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Supplementary Figure 1

Short telomeres induce megakaryocyte/myeloid lineage reprogramming of the HSC compartment.
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Supplementary Figure 1. Short telomeres induce megakaryocyte/myeloid lineage
reprogramming of the HSC compartment.

a, Relative telomere length (RTL) in primary BM cells from GO (n = 10) and G5/G6 (n = 9) mice
as determined by combined flow cytometry and fluorescence in situ hybridization analysis. Data
are expressed as percentages of the GO control. Bars represent the means = S.E.M. Statistically
significant differences were detected using a two-tailed Student’s #-test. ****P < (0.0001.

b, Blood cell counts of 2-month-old GO (n = 22) and G5/G6 (n = 29) mice. Bars represent the
means + S.E.M. RBC, red blood cells. Statistically significant differences were detected using a
two-tailed Student’s #-test. **P < 0.01, ****P < (0.0001; Monocytes: P = 0.16; Platelets: P =
0.64.

¢, Representative hematoxylin and eosin—stained sections of BM biopsies from one GO and one
G6 mouse. Scale bars represent 100 um.

Source data are provided as a Source Data file.



Supplementary Figure 2

Short telomeres induce megakaryocyte/myeloid lineage reprogramming of the HSC compartment.

Kit

-5

-5

~ 20 ~
% o] ; o e
s 3 19 s
S 05 S
0.0

=5

-5 0 5
UMAP_1

I 0(24.61%)
W 1(27.87%)
M 2(10.23%)
M 3(17.84%)
I 4(19.45%)

Cc

Ly6a

-
canwan

-5

10
125
1.00
0.75
0.50
0.25
0.00

10

W 0 (17.75%)
I 1(16.25%)
M 2 (25.73%)
M 3(20.51%)
1 4(19.76%)

Ghost 710

Comp-Alexa Fluor 700-A::

 Ghost 710

Comp-Alexa Fluor 700-A::

Single Cells.
9

Comp-APC-Cy7-A: Lin
Comp-PerCP-A:: Sca-1

Comp-PE-Cy7-A:: cKit Comp-PE-Cy7-A:: cKit

s JHsc

180 |

UMAP_2
o

-5

-5

-5

Dntt

Fit3

5
3 N 2
Iz ) I
= 1
1 =1
0 0
-5
-5 0 5 10 -5 10
UMAP_1
Itga2b
5
| HN I
N, % 0 4
1 5 2
0 N 0
s 4
-5 0 5 10 -5 0 5 10
UMAP_1 UMAP_1
Cebpa Prss34
5
20
N
l 15 o . l :
S0 g . 2>
05 = 1
00 0
-5
10 10
5
o~ 4
2 n.i 3
<0 >
1 =
=1 1
0 0
-5
-5 0 5 10 -5 0 5 10
UMAP_1 UMAP_1
GO S ® HsC
EHAY ® MPP2
® MPP3
® MPP4
Uncertain

Comp-PE-CF594-A:
CD150 P-dazz
°
Comp-PE-CF594-A
CD150 P-dazz
Comp-PE-CF594-A::
CD150 P-dazz




Supplementary Figure 2. Short telomeres induce megakaryocyte/myeloid lineage
reprogramming of the HSC compartment.

a, UMAP of scRNA-seq data displaying single-cell expression levels of the lineage markers used
to define the LK cell clusters in Fig. 1a. Normalized gene expression is indicated by red shading.
b, Distribution of GO and G5/G6 LSK cells among the five scRNA-seq clusters shown in Fig. 1c
and Fig. 1d, respectively. Data are shown as the percentages of cells belonging to each cluster.

¢, Representative gating strategy used to analyze the mouse HSPC populations.

d, UMAP of scRNA-seq data displaying the GO (top) and G5/G6 (bottom) LSK cells shown in

Fig. Ic and Fig. 1d, respectively, color-coded by the identified HSPC populations.



