Supplemental Tables and Figures Epigenetic Interaction between UTX and DNMT1 Regulates Diet-Induced Myogenic Remodeling in Brown Fat

Fenfen Li¹, Jia Jing¹, Miranda Movahed¹, Xin Cui¹, Qiang Cao¹, Rui Wu¹, Ziyue Chen², Liqing Yu³, Yi Pan², Huidong Shi^{4,5}, Hang Shi^{1*}, Bingzhong Xue^{1*}

 ¹Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
 ²Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA
 ³Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
 ⁴Georgia Cancer Center, and ⁵Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.

Running title: UTX and DNMT1 regulate myogenic remodeling in BAT.

* Correspondence should be addressed to:

Hang Shi, Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA. Contact: 404-413-5799, <u>hshi3@gsu.edu</u>.

Bingzhong Xue, Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA. Contact: 404-413-5747, <u>bxue@gsu.edu</u>

Supplemental figure 1. (A) *Utx* mRNA level in interscapular BAT (iBAT), inguinal WAT (iWAT) and epididymal WAT (eWAT) depots of 2-month-old male mice (n=7/group). *indicates statistical significance vs. iBAT by One-Way ANOVA followed by Fisher's Least Significant Difference (LSD) test, F(2,18)=15.17, p<0.0001.

(**B**) *Utx* mRNA level in iBAT and eWAT depots of 2-month-old male mice housed at room temperature (RT) or challenged with a 7-day 5°C cold exposure (n=5/group). *indicates statistical significance between room RT and cold exposure by two-tailed unpaired Student's t-test. All data are expressed as mean \pm SEM.

Supplemental figure 2. UTX deficiency in brown fat promotes adiposity in male mice on a chow diet. Male UTXKO and their fl/Y littermates were weaned onto regular chow diet.

(A) Utx mRNA level in iBAT of male UTXKO and fl/Y mice (n=9/group).

(**B**) Body weight growth curve of male UTXKO mice and fl/Y mice on regular chow diet (n=7 for fl/Y and 11 for UTXKO).

(**C**)-(**D**) Body composition (**C**, n=9 for fl/Y, and 7 for UTXKO), and Fat pad weight (iBAT, iWAT, eWAT and retroperitoneal WAT (rWAT)) (**D**, n=6 for fl/Y and 8 for UTXKO) in male UTXKO and fl/Y mice on regular chow diet.

(E)-(F) Representative H&E staining of iBAT and iWAT (E), and UCP1 immunohistochemistry (IHC) staining in iBAT (F) in male UTXKO and fl/Y mice on regular chow diet (n=3 replicates for each group).

(**G**)-(**I**) Fed and fasted circulating glucose (n=7 for fl/Y, 10 for UTXKO) and insulin (n=9 for fl/Y, 10 for UTXKO) levels (**G**), Glucose tolerance test (GTT) (**H**, n=7 for fl/Y, 12 for UTXKO), and Insulin levels at 15 minutes during GTT test (**I**, n=7 for fl/Y, 11 for UTXKO) in male UTXKO and fl/Y mice on regular chow diet.

All data are expressed as mean ± SEM. *indicates statistical significance as marked in each panel between UTXKO and fl/Y by two-tailed unpaired Student's t-test.

Supplemental figure 3. Metabolic characterization of male UTXKO and fl/Y control mice on HFD. Male UTXKO and their littermate control fl/Y mice were put on HFD when they were 5 weeks of age.

(**A**)-(**D**) Oxygen consumption (VO₂) (**A**), Respiratory exchange rate (RER) (**B**), Locomotor activity (**C**), and Cumulative food intake (**D**) in male UTXKO and fl/Y mice on HFD. For **A-C**, n=4/group; for **D**, n=7 for fl/Y and 5 for UTXKO. In (**A**), *indicates statistical significance between fl/fl and D1KO analyzed by ANOVA with repeated measures. Time 17-24 hours, F(1,6)=8.518, p=0.027; time 36-48 hours, F(1,6)=8.058, p=0.03.

