 best models in the CAPRI scoring challenge. In 

the case of free docking the top 100-500 selected models were subsequently relaxed by a very 

short molecular dynamics simulation using OpenMM
11 and then re-ranked. Constraints 

obtained from literature searches or CASP contact prediction servers, if available, were also 

used in selection of free-docking models. All models, resulting from both template-based 

modeling and free docking, were visually inspected before submission and, if necessary, their 

ranking was adjusted manually.  
 

Results 
Our CAPRI results are summarized in Table 1 and two highlight cases are provided in Figure 

1. We used template-based modeling for five, free docking for one and a hybrid approach for 

six targets. Template-based modeling usually resulted in models of acceptable or higher 

quality according to the CAPRI criteria
12

 except for two cases. Of these two, the first one 

featured large insertions in the sequence-structure alignment corresponding to the interface 

region (interface No. 1 in T180, CASP T1099v1). The second case represents the failure to 
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identify the correct epitope in the antibody-antigen interaction (T165, CASP H1036v0). The 

success of free docking was mixed: sometimes models were completely incorrect (T169, 

CASP T1054), whereas sometimes docking outperformed the template-based approach (T178, 

CASP T1083; see Fig. 1). In the case of a large target (T170, CASP H1060), higher quality 

models were obtained for the interfaces that could be modeled using structural templates. 

 

Table 1. Summary of the results obtained by the “Venclovas” group in modeling CAPRI 

targets 
 

CASP 

Target 

CAPRI 

Target 

Template 

search 

methods 

Notes CAPRI 

evaluation of 

our best model 

Maximum 

fnat 

Template-based modeling: 

T1032 T164 PPI3D, 

HHpred 

 acceptable 0.45 

H1036v0 T165 PPI3D, 

HHpred 

Antibody-antigen interface which is not 

conserved 

incorrect 0 

H1045 T166 HHpred  high 0.81 

T1052 T168 PPI3D  medium 0.75 

T1099 T180 PPI3D Interface 1 had large insertions incorrect/ 

medium 

0.01-0.51 

Hybrid modeling: 
H1060 T170 DALI  incorrect/ 

acceptable/ 

medium 

0-0.61 

T1070 T174 HHpred, 

PPI3D 

Low resolution template and low quality 

alignment, reliable templates only for 

domains 

incorrect 0.11 

T1078 T176 DALI A mixture of template-based and free docking 

models, the best model from docking 

incorrect 0.36 

H1081 T177 PPI3D Free docking of two template-based 10mer 

models 

medium/ 

high 

0.50-0.84 

T1083 T178 DALI A mixture of template-based and free docking 

models, the best model from docking 

medium 0.68 

T1084 T179 DALI A mixture of template-based and free docking 

models 

acceptable 0.51 

Free docking: 

T1054 T169   incorrect 0.02 
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Figure 1. Top CAPRI results obtained by the “Venclovas” group: a template-based high quality 

model for T166 (CASP H1045) and the best models for T178 (CASP T1083). Model chains are 
colored green and red, and the experimental target structure is shown in grey. 

 

Funding: Research Council of Lithuania (grant S-MIP-17-60). 
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We participated in the joint CASP14-CAPRI experiment as both predictor and scorer in all 

the announced targets. Different from our approaches used in the previous CASP13-CAPRI 

experiment
1
, in-house developed GPU version of MDockPP server

2,3
 and deep-learning-

based DLScorePP scoring function were applied to the prediction of the binding modes in the 

current competition. In addition, a novel version of the MULTICOM-CLUSTER server
4
 was 

used to generate monomeric structures.  
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In the prediction challenge, templated-based and/or docking-based methods were applied 

depending on the features of the targets. Specifically, for a given target, the BLAST program
5
 

was utilized to search for appropriate templates in the Protein Data Bank. If all the chains 

were found in a single PDB entry, the Modeller program
6
 was applied to build the structure 

of the target using the complex structure in this PDB entry as a template. On the other hand, 

if templates for different chains of a target were found in different PDB entries, the Modeller 

program was utilized to construct the monomeric structure of each chain. If no template was 

found, the structures of the monomers were generated using the CASP14 MULTICOM-

CLUSTER server. Moreover, the 150 best monomeric structures for each target provided by 

CASP groups were also evaluated using both ITScorePro
7
 and DeepRank

8–10
. About 10 

monomeric structures were selected using the consensus of these two scoring functions and 

biological information, which were then used as the input for docking with our MDockPP 

server. 