Supplementary

Figure 3

Short telomeres induce megakaryocyte/myeloid lineage reprogramming of the HSC compartment.
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Supplementary Figure 3. Short telomeres induce megakaryocyte/myeloid lineage
reprogramming of the HSC compartment.

a, Frequencies of HSPC populations in the LSK compartment of the GO (n = 22) and G5/G6 (n =
29) mice whose blood cell counts are shown in Supplementary Fig. 1b. Data are expressed as
percentages of the GO control. Bars represent the means + S.D. Statistically significant
differences were detected using a two-tailed Student’s #-test. *P < 0.05, ****P < (.0001.

b, Numbers of HSCs and MPPs in the BM of the GO (n = 22) and G5/G6 (n = 29) mice whose
blood cell counts are shown in Supplementary Fig. 1b. Data are expressed as percentages of the
GO control. Bars represent means + S.D. Statistically significant differences were detected using
a two-tailed Student’s ¢-test. ***P < (.001, ****P < (0.0001; MPP3: P = 0.11.

¢, Frequencies of HSPC populations in the LSK compartment of GO (n = 10) and G5/G6 (n=7)
mice before transplantation and in the CD45.2" LSK compartment of recipients transplanted with
equal numbers of HSCs (n = 200) from the same G0 and G5/G6 mice. Data are expressed as
percentages of the GO control. Data from two independent transplantation experiments are
shown. Bars represent the means + S.D. Statistically significant differences were detected using
one-way ANOVA. *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001; HSC, ANOVA: P=
0.15.

d, Left, methylcellulose clonogenic assays of single MPP3 cells isolated from GO (n = 3) and
G5/G6 (n =3) mice (mean of two replicates per mouse). Equal numbers of cells (n = 300) were
seeded to quantify the type of colony-forming unit (CFU). Bars represent the means + S.D.
Statistically significant differences between the groups were detected using two-way ANOVA.
*P <0.05, ***P <0.001. GMMegE, granulocyte/macrophage/megakaryocyte/erythroid; G,
granulocyte; M, macrophage; GM, granulocyte/macrophage. Right, clonogenic B-cell

differentiation potential of MPP3 cells on OP9/IL-7 stromal cells. Equal numbers of single



MPP3 cells (n =1,000) from GO (n =6) and G5/G6 (N = 4) mice were grown for 14 days and
analyzed by flow cytometry for the production of CD19" B cells or Gr1*/CD11b* myeloid cells.
Bars represent the means + S.D. Statistically significant differences between the groups were
detected using two-way ANOVA. **P <0.01. B cells: P = 0.72, other cells: P = 0.06.

e, MegaCult collagen-based assays of single MPP2 cells isolated from GO (n = 7) and 6 G5/G6
(n = 6) mice. Equal numbers of MPP2 cells (n =500) were seeded to quantify megakaryocyte
CFUs (CFU-Meg). Bars represent the means + S.D. Statistically significant differences were
detected using a two-tailed Student’s #-test. ****P < (0.0001.

f, Clonogenic B-cell differentiation potential of MPP4 cells on OP9/IL-7 stromal cells. Equal
numbers of single MPP4 cells (n =1,000) from GO (n = 19) and G5/G6 (n = 12) mice were grown
for 14 days and analyzed by flow cytometry for the production of CD19" B cells or
Gr1*/CD11b" myeloid cells. Bars represent the means + S.D. Statistically significant differences
in the production of B and myeloid cells between the groups were detected using two-way
ANOVA. ***P < (.001; other cells: P = 0.99.

Source data are provided as a Source Data file.



Supplementary Figure 4

HSCs with short telomeres are persistently activated, overexpress genes involved in
IFN signaling, and are poised towards megakaryocytic differentiation.
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Supplementary Figure 4. HSCs with short telomeres are persistently activated, overexpress
genes involved in IFN signaling, and are poised towards megakaryocytic differentiation.

a, Single-cell trajectory maps of the clusters shown in Fig. 2a. Each dot represents one cell.
Different colors represent different gene expression clusters.

b, Violin plots showing the distribution of the expression values of Meg3, Mlit3, and Cdknlc
across the HSC clusters shown in Fig. 2a.