Supplemental Figure 4. Gene expression analysis in iBAT of male UTXKO and fl/Y littermate control mice.

(A)-(B) *Nrg4* and *Pm20d1* expression in iBAT of male UTXKO and fl/Y littermate control mice fed chow or HFD (A, fl/Y chow=6, UTXKO chow=11, fl/Y HFD=6, UTXKO HFD=5) or challenged with cold (B, fl/Y RT=9, UTXKO RT=7, fl/Y Cold=8, UTXKO Cold=8). *indicates statistical significance between groups with one-way ANOVA followed by Fisher's LSD multiple comparisons test: F(3,24)=5.413, p=0.005 for *Nrg4* in (A), F(3,24)=3.559, p=0.029 for *Pm20d1* in (A); F(3,28)=1.820, p=0.166 for *Nrg4* in (B), F(3,28)=2.849, p=0.055 for *pm20d1* in (B).

(**C**)-(**D**) *Mstn* expression in iBAT of male UTXKO and fl/Y littermate control mice fed chow or HFD (**C**, fl/Y chow=5, UTXKO chow=11, fl/Y HFD=5, UTXKO HFD=5) or challenged with cold (**D**, fl/Y RT=6, UTXKO RT=7, fl/Y Cold=6, UTXKO Cold=7). *indicates statistical significance between groups with Kruskal-Wallis non-parametric ANOVA H test by rank followed by Pairwise Comparisons test between groups, H(3)=15.378, p=0.002 in (**C**), and H(3)=9.195, p=0.027 in (**D**).

Supplemental Figure 5. Gene expression analysis in iBAT of male UTXKO and fl/Y littermate control mice.

(**A**)-(**B**) *Atp2a2* expression in iBAT of male UTXKO and fl/Y littermate control mice fed chow or HFD (**A**, fl/Y chow=6, UTXKO chow=11, fl/Y HFD=6, UTXKO HFD=5) or challenged with cold (**B**, fl/Y RT=9, UTXKO RT=7, fl/Y Cold=8, UTXKO Cold=8). In (**A**), *indicates statistical significance between groups with Kruskal-Wallis non-parametric ANOVA H test by rank followed by Pairwise Comparisons test between groups, H(3)=15.165, p=0.002. In (**B**), *indicates statistical significance between groups with one-way ANOVA followed by Fisher's LSD multiple comparisons test, F(3,28)=20.205, p<0.001.

(**C**)-(**E**) *Ckm* expression in iBAT of male UTXKO and fl/Y littermate control mice fed chow (**C**, fl/Y chow=6, UTXKO chow=5), HFD (**D**, fl/Y HFD=6, UTXKO HFD=5) or challenged with cold (**E**, n=6/group). *indicates statistical significance between the two groups by Mann-Whitney's nonparametric U test.

Supplemental figure 6. Metabolic phenotypes in female UTXKO and fl/fl littermate control mice fed chow or HFD.

(A)-(C) Body weight (A), body composition (B) and fat pad weight (C) in female UTXKO and fl/fl mice fed chow diet (n=9/group).

(**D**)-(**F**) Body weight (**D**, n=6/group), body composition (**E**, n=5 for fl/fl, and 6 for UTXKO) and fat pad weight (**F**, n=5 for fl/fl, and 6 for UTXKO) in female UTXKO and fl/fl mice fed HFD.

All data are expressed as mean ± SEM. *indicates statistical significance between fl/fl and UTXKO by two-tailed unpaired Student's t-test.

Supplemental figure 7. Mice with *Utx* deficiency in *Myf5*-expressing precursor cells (MUTXKO) have normal energy homeostasis and brown fat thermogenic gene expression when fed HFD diet. Male MUTXKO and fl/Y littermate control mice were put on HFD when they were 6 weeks of age. **(A)** *Utx* mRNA level in iBAT of male MUTXKO and fl/Y mice (n=8/group).

