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Supplementary Methods

1. DiffTRe and simulation parameters

First, we summarize DiffTRe parameters relevant to all examples before we list problem-specific parameters below.
We have set N̄eff = 0.9N as the threshold above which re-using a trajectory is allowed. We employ an Adam
optimizer [1] with exponentially decaying learning rate. Adam hyperparameters β1 = 0.1 and β2 = 0.4 are chosen
to account for training with rather large step sizes and only few parameter updates. All examples are initialized
with a global random seed 0, which controls the random initialization of θ and the initial simulation state. We
observed that despite setting random seeds, results are not matched exactly across different re-runs – even when
running JAX on reproducibility configuration. We tackle this issue by reporting results for varying random seeds
that also capture variability from non-deterministic operations. All computations are run on a single Nvidia RTX
3090 GPU with the exception of computations with the cubic spline potential in the double-well toy example. As the
numerically inexpensive spline cannot saturate the GPU, computations were faster on an AMD Ryzen Threadripper
3070X CPU.

1.1. Double-well toy example

Simulations consist of Np = 2000 ideal gas particles of mass m = 1 within a box of size X = 1 and time step
δt = 0.001. The constant temperature of kBT = 1 in the canonical ensemble is enforced by a Nose-Hoover
chain thermostat [2] with 5 chains and time scale τ = 0.02. The initial state Sinit is constructed by randomly
drawing particles uniformly from x ∈ [0, 1]. Sinit for the final production run consists of particles drawn uniformly
from x ∈ [0.5, 0.51] to test convergence to the target density distribution, even from a state far from equilibrium.
Density distributions are computed via the differentiable density function in Supplementary Eq. (4) with bin width
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∆x = 0.01. During optimization, the initial learning rate η = 0.5 of Adam [1] is decayed exponentially by a factor
of 0.01 over 200 update steps. The target and final predicted densities ρ̃(x)/ρ0 and ρ(x)/ρ0 are computed based on
a production run of 100000 states following 10000 skipped states for equilibration.

1.2. Atomistic model of diamond

Simulations are run with a time step size of δt = 0.5 fs. The temperature is controlled by a Langevin thermostat
with friction coefficient γ = 4/ ps, which corresponds to a coupling time scale of 250fs. These values are common
in simulations of diamond in the literature [3]. Carbon atoms have a mass m = 12.011 u. The loss weights
γσ = 5 · 10−8( kJ

mol nm3 )−2 and γC = 10−10( kJ
mol nm3 )−2 balance the impact of both observables, i.e. stress σ and

stiffness values Cij . Optimization starts with an initial Adam learning rate η = 0.002 that is exponentially decayed
by a factor of 0.01 over 500 steps.

In computation of phonon density of states (PDOS), we minimize the potential energy via 500 steps of the
Fast Inertial Relaxation Engine (FIRE) [4]. PDOS is computed afterwards via the finite displacement method as
implemented in Phonopy [5] with displacement length 0.001 nm.

1.3. Coarse-grained water model

Coarse-grained water is simulated with a time step size of δt = 2 fs. Water molecules (and CG water particles
correspondingly) have a mass m = 18.0154 u. A Nose-Hoover chain thermostat [2] with chain length 5 and time
scale τ = 200 fs enforces the target temperature. We approximate radial (RDF) and angular distribution functions
(ADF) with the differentiable versions presented in Supplementary Eq. (5) and (6). The RDF is discretized by 300
bins of width ∆x = 1

300 nm. The ADF is discretized by 200 bins of width ∆α = π
200 rad and triplets are cut off

at rc = 0.318 nm analogous to the experimental evaluation [6]. The loss weight γp = 10−7( kJ
mol nm3 )−2 accounts for

the larger magnitude of pressure versus the RDF and ADF. The initial Adam learning rate η = 0.003 is decayed
exponentially by a factor of 0.01 over 200 steps.

The tetrahedral order parameter q [7] is computed via the triplet angles αijk spanned by neighboring particles
i and k of a central particle j. i and k are indices running over the 4 nearest neighbors of particle i and

q = 1− 3

8

3∑
i=1

4∑
k=i+1

(
cosαijk +

1

3

)2

. (1)

We compute the self-diffusion coefficient D via the Green-Kubo relation from the velocity auto-correlation
function (VACF)

D =
1

3

∫ tcut

0

〈
1

Np

Np∑
i=1

vi(t0) · vi(t0 + τ)

〉
t0

dτ , (2)

where we cut the VACF at tcut = 1 ps to reduce the effect of spurious long-term non-zero correlations. Np is the
number of particles in the box.