¢, Pathway enrichment analysis of genes whose expression was significantly decreased in cluster
0 shown in Fig. 2a and Supplementary Dataset 3 as compared with the other clusters (adjusted P
<0.05). The top 10 Reactome gene sets are shown.

d, UMAP of the scRNA-seq data from Fig. 2a displaying the normalized average expression of
cell cycle phase gene signatures.

e, Frequencies of GO (n = 20) and G5/G6 (n = 18) HSCs in the Go (Ki67' DAPI"), G;
(Ki67"DAPI), and Gom (Ki67 ' DAPI") phases of the cell cycle. Data are expressed as percentages
of the GO control. Bars represent means + S.D. Statistically significant differences were detected
using two-way ANOVA. ****P <(.0001; Gom: P = 0.55.

f, UMAP of scRNA-seq data displaying 580 and 532 pooled single CD45.2* HSCs isolated from
recipient mice competitively transplanted with equal numbers of GO or G5/G6 HSCs,
respectively (n > 2 mice per group). Each dot represents one cell. Different colors represent
sample (left) and cluster (right) identities.

g, Pathway enrichment analysis of significantly upregulated genes in G5/G6 CD45.2* HSCs
from clusters 0 and 1 shown in Supplementary Fig. 4f as compared to those of GO HSCs (P <

0.001). Reactome gene sets are shown.



h, Pathway enrichment analysis of genes whose distal elements were enriched in accessible Irf2
binding sites in G5/G6 HSCs from cluster 0 shown in Fig. 2¢ and Supplementary Dataset 4 (P <
0.0001). The top 10 Reactome gene sets are shown.

Source data are provided as a Source Data file.



Supplementary Figure 5
HSCs with short telomeres do not undergo apoptosis, autophagy, or senescence upon IFN signaling activation.
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Supplementary Figure 5. HSCs with short telomeres do not undergo apoptosis, autophagy,
or senescence upon IFN signaling activation.

a, Median fluorescence intensities (MFIs) of the apoptotic marker annexin V (left), autophagic
marker Cyto-ID (middle), and senescence reporter LacZ (right) in HSCs from GO (n = 18, 4, and
12, respectively) and G5/G6 (n =11, 4, and 10, respectively) mice. Bars represent the means +
S.E.M. No statistically significant differences were detected using a two-tailed Student’s #-test: P
=0.53, 0.36 and 0.08, respectively).

b, Numbers of cells derived from pools of sorted GO (n = 3 pools) and G5/G6 (n = 2 pools)
HSCs induced to differentiate in vitro. Data are expressed as percentages of GO or G5/G6 cells
after 12 hours of culture.

¢, Joint pathway enrichment analyses of genes that were significantly upregulated in GO and
G5/G6 HSCs at each time point (8, 24, and 48 hours and 1 week) following pl:pC injection as
compared to those of HSCs isolated from mice treated with vehicle (adjusted P < 0.05).
Reactome gene sets are shown.

d, Dot plot of genes belonging to the IFN signaling pathway that were significantly upregulated
in GO or G5/G6 HSCs 8 hours after pl:pC injection. G5 indicates G5/G6.

Source data are provided as a Source Data file.



HSCs with short telomeres do not undergo apoptosis, autophagy, or senescence upon IFN signaling activation.
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Supplementary Figure 6. HSCs with short telomeres do not undergo apoptosis, autophagy,
or senescence upon IFN signaling activation.
Dot plot of genes belonging to the cell cycle pathway that were significantly upregulated in GO

or G5/G6 HSCs 8 hours after pl:pC injection. G5 indicates G5/G6.



Supplementary Figure 7

HSCs with short telomeres do not undergo apoptosis, autophagy, or senescence upon IFN signaling activation.
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Supplementary Figure 7. HSCs with short telomeres do not undergo apoptosis, autophagy,
or senescence upon IFN signaling activation.

a, Dot plot of genes belonging to the hemostasis pathway that were significantly upregulated in
GO or G5/G6 HSCs 8 hours after pl:pC injection. G5 indicates G5/G6.

b, Frequencies of GO and G5/G6 HSCs that expressed Ki67 at each time point following pl:pC
injection (n =25 GO Veh, 11 GO 8 h, 9 GO 24 h, 6 GO 48 h, 5 GO 1 wk, 20 G5/G6 Veh, 9 G5/G6
8 h, 8 G5/G6 24 h, 7 G5/G6 48 h, and 5 G5/G6 1 wk). Bars represent the means + S.E.M.
Statistically significant differences were detected using two-way ANOVA. *P < 0.05, **P <
0.01, ¥***P < (0.001, ****P <(0.0001. Veh, vehicle.