(**B**)-(**C**) Body weight growth curve (**B**, n=12 for fl/Y, and 9 for MUTXKO), and Body composition (**C**, n=13 for fl/Y, and 9 for MUTXKO) of male MUTXKO mice and fl/Y mice on HFD diet.

(**D**)-(**E**) Energy expenditure (EE)(**D**), and Locomotor activity (**E**) in male MUTXKO and fl/Y mice on HFD (n=4/group).

(F) Ucp1 and Pgc1α expression in iBAT of male MUTXKO and fl/Y mice on HFD (n=8/group).

All data are expressed as mean ± SEM. *indicates statistical significance between fl/Y and MUTXKO by two-tailed unpaired Student's t-test.

Supplemental Figure 8. Myogenic marker gene expression is down-regulated in iBAT from wild type C57BL/6J mice after a 7-day 5°C cold challenge (n=7 for RT and 6 for Cold). All data are expressed as mean ± SEM. *indicates statistical significance by Mann-Whitney's nonparametric U test.

Supplemental figure 9. The expression of *Ucp1* and myogenic marker genes are negatively correlated in iBAT. Male C57BL/6J mice were put on either chow or HFD diet when they were 6 weeks old.

(A)-(D) Quantitative RT-PCR analysis of *Ucp1* (A), *Myod1* (B), *Myog* (C), and *Myh1* (D) expression in iBAT of mice fed chow or HFD for 1 week, 4 weeks, 12 weeks, 24 weeks and 1 year (n=4 for 1 year chow group, and n=8/group for all other groups). *indicates statistical significance analyzed by two-tailed unpaired Student's t-test in (A) and Mann-Whitney's nonparametric U test in (B), (C) and (D).

(E) Quantitative RT-PCR analysis of *Ucp1* and myogenic marker gene expression patterns in iBAT of HFD-fed mice for 1 week, 4 weeks, 12 weeks, 24 weeks and 1 year (n=8/group).

(**F**) Negative correlations between *Ucp1* and myogenic marker gene expression in iBAT of mice fed chow or HFD for 1 week, 4 weeks, 12 weeks, 24 weeks and 1 year (n=66 for the correlation between *Ucp1* and *Myod1*, n=71 for the correlation between *Ucp1* and *Myog*, and between *Ucp1* and *Myot1*). Correlation between *Ucp1* and myogenic gene expression was analyzed by Spearman's rank correlation coefficient test, p=0.003 between *Ucp1* and *Myod1* gene expression, p=0.024 between *Ucp1* and *Myog* gene expression, and p=0.039 between *Ucp1* and *Myh1* gene expression.

Supplemental Figure 10. Myogenic gene expression in SVF and adipocytes isolated from C57BL/6J mice fed chow or HFD for 24 weeks.

(A) Myogenic gene expression in SVF and adipocytes isolated from C57BL/6J mice fed chow or HFD for 24 weeks. n=5/group. For Tnn3, n=6 for Chow adipocytes and n=5 for HFD adipocytes. Gene expression was normalized to the level of Chow SVF. N.D.=not detected. Left panel: *indicates statistical significance analyzed by one-way ANOVA followed by Fisher's LSD multiple comparisons test. *Myod1*, F(3,16)=4.192, p=0.023; *Myog*, F(3,16)=2.132, p=0.14; *Myh1*, F(3,16)=8.806, p=0.001; *Myh4*, F(3,16)=10.50, p<0.0001; *Atp2a1*, F(3,16)=9.490, p<0.0001; *Acta1*, F(3,16)=7.385, p=0.003; *Ckm*, F(3,16)=24.446, p<0.0001; *Atp2a2*, F(3,16)=5.682, p=0.008. Right panel: *indicates statistical significance analyzed by Mann-Whitney's nonparametric U test.