2. Speed-up considerations

Assuming a numerically expensive (NN) potential dominating computational effort, sg is determined by the cost of
necessary force evaluations during trajectory generation per retained state energy computation: As forces for NN
potentials are computed by backpropagating potential energy values, they are approximately G times as expen-
sive as energy computations. The provided rule-of-thumb formula in the main text overestimates sg for expensive
observables, but systematically underestimating sg by ignoring the cost of backpropagating through time integra-
tor operations. Recognizing that gradient computation costs with DiffTRe are negligible compared to reference
trajectory generation costs (under the same assumption of numerically cheap observables), s ∼ G + 1 reflects the
cost of trajectory generation plus backward pass versus only the trajectory generation in the case of DiffTRe. We
presumed a value of G ≈ 3 for the given estimates in the toy example, which mirrors that gradient computation in
the adjoint method requires integrating 3 ordinary differential equations backwards in time [8].
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3. Continuously differentiable binning

The (discrete) Dirac function used in binning can be substituted by a Gaussian probability density function (PDF)
centered at position xk of binned entity k. The value of bin bk(x) centered at x can be computed as

bk(x) = ∆x ∗ sk(x) with sk(x) =
1√

2πδ2
e−

(x−xk)2

2δ2 , (3)

where ∆x is the bin width. The implied discrete integral over a PDF guarantees an overall contribution of unity
for each binned entity. We set the Gaussian standard deviation δ = ∆x. For a fine grid δ → 0, the Dirac function
is recovered.

Eq. (3) allows defining a normalized differentiable density function

ρ(x) ' 1

Np

Np∑
k=1

bk(x) , (4)

where xk is the position of each particle in the simulation and Np is the number of particles in the box. Analogously,
we can define

RDF (d) ' Ω

V (d)N2
p

Npair∑
k=1

bk(d) , (5)

where V (d) is the volume of the sphere shell of bk(d) and Ω is the simulation box volume.
The ADF is a probability density function (PDF) over triplet angles αijk for all particle triplets ijk within a

cut-off radius rc of central particle j. We smooth the radial cut-off via a Gaussian cumulative distribution function
(CDF) Φ(r; rc, σ

2) centered at rc with variance σ2.

ADF (α) ' ADF (α)∫ π
0
ADF (α)dα

with ADF (α) =

Ntriplet∑
k=1

(1− Φ(rk,max; rc, σ
2))bk(α) , (6)

where rk,max = max(rij , rkj).

4. Stress-strain relations

Voigt notation provides a convenient way to describe the stress-strain relation by reducing pairs of indices to single
digits: 11 7→ 1, 22 7→ 2, 33 7→ 3, 23 7→ 4, 13 7→ 5, and 12 7→ 6. Generalized Hooke’s law can then be written as

σi = Cijεj with σ =


σ1

σ2

σ3

σ4

σ5

σ6

 =


σ11

σ22

σ33

σ23

σ13

σ12

 ; ε =


ε1
ε2
ε3
ε4
ε5
ε6

 =


ε11

ε22

ε33

2ε23

2ε13

2ε12

 , (7)

assuming σ = 0 for ε = 0. Due to the symmetry in the diamond cubic crystal system, Eq. (7) simplifies to only 3
distinct values in C 

σ1

σ2

σ3

σ4

σ5

σ6

 =


C11 C12 C12 0 0 0

C11 C12 0 0 0
C11 0 0 0

C44 0 0
sym C44 0

C44




ε1
ε2
ε3
ε4
ε5
ε6

 . (8)

The inverse relation is defined by the compliance tensor S = C−1, which is usually given in terms of Young’s
modulus E, shear modulus G and Poisson’s ratio ν

ε1
ε2
ε3
ε4
ε5
ε6

 =



1
E

−ν
E

−ν
E 0 0 0

1
E

−ν
E 0 0 0
1
E 0 0 0

1
G 0 0

sym 1
G 0

1
G




σ1

σ2

σ3

σ4

σ5

σ6

 . (9)
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The stress-strain curves are computed by deforming the box in two separate modes that yield states of pure
normal and shear strain, respectively [9]. In the normal mode, we transform the box according toXY