¢, BM frequencies of GO and G5/G6 CD41" HSCs at each time point following pIl:pC injection
(n=25 GO Veh, 10 GO 8 h, 9 GO 24 h, 6 GO 48 h, 10 GO 1 wk, 20 G5/G6 Veh, 10 G5/G6 8 h, 8
G5/G6 24 h, 7 G5/G6 48 h, and 9 G5/G6 1 wk). Bars represent the means + S.E.M. Statistically
significant differences were detected using two-way ANOVA. *P <0.05, **P < (.01, ***P <
0.001, ****P < (0.0001. Veh, vehicle.

d, BM frequencies of GO and G5/G6 MPP2 cells at each time point following pl:pC injection (n
=25 G0 Veh, 10 GO 8 h, 9 G0 24 h, 6 GO 48 h, 10 GO 1 wk, 20 G5/G6 Veh, 10 G5/G6 8 h, 8
G5/G6 24 h, 7 G5/G6 48 h, and 9 G5/G6 1 wk). Bars represent the means + S.E.M. Statistically
significant differences were detected using two-way ANOVA. *P <0.05, **P < (.01, ***P <
0.001, ****P < (0.0001. Veh, vehicle.

Source data are provided as a Source Data file.



Supplementary Figure 8

IFN signaling activation and HSC decline are the results of telomere damage and not responses

to viral infection.
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Supplementary Figure 8. IFN signaling activation and HSC decline are the results of
telomere damage and not responses to viral infection.

a, Blood cell count evaluation of 2-month-old GO (n = 12) and G5/G6 (n = 17) R26-LSL mice.
Bars represent the means + S.E.M. Statistically significant differences were detected using a two-
tailed Student’s #-test. *P < 0.05, ***P < 0.001, ****P <(0.0001; Monocytes: P = 0.11;
Platelets: P = 0.68. RBC, red blood cells.

b, Numbers of HSCs and MPPs in the BM of GO (n = 18) and G5/G6 (n = 13) R26-LSL mice.
Data are expressed as percentages of the GO control. Bars represent means + S.D. Statistically
significant differences were detected using a two-tailed Student’s #-test. *P < 0.05, ***P <
0.001; MPP3: P = 0.94.

¢, UMAP of scRNA-seq data displaying 800 and 820 pooled single HSCs isolated from GO or
G5/G6 R26-LSL mice, respectively (n > 5 mice per group). Each dot represents one cell.
Different colors represent sample (left) and cluster (middle) identities. Right, distributions of
HSCs from GO and G5/G6 R26-LSL mice among the five sScCRNA-seq clusters, represented as the
percentages of cells belonging to each cluster.

d, Pathway enrichment analysis of the marker genes of cluster 0 shown in Supplemental Fig. 8c
and Supplementary Dataset 8 (adjusted P < 0.05).

Source data are provided as a Source Data file.



Supplementary Figure 9
IFN signaling activation and HSC decline are the results of telomere damage and not responses
to viral infection.
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Supplementary Figure 9. IFN signaling activation and HSC decline are the results of
telomere damage and not responses to viral infection.

a, Pathway enrichment analysis of the marker genes of cluster 2 shown in Supplemental Fig. 8c
and Supplementary Dataset 8 (adjusted P < 0.05).

b, Left, telomerase activity in protein lysates of pooled LSK cells isolated from R26-LSL mice
with the indicated genotypes and treatments. Right, lysates were heat-inactivated. A, telomerase
product; B, internal control; -, lysate from telomerase-negative cells; TSRS, quantification
control template; +, lysate from telomerase-positive cells.