(**B**) Myogenic gene expression in SVF and adipocytes isolated from C57BL/6J mice fed chow or HFD for 24 weeks. n=5/group. Gene expression was normalized to the level of either Chow SVF or chow HFD in each of the SVF or adipocyte group. *indicates statistical significance analyzed by one-way ANOVA followed by Fisher's LSD multiple comparisons test. *Myod1*, F(3,16)=10.943, p<0.0001; *Myog*, F(3,16)=2.413, p=0.11; *Myh1*, F(3,16)=6.025, p=0.006; *Myh4*, F(3,16)=3.612, p=0.036; *Atp2a1*, F(3,16)=5.682, p=0.008; *Acta1*, F(3,16)=8.971, p=0.001; *Ckm*, F(3,16)=4.447, p=0.019; *Ttn*, F(3,16)=3.699, p=0.034; *Atp2a2*, F(3,16)=4.258, p=0.022.

Supplemental figure 11. Oxygen consumption in wild type C57BL/6J mice fed a regular chow or HFD. Male C57BL/6J mice were put on either chow or HFD diet when they were 6 weeks old. (**A**) Oxygen consumption in 6-week-old wild type C57BL/6J mice on chow diet or in 6-week-old C57BL/6J mice switching from chow to HFD. The dotted line indicates the time point when diet was switched from chow to HFD (n=8/group). *indicates statistical significance between the two groups by ANOVA with repeated measures. Time (41.85-48h), F(1,12)=11.085, p=0.006; Time (48-60h), F(1,12)=7.541, p=0.018; Time (60-72h), F(1,12)=58.218, p<0.0001; Time (72-84h), F(1,12)=26.367, p<0.0001; Time (84-96h), F(1,12)=44.103, p<0.0001; Time (96-108h), F(1,12)=13.285, p=0.003; Time (108-120h), F(1,12)=35.549, p<0.0001; Time (120-132h), F(1,12)=9.946, p=0.008; Time (132-144h), F(1,12)=100.366, p<0.0001; Time (144-156h), F(1,12)=31.757, p<0.0001.

(**B**)-(**D**) Oxygen consumption in wild type C57BL/6J mice fed a regular chow or HFD for 4 weeks (**B**), 12 weeks (**C**) and 24 weeks (**D**) (n=8/group).

In (**C**) and (**D**), *indicates statistical significance between the two groups by ANOVA with repeated measures. In (**C**), Time (0-12h), F(1,12)=77.416, p<0.0001; Time (12-24h), F(1,12)=14.885, p=0.002; Time (24-36h), F(1,12)=115.218, p<0.0001; Time (36-48h), F(1,12)=23.504, p<0.0001; Time (48-60h), F(1,12)=68.6, p<0.0001; Time (60-72h), F(1,12)=40.186, p<0.0001; Time (72-84h), F(1,12)=79.507, p<0.0001; Time (84-96h), F(1,12)=21.537, p<0.0001; Time (96-108h), F(1,12)=79.3, p<0.0001.

In (**D**), Time (0-12h), F(1,12)=48.97, p<0.0001; Time (12-24h), F(1,12)=6.108, p=0.029; Time (24-36h), F(1,12)=30.184, p<0.0001; Time (36-48h), F(1,12)=8.239, p=0.014; Time (48-60h), F(1,12)=27.085, p<0.0001; Time (60-72h), F(1,12)=10.102, p=0.008; Time (72-84h), F(1,12)=33.658, p<0.0001; Time (84-96h), F(1,12)=7.994, p=0.015; Time (96-108h), F(1,12)=23.014, p<0.0001.

For (**B**), there was no statistical significance between the two groups when analyzed by ANOVA with repeated measures at every 12 hours interval. *indicates statistical significance at individual time points analyzed by two-tailed unpaired Student's t-test. All data are expressed as mean ± SEM.

Supplemental figure 12. Myogenic (A) or BAT (B) specific gene expression in 3-month-old ob/ob and their WT Littermate control mice. In (A), n=8 for WT and n=4 for ob/ob. *indicates statistical significance between the two groups analyzed by Mann-Whitney's nonparametric U test. in (B), n=8/group, *indicates statistical significance between