Supplementary Information (SI)

2

6

³ Photoluminescence Mechanism of Carbon Dots: Triggering ⁴ High-colour-purity Red Fluorescence Emission through edge ⁵ amino protonation

Qing Zhang ^{1,2} *, Ruoyu Wang ¹ , Bowen Feng ¹ , Xiaoxia Zhong ¹ *, Kostya (Ken) Ostrikov ³
¹ State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy Shanghai Jiao Tong University, Shanghai 200240, China.
² Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
³ School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane QLD 4000, Australia.
E-mail: qingzhang@sjtu.edu.cn; xxzhong@sjtu.edu.cn.

- 39 **Table Caption:**
- 40 Supplementary Table 1. Comparison of photoluminescence red-shift mechanism of multi-color CDs
- 41 between previous research and our work.
- 42 **Supplementary Table 2**. FL QYs of CDs, and 2,3-DAPN molecular.
- 43
- 44 Figure Caption:
- 45 **Supplementary Fig. 1** | Raman spectra of CDs
- 46 **Supplementary Fig. 2** | Zoomed ¹³C-NMR spectra of the CDs.
- 47 **Supplementary Fig. 3** | Zoomed ¹H-NMR spectra of the CDs.
- 48 Supplementary Fig. 4 | ¹³C-NMR spectra of 2,3-diaminophenazine (2,3-DAPN), Modified from
- 49 "2,3-diaminophenazine is the product from the horseradish peroxidase-catalyzed oxidation of 50 o-phenylenediamine" with permission from Elsevier.¹⁷
- 51 Fig. 5 | ¹H-NMR spectra of 2,3-DAPN, Modified from "2,3-diaminophenazine is the product from the
- 52 horseradish peroxidase-catalyzed oxidation of o-phenylenediamine" with permission from Elsevier.¹⁷
- 53 Supplementary Fig. 6 | (a)-(b) UV-vis absorption of OPD, 2,3-DAPN and CDs with or without
- 54 protonation treatment.
- 55 Supplementary Fig. 7 |(a), (b) FL spectra of protonated OPD kept at deionized water for 6 hours
- 56 excited by 480 nm and 808 nm femtosecond laser. (c), (d) ¹H-NMR and zoomed ¹H-NMR spectra of
- 57 OPD molecular kept at deionized water for 6 hours. Due to the oxidation reaction, part of OPD
- 58 molecular has converted into 2,3-DAPN analogues.
- 59 Supplementary Fig. 8 | (a), (b) UV-vis absorption of OPD with or without protonation treatment; (c),
- 60 (d) FL emission of CDs, OPD and 2,3-DAPN samples with or without protonation treatment the
- 61 identical excitation conditions.
- Supplementary Fig. 9 | (a), (c) Up-conversion FL spectra of 2,3-DAPN at pH7 and pH 1 under 808 nm femtosecond laser excitation. (b), (d) Relationship of FL intensity and femtosecond (fs) laser power at pH 7 and pH 1.
- Supplementary Fig. 10 | (a), (c) Up-conversion FL spectra of OPD at pH7 and pH 1 under 808 nm femtosecond (fs) laser excitation. (b), (d) Relationship of FL intensity and fs laser power at pH 7 and pH 1.
- **Supplementary Fig. 11** | (a), (b), and (c) Transmission electron microscopy imaging (TEM), high resolution image and Size distribution of CDs; (d), (g) UV-vis absorption spectra of CDs with or without protonation; (e), (h) FL spectra of CDs dissolved without protonation (excited at 400 nm) and with protonation (excited at 560 nm); (f), (i) FL excitation spectra of CDs with or without protonation.
- Supplementary Fig. 12 | (a)-(d) Raman spectra of CDs prepared at 60,120,180 and 220° C. (e) and (f)
- 73 FL emission of CDs synthesized with or without protonation.
- Supplementary Fig. 13 | (a) and (b) FL emission of the protonated CDs excited under 600 and 800 nm continuum light source; (c) and (d) NIR-II in vivo images of mice before and after vein injection.
- 76 Supplementary Fig. 14 | (a) Photograph of LED device fabricated using CDs; (b) FL emission
- 77 spectrum of the LED device excited by UV light-emitting chips; (c) Color coordinates picture of the
- 78 LED device (0.26, 0.59).
- 79

80 Section 1: Supplementary Information of Tables.

Supplementary Table 1. Comparison of photoluminescence red-shift mechanism of multi-color CDs
 between previous research and our work.