Z

→
X(1 + ξ)

Y
Z

 , (10)

which yields the non-zero strain ε1 = ε11 = ξ in the strain vector ε = (ε1, 0, 0, 0, 0, 0). A pure shear mode is given
by the transformation XY

Z

→
 X
Y + Zξ
Z

 , (11)

which yields ε4 = 2ε23 = ξ in the strain vector ε = (0, 0, 0, ε4, 0, 0). These elementary deformations [9] allow probing
C such that a single component of C describes the relation between εi and measured σj (Eq. (8))

σ1 = C11ε1 ; σ2 = C12ε1 ; σ4 = C44ε4 . (12)

5. Derivation of the gradient

L(θ) = (〈O(Uθ)〉 − Õ)2 '

(
N∑
i=1

wiO(Si, Uθ)− Õ

)2

= L̄(θ) (13)

∂L̄

∂θ
= 2

( N∑
i=1

wiO(Si, Uθ)︸ ︷︷ ︸
'〈O(Uθ)〉

−Õ
)
∂

∂θ

N∑
i=1

wiO(Si, Uθ) (14)

N∑
i=1

∂

∂θ
(wiO(Si, Uθ)) =

N∑
i=1

∂wi
∂θ

O(Si, Uθ) +

N∑
i=1

wi
∂O(Si, Uθ)

∂θ︸ ︷︷ ︸
'〈 ∂O(Uθ)

∂θ 〉

(15)

∂wi
∂θ

=
∂

∂θ

(
e−β(Uθ(Si)−Uθ̂(Si))∑N
j=1 e

−β(Uθ(Sj)−Uθ̂(Sj))

)

=
e−β(Uθ(Si)−Uθ̂(Si))∑N
j=1 e

−β(Uθ(Sj)−Uθ̂(Sj))︸ ︷︷ ︸
wi

(
−β ∂Uθ(Si)

∂θ

)
+

e−β(Uθ(Si)−Uθ̂(Si))

−
(∑N

j=1 e
−β(Uθ(Sj)−Uθ̂(Sj))

)2

∗
N∑
j=1

[
e−β(Uθ(Sj)−Uθ̂(Sj))

(
−β ∂Uθ(Sj)

∂θ

) ∑N
k=1 e

−β(Uθ(Sk)−Uθ̂(Sk))∑N
k=1 e

−β(Uθ(Sk)−Uθ̂(Sk))

]
(16)

= wi

(
−β ∂Uθ(Si)

∂θ

)
+

e−β(Uθ(Si)−Uθ̂(Si))

−
(∑N

j=1 e
−β(Uθ(Sj)−Uθ̂(Sj))

)2

∗
N∑
k=1

e−β(Uθ(Sk)−Uθ̂(Sk))
N∑
j=1

[(
−β ∂Uθ(Sj)

∂θ

)
e−β(Uθ(Sj)−Uθ̂(Sj))∑N
k=1 e

−β(Uθ(Sk)−Uθ̂(Sk))︸ ︷︷ ︸
wj

]

= wi

(
−β ∂Uθ(Si)

∂θ

)
+

e−β(Uθ(Si)−Uθ̂(Si))

−
∑N
j=1 e

−β(Uθ(Sj)−Uθ̂(Sj))︸ ︷︷ ︸
−wi

∗
N∑
j=1

wj

(
−β ∂Uθ(Sj)

∂θ

)
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N∑
i=1

∂wi
∂θ

O(Si,θ) =

N∑
i=1

wi

(
−β ∂Uθ(Si)

∂θ

)
O(Si,θ) +

N∑
i=1

−wiO(Si,θ)

N∑
j=1

wj

(
−β ∂Uθ(Sj)

∂θ

)
(17)

' 〈−β ∂Uθ

∂θ
O(Uθ)〉+ 〈−O(Uθ)〉〈−β ∂Uθ

∂θ
〉 (18)

⇒ ∂L̄

∂θ
' 2(〈O(Uθ)〉 − Õ)

[
〈∂O(Uθ)

∂θ
〉 − β

(
〈O(Uθ)

∂Uθ

∂θ
〉 − 〈O(Uθ)〉〈∂Uθ

∂θ
〉
)]

=
∂L

∂θ
(19)

6. DimeNet++ hyperparameters

We refer the reader to the original DimeNet / DimeNet++ publications [10, 11] for a detailed description of the
neural network architecture. We reduced embedding sizes by factor 4: The standard embedding size then becomes
32, the output embedding size 64, the triplet and atom-type embedding size becomes 16 and the Bessel-basis
embedding remains at a size of 8. All other hyperparameters are unchanged: A cut-off length of 0.5 nm (0.2 nm for
diamond), 4 interaction layers, 3 fully-connected output layers, 1 residual block before and 2 residual blocks after
the skip connection, 6 radial and 7 angular Bessel embedding function with a continuously differentiable envelope
function of order 6 and a swish [12] activation function. Weights are initialized via an orthogonal Glorot[13, 10]
scheme.