¢, Representative anti-telomere and anti-yH2AX immunofluorescence in HSCs from R26-LSL
mice with the indicated genotypes and treatments. Red indicates telomeres; green, YH2AX;
yellow, colocalization, blue; DAPI. Scale bars represent 10 um.

d, Relative telomere length (RTL) in primary BM cells from R26-LSL mice with the indicated
genotypes and treatments as determined by combined flow cytometry and fluorescence in situ
hybridization analysis. Data are expressed as percentages of the GO control (n =10 GO, 6 G5/G6,
12 GO+OHT, and 9 G5/G6+OHT mice from two independent experiments of telomerase
reactivation). Bars represent the means = S.E.M. Statistically significant differences were
detected using one-way ANOVA. ****P <(0.0001; GO vs GO + OHT: P = 0.15.

e, Pathway enrichment analysis of the marker genes of cluster 2 shown in Fig. 4b and Dataset 9
(adjusted P <0.05).

f, Violin plots showing the distribution of the expression values of Cdk6 across the clusters
shown in Fig. 4b.

g, Violin plots showing the distribution of the expression values of V'wf across the clusters shown
in Fig. 4b.

Source data are provided as a Source Data file.



Supplementary Figure 10
IFN signaling activation and HSC decline are the results of telomere damage and not responses to

viral infection.
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Supplementary Figure 10. IFN signaling activation and HSC decline are the results of
telomere damage and not responses to viral infection.

a, Principal component analysis of the blood cell counts (frequencies of white blood cells,
neutrophils, lymphocytes, platelets, monocytes, and red blood cells) of GO and G5/G6 R26-LSL
mice at the indicated time points after vehicle or OHT treatment.

b, Numbers of MPPs in the BM of vehicle- or OHT-treated GO and G5/G6 R26-LSL mice (n =
15 GO, 14 G5/G6, 18 GO+OHT, and 19 G5/G6+OHT mice from four independent reactivation
experiments). Data are expressed as percentages of the vehicle-treated GO mice. Bars represent
means + S.D. Statistically significant differences were detected using one-way ANOVA. ***P <
0.001, ****P <(.0001; MPP1, ANOVA: P = 0.60.

¢, Frequencies of CD45.2" cells in the PB of CD45.1 recipients that were competitively
transplanted with equal numbers of HSCs (n = 200) isolated from R26-LSL mice with the
indicated genotypes and treatments (n =9 GO, 5 G5/G6, 11 GO+OHT, and 6 G5/G6+OHT from
two independent experiments of telomerase reactivation). Bars represent the means + S.E.M.
Statistically significant differences were detected using one-way ANOVA. ***P <(.001, ****P
<0.0001; GO vs GO + OHT: P = 0.97.

d, Representative anti—-double-stranded DNA (dsDNA) immunofluorescence in GO and G5/G6
HSCs. Bright field microscopy enhances the contrast between the nucleus and cytoplasm. Blue
indicates Hoechst staining (nucleus); red, dSDNA. Scale bars represent 10 pm.

e, Numbers of HSCs and MPPs in the BM of G0 and G5/G6 mice treated with a control
oligodeoxynucleotide (control-ODN) (n = 4 mice per group) or the oligodeoxynucleotide A151
(A151-ODN) (n = 3 and 6 mice, respectively). Data are expressed as percentages of the GO

control. Bars represent means + S.D. Statistically significant differences were detected using



one-way ANOVA. *P <0.05; HSC: G5/G6 vs G5/G6 + A151 = 0.48; MPP1, ANOVA: P =
0.08.

f, Dot plot of genes belonging to the IFN response pathway that were significantly
downregulated in A151-ODN—treated G5/G6 HSCs from cluster 2 shown in Fig. 4e, as
compared to those of control-ODN-treated G5/G6 HSCs.

Source data are provided as a Source Data file.



Supplementary Figure 11
The functional link among telomere shortening, IFN signaling activation, and HSC differentiation
towards the megakaryocyte lineage is conserved in humans.
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Supplementary Figure 11. The functional link among telomere shortening, IFN signaling
activation, and HSC differentiation towards the megakaryocyte lineage is conserved in
humans.

a, UMAP showing the distribution of the expression values of MEG3 and MLLT3 across the
clusters shown in Fig. 5a. Normalized gene expression is indicated by red shading.

b, Dot plot of genes belonging to the hemostasis pathway that were significantly upregulated in
the TERT-mutant (TERT™") cells from cluster 1 shown in Fig. 5a as compared to cells from
healthy donors (HDs).