Reference	Journal	Mechanism of PL red-shift
11	Carbon 2014, 70, 279.	Increasing degree of COO ⁻
2 ²	Advanced Materials 2015, 27, 1663	Increasing degree of oxidation
33	Angew. Chem Int. Ed. 2015, 54, 2970	Increasing degree C-O-C & C-O
4 ⁴	Acs Nano 2016, 10, 484	Increasing degree of COO-
5 ⁵	Nanoscale 2016, 8, 729	Increasing degree of N content
66	ACS Nano 2017, 11, 12402.	Increasing degree of graphitic-N
7 ⁷	Green Chem. 2017, 19, 3611.	Increasing degree of oxidation
88	Advanced Materials, 2018, 30.	Increasing degree of graphitization and surface modification of -COOH
Our work		Protonation of 2,3-Diaminophenazine

86 Supplementary Table 2. FL QYs of CDs, and 2,3-DAPN molecular.

QYs	CDs	2,3-DAPN
Without protonation	14%	24%
With protonation	1.9%	0.2%

90 Supplementary Table 3. FL QYs of CDs, and 2,3-DAPN molecular.

-

Reference	NIR Organic dye	QYs (%)
1	IR-1061 (Commercial dye)	1.7% ⁹
2	LZ1105	1.6% ¹⁰
2	IR-E1	0.7% ¹¹
3	IR-FTP	0.02% ¹²
4	IR-FTTP	0.1% ¹³
5	CH1055-PEG	0.3% ¹⁴
6	CH-4T	1.1% ¹⁵
7	SCH1100	0.2% ¹⁶

146	
147	

Supplementary Fig. 4 | ¹³C-NMR spectra of 2,3-diaminophenazine (2,3-DAPN), Modified from "2,3-diaminophenazine is the product from the horseradish peroxidase-catalyzed oxidation of o-phenylenediamine" with permission from Elsevier¹⁷.

- Supplementary Fig. 5 | ¹H-NMR spectra of 2,3-DAPN, Modified from "2,3-diaminophenazine is the
 product from the horseradish peroxidase-catalyzed oxidation of o-phenylenediamine" with permission
 from Elsevier¹⁷.

Supplementary Fig. 6 | (a)-(b) UV-vis absorption of OPD, 2,3-DA PN and CDs with or without protonation treatment.

Supplementary Fig. 7 | (a), (b) FL spectra of the protonated OPD kept in deionized water for 6 hours excited by 480 nm and 808 nm femtosecond laser. (c), (d) ¹H-NMR and magnified ¹H-NMR spectra of the OPD molecular kept in deionized water for 6 hours. Due to the oxidation reaction, a part of the OPD molecular has converted into 2,3-DAPN analogues.

279

Supplementary Fig. 8 | (a), (b) UV-vis absorption of OPD with or without protonation treatment; (c),
(d) FL emission of CDs, OPD and 2,3-DAPN samples with or without protonation treatment the
identical excitation conditions.

Supplementary Fig. 9 | (a), (c) Up-conversion FL spectra of 2,3-DAPN at pH7 and pH 1 under 808
nm femtosecond laser excitation. (b), (d) Relationship of FL intensity and femtosecond (fs) laser
power at pH 7 and pH 1.

Supplementary Fig. 10 | (a), (c) Up-conversion FL spectra of OPD at pH7 and pH 1 under 808 nm femtosecond (fs) laser excitation. (b), (d) Relationship of FL intensity and fs laser power at pH 7 and pH 1.