Supplementary Figures
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Figure 1: Double-well toy example across optimization. By learning the normalized density, DiffTRe adjusts Umodel
θ

such that Uprior + Umodel
θ eventually recovers the data-generating potential (a). Accordingly, the corresponding

predicted normalized densities converge to the target (b). Potentials in panel a are shifted vertically for visualization
purposes such that all potentials coincide at x/X = 0.5.
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Figure 2: Double-well toy example vanishing gradients. There are areas on the potential energy surface (PES)
where the effect of the gradient on the PES ∆U = U(θ −∇θL)− U(θ) = 0, even though these areas contribute to
the loss (ρ− ρ̃ 6= 0). This is due to the reference trajectory that contains no states in these areas of the PES (ρ = 0
and ∇θρ = 0; compare Supplementary Eq. (19)).
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Figure 3: Double-well prior variation study. Resulting density (a) and learned potential (b) with respective targets
for varying prior scales λ. The prior loss curves (c) show the impact of the prior on the initial loss value L(0) and
optimization convergence. Many possible λ lead to satisfactory learning outcomes (a− b).
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Figure 4: Random initialization study for the double-well toy example. A mean matching the target and small
standard deviations (shaded area) when re-starting the optimization with random seeds from 0− 99 demonstrates
that the learned normalized density profile is robust with respect to initialization of the spline and the initial
simulation state (a). The corresponding learned potential exhibits larger standard deviations at the left well
boundary due to difficult training in this region (b). Potentials are shifted vertically for visualization purposes such
that all potentials coincide at x/X = 0.5.
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Figure 5: Supplementary results for the diamond model. The large reduction in the loss L confirms successful
learning (a). Reduction in wall-clock time per parameter update ∆t in the second half of the optimization is
achieved through re-using previously generated trajectories. Panel b displays an alternative stiffness computation
method, explicit box deformation. Assuming a linear stress-strain relationship for small ε and a perfect alignment
of the learned potential with experimental σ̃ = 0 and C̃ij , all measured σi lie on the respective dashed lines. Hence,
both methods for computing stiffness tensor C give equivalent results and the neural network potential generalizes
from the un-strained training box to boxes under small strain. Panel c compares the predicted phonon density of
states (PDOS) with the experiment [14] and a Stillinger-Weber potential optimized for diamond [15]. The evolution
of predicted PDOS over the course of the training is shown in panel d.
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Figure 6: Random initialization study for diamond. For random seeds from 0 to 4 (controlling random initialization
of neural network weights as well as initial particle velocities), the predicted observables are distributed closely
around their respective targets (a). Corresponding predicted phonon densities of states (PDOSs) vary largely across
different random seeds (b), confirming that different PDOSs are consistent with the target stress and stiffness values.
The boxplots in a with median (orange line), interquartile range as box limits and whiskers representing 1.5 times
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Figure 7: Supplementary results for the coarse-grained water model. Predicted radial distribution functions (RDFs)
and angular distribution functions (ADFs) converge from predictions close to the prior to the respective targets
(a - b). Quick reduction in the loss L confirms the learning success (c). Significant reduction in wall-clock time
per parameter update ∆t towards the end of the optimization is achieved through re-using previously generated
trajectories. The predicted self-diffusion coefficient D decreases over the course of the optimization (d).
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Figure 8: Robustness analysis for coarse-grained water. Predicted target observables are robust to weak choices of
Uprior (a − b). These results are obtained using the same hyperparameters as in the reference case σR = 0.3165,
except for longer training (1000 steps) with increased learning rate decay factor (0.25) in the case of σR = 0.4 nm.
Additionally, predicted target observables are robust to random initialization of NN weights and initial particle
velocities (c− d, p = 68± 32 bar).
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