¢, Dot plot of genes belonging to the IFN response pathway that were significantly upregulated
in TERT™ cells from cluster 1 shown in Fig. 5a as compared to cells from HDs.

d, Violin plots showing the expression of /F/16 in HDs and TERT™" cells from cluster 1 shown
in Fig. Sa.

e, Left, frequency of Lin"CD34" cells that expressed IFI16. Each dot represents one sample. Bars
represent means = S.E.M. (n =4 HD and n = 3 TERT/TERC™" samples). Statistically significant
differences were detected using a two-tailed Student’s #-test. **P < 0.01. Right, representative
anti—F-actin and anti-IF116 immunofluorescence in Lin"CD34" cells from HDs or patients with
telomerase complex mutations (TERT/TERC™"). Red indicates F-actin; green, IF116; blue,
DAPI. Scale bars represent 10 pm.

Source data are provided as a Source Data file.



Supplementary Figure 12
The functional link among telomere shortening, IFN signaling activation, and HSC differentiation
towards the megakaryocyte lineage is conserved in humans.
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Supplementary Figure 12. The functional link among telomere shortening, IFN signaling
activation, and HSC differentiation towards the megakaryocyte lineage is conserved in
humans.

a, Heatmap of the levels of the top TFs whose binding sites were differentially enriched in open
chromatin regions among cells in the five scATAC-seq clusters displayed in Fig. Sc.

b, Pathway enrichment analysis of genes whose distal elements had significantly upregulated
open chromatin peaks in TERT™ cells from cluster 3 shown in Fig. 5S¢ and Supplementary
Dataset 15 as compared to those of HDs (P < 107). The top 10 Reactome gene sets are shown.

¢, Proposed working model of telomere shortening-induced HSC exhaustion. Telomere attrition
maintains HSCs in a state of persistent activation and differentiation towards the megakaryocytic
lineage through the upregulation of the Ifi20x/IFI16-mediated IFN signaling response. Persistent
telomere attrition leads to HSCs’ depletion. Mk, megakaryocytic.

Source data are provided as a Source Data file.



Supplementary Table 1. Patients’ characteristics.

Sample Germline Telomere BM failure Age Sex
mutation length
NIHI TERT c.570- <1% no 58 M
586dup
UPNI16 TERT <1% no 49 F
c.2110C>T
NIHS5 TERT <1% yes 20 M
c.1892G>A
NIH6 TERC minus <1% yes 42 F
58 C>G

Supplementary Table 2. Patients’ peripheral blood counts.

Sample WBC Neutrophils RBC Lymphocytes Platelets
NIH1 5.49 3.54 5.14 1.32 171
UPNI16 11 8.47 4.17 1.6 243
NIHS 3.76 2.13 3.83 1.07 23
NIH6 4.29 2.51 3.19 0.94 54

Supplementary Table 3. Cell surface marker expression panel used for the identification,
quantification and purification of mouse HSPCs by flow cytometry.

Population Gating strategy
Live cells Single cells/Ghost Dye Red 710 negative
Lineage negative Lineage antibody cocktail-negative
LK Live/Lin7/ c-Kit"
LSK Live/Lin’/Sca-1"/c-Kit"
HSCs Live/Lin7/Sca-1"/c-Kit"/CD347/Flt3-/CD150*/CD48"
MPP1 Live/Lin7/Sca-1"/c-Kit"/CD34"/F1t3-/CD150"/CD48
MPP2 Live/Lin7/Sca-1"/c-Kit"/CD34"/F1t3-/CD150"/CD48"
MPP3 Live/Lin7/Sca-1"/c-Kit"/CD34"/F1t3//CD150/CD48*
MPP4 Live/Lin7/Sca-1"/c-Kit"/CD34"/F1t3*
Flow cytometer setting
BD Influx
Laser color Laser, nm Band, nm/range Fluorochrome Marker
Blue-green 488 530/40 BP FITC CD34
710/50 BP PerCP-Cy5.5 Sca-1
Violet 405 460/50 BP BV421 F1t3