345

346

Supplementary Fig. 11 | (a), (b), and (c) Transmission electron microscopy imaging (TEM), high resolution image and size distribution of CDs; (d), (g) UV-vis absorption spectra of CDs with or without the protonation; (e), (h) FL spectra of CDs dissolved without the protonation (excited at 400 nm) and with the protonation (excited at 560 nm); (f), (i) FL excitation spectra of CDs with or without the protonation.

352

Supplementary Fig. 12 | (a)-(d) Raman spectra of CDs prepared at 60,120, 180 and 220°C. (e) and (f)
 FL emission of CDs synthesized with or without protonation.

- . . .

Supplementary Fig. 13 | In vivo fluorescence images of nude mice injected with different
 subcutaneous location.

378	Supplementary Fig. 14 (a) and (b) FL emission of the protonated CDs excited under 600 and 800 nm
379	continuum light source; (c) and (d) NIR-II in vivo images of mice before and after vein injection.
380	
381	
292	
382	
383	
384	
385	
386	
387	
388	
389	
390	
391	
	17

392 **Reference**

- Hola K, *et al.* Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO induced red-shift emission. *Carbon* **70**, 279-286 (2014).
- Bao L, Liu C, Zhang ZL, Pang DW. Photoluminescence-Tunable Carbon Nanodots: Surface-State Energy-Gap Tuning.
 Adv Mater 27, 1663-+ (2015).
- Hu SL, Trinchi A, Atkin P, Cole I. Tunable Photoluminescence Across the Entire Visible Spectrum from Carbon Dots
 Excited by White Light. *Angew Chem-Int Edit* 54, 2970-2974 (2015).
- 399 4. Ding H, Yu S-B, Wei J-S, Xiong H-M. Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled
 400 Luminescence Mechanism. *Acs Nano* 10, 484-491 (2016).
- 401 5. Guo L, *et al.* Tunable Multicolor Carbon Dots Prepared from Well-defined Polythiophene Derivatives and their
 402 Emission Mechanism. 8, 729 (2015).
- 403 6. Hola K, et al. Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots. 11, 12402-12410 (2017).
- Liu ML, Yang L, Li R, Chen BB, Liu H, Huang CZ. Large-scale simultaneous synthesis of highly photoluminescent
 green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. 19,
 10.1039.C1037GC01236E (2017).
- 407 8. Miao X, *et al.* Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface
 408 Functionalization. *Adv Mater* **30**, (2018).
- 409 9. Tao Z, *et al.* Biological Imaging Using Nanoparticles of Small Organic Molecules with Fluorescence Emission at
 410 Wavelengths Longer than 1000 nm. *Angew Chem*, e201307346 (2013).
- 411 10. Li BH, *et al.* Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. *Nat Commun* 11,
 412 (2020).
- 413 11. Zhang XD, *et al.* Traumatic Brain Injury Imaging in the Second Near-Infrared Window with a Molecular Fluorophore.
 414 *Adv Mater*, 6872-6879 (2016).
- 415 12. Yang, *et al.* Rational Design of Molecular Fluorophores for Biological Imaging in the NIR-II Window. *Adv Mater*,
 416 e1605497.
- 417 13. Yang Q, Hu Z, Zhu S, Rui M, Dai H. Donor Engineering for NIR-II Molecular Fluorophores with Enhanced
 418 Fluorescent Performance. *J Am Chem Soc* 140, 1715-1724 (2018).
- 419 14. Antaris AL, et al. A small-molecule dye for NIR-II imaging. Nat Mater, 235-242 (2016).
- 420 15. Antaris AL, *et al.* A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. *Nat* 421 *Commun* 8, 15269 (2017).
- 422 16. Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem Sci, 6203-6207 (2016).
- Tarcha PJ, Chu VP, Whittern D. 2,3-diaminophenazine is the product from the horseradish peroxidase-catalyzed
 oxidation of o-phenylenediamine. *Anal Biochem* 165, 230-233.
- 425
- 426