Our in-house developed GPU version of the MDockPP
 
server uses a fast Fourier transform 

(FFT)-based rigid docking algorithm
11

 to generate putative binding modes. The biological 

information searched by an in-house Rebipp server
3
 were also used as an input for the 

MDockPP server. The generated binding poses were optimized and ranked with our 

ITScorePP scoring function
12

, which is an atomic-level, statistical potential-based scoring 

function for protein-protein interactions. If a target is dimeric, the top ranked binding modes 

by ITScorePP were further ranked with our recently developed deep learning model called 

DLScorePP. Next, the ranked binding modes were clustered according to their RMSDs. The 

best model from each of the top 10-ranked clusters were selected and submitted to CAPRI as 

the MDOCKPP server prediction. For human prediction, up to 100 binding modes were 

manually inspected, and ten models were selected for CAPRI submission. 

In the scoring experiment, the same protocol was used for both the server and human scoring 

challenge, except that now the putative binding modes were collected from the groups 

participating in the docking experiment and redistributed by CAPRI.  

In CASP14-CAPRI, our human prediction ranked at the #4 position in the prediction 

category and MDockPP ranked at the #1 position in the server prediction category, according 

to the preliminary assessment released by CAPRI in December 2020. Specifically, our human 

group (server) produced models of at least acceptable quality for 8 (7) out of 14 

targets/interfaces whose structures are solved. Our server achieved high-accuracy prediction 

for T177. The performance of the MDockPP server is approaching to the performance of our 

human prediction. In the scoring category, our human and server (MDOCKPP) scoring 

prediction both ranked at the first positions when the Top-5 models are considered; our 

human (server) groups produced models of at least acceptable quality for 10 (9) out of 14 

targets/interfaces with solved structures (including the three sub-targets of T170). The 

performance of our group for each target is summarized in Table 1. Similar with the previous 

CASP13-CAPRI experiment, the major difficulties are 1) how to further improve the 

acceptable accuracy models to medium or high accuracy models, and 2) how to make the 

rigid docking algorithm less sensitive to the conformations of monomeric structures. 

 

Funding information: Xiaoqin Zou is supported by NIH grants R01GM109980 (PI: Xiaoqin 
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Table 1. List of templates and target performance of our group. 

Target 
Possible 

templates* 
Stoichiometry 

Best prediction of our Top-5 models 

Prediction Scoring 

Server Human Server Human 

T164 1gxl A2 Medium Acceptable Medium Acceptable 

T165 5ys6, 5avg A:HL Incorrect Incorrect Incorrect Incorrect 

T166 2oxq AB Acceptable Medium Medium Medium 

T167 - Cancelled - - - - 

T168 6f7k A3 Medium Medium Medium Medium 

T169 1fg9 A2 Incorrect Incorrect Incorrect Incorrect 

T170.1 
 

A6B12C3D6 Medium Medium Acceptable Medium 

T170.2   Incorrect Incorrect Incorrect Incorrect 

T170.3   Acceptable Acceptable Acceptable Acceptable 

T170.4   Incorrect Incorrect Incorrect Acceptable 

T170.5   Incorrect Incorrect Medium Medium 

T170.6   Incorrect Incorrect Incorrect Incorrect 

T170.7   Incorrect Incorrect Incorrect Incorrect 

T170.8   Incorrect Incorrect Acceptable Acceptable 

T170.9   Incorrect Incorrect Acceptable Acceptable 

T171 - No structure - - - - 

T172 - No structure - - - - 

T173 - No structure - - - - 

T174 
 

A3 Incorrect Incorrect Incorrect Incorrect 

T175 - Cancelled - - - - 

T176 
 

A2 Acceptable Acceptable Acceptable Acceptable 

T177.1 
 

A10:A10 High High High High 

T177.2   High High High High 

T177.3   High Medium Medium Medium 

T178 
 

A2 Acceptable Acceptable Acceptable Acceptable 

T179 
 

A2 Acceptable Acceptable Acceptable Acceptable 

T180.1 
 

A2:A2 Incorrect Incorrect Incorrect Incorrect 

T180.2   Acceptable Medium Medium Medium 

T181 3czy, 1ni6 No structure - - - - 

 

*Only the templates used for homology modeling with the Modeller program are listed. 
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