520/35 BP BV510 CD41




610/20 BP PE-Dazzle 594 CD150
750 LP PE-Cy7 c-Kit
Red 642 670/30 BP APC CD48
720/40 BP GD Red 710 Viability
750 LP APC-Cy7 Lin
BD LSR Fortessa (apoptosis and senescence or autophagy)
Laser color Laser, nm Band, nm/range Fluorochrome Marker
Violet 405 450/50 BP BV421 CD34
520/50 BP BV510 CD41
Blue-green 488 530/30 BP FITC Ki67
710/50 BP PerCP-Cy5.5 Sca-1
Yellow 561 582/15 BP PE Flt3
610/20 BP PE-Dazzle 594 CD150
780/60 BP PE-Cy7 c-Kit
Red 640 670/14 BP APC CD48
730/45 BP GD Red 710 Viability
780/60 BP APC-Cy7 Lin
Blue-green 488 530/30 BP FITC Annexin V, LacZ
or Cyto-ID
BD LSR Fortessa (cell cycle analysis)
Laser color Laser, nm Band, nm/range Fluorochrome Marker
Ultraviolet 355 450/20 BP DAPI DNA
605/12 BP Super Bright 600 CD48
Blue-green 488 530/30 BP FITC Ki67
710/50 BP PerCP-Cy5.5 Sca-1
Yellow 561 582/15 BP PE Flt3
610/20 BP PE-Dazzle 594 CD150
780/60 BP PE-Cy7 c-Kit
Red 640 670/14 BP eFluor 660 CD34
730/45 BP GD Red 710 Viability
780/60 BP APC-Cy7 Lin
Amnis ImageStreamX Mark II (cytosolic dsDNA)
Laser color Laser, nm Band, nm/range Fluorochrome Marker
Blue-green 488 530/30 BP FITC CD34
710/50 BP PerCP-Cy5.5 Sca-1
Yellow 561 582/15 BP PE Flt3
610/20 BP PE-Dazzle 594 CD150
780/60 BP PE-Cy7 CD48
Violet 405 610/30 BP BV605 c-Kit
470/70 BP Hoechst 33342 nuclear DNA
Red 633 780/60 BP APC-Cy7 Lin
702/86 BP Alexa-647 dsDNA




Supplementary Table 4. Cell surface marker panel used in the analysis of mouse peripheral
blood chimerism.

Population Gating strategy
Live cells Single cells/DAPI negative
Recipient cells Live/CD45.17/CD45.2
Donor cells Live/CD45.1/CD45.2*
T cells Live/CD45.1/CD45.2*/CD3¢"
Myeloid cells Live/CD45.1//CD45.2*/CD11b"/Gr1™*
B cells Live/CD45.1/CD45.2*/B220"
Flow cytometer setting
BD LSR Fortessa
Laser color Laser, nm Band, nm/range Fluorochrome Marker
uv 355 450/20 BP DAPI Viability
Blue-green 488 530/30 BP FITC CD45.1
710/50 BP PerCP-Cy5.5 CD11b/Grl
Yellow 561 582/15 BP PE CD45.2
Red 640 670/14 BP APC CD3¢
780/60 BP APC-Cy7 B220

Supplementary Table 5. Immunophenotypic HSPC definition used in the identification,
quantification and purification of human HSPCs by flow cytometry.

Population Gating strategy

Live cells Single cells/Sytox Green Nucleic Acid Stain negative

Lineage negative cells CD2-, CD3- CD4-, CD7, CD10, CDI11b", CD14", CD19-, CD20r,
(Lin) CD33-, CD567, CD235a

HSPC compartment Live/Lin’/CD34"

Flow cytometer setting

BD Influx
Laser color Laser, nm Band, nm/range Fluorochrome Marker
Blue-green 488 530/40 BP FITC Viability/Lin

Violet 405 460/50 BP BV421 CD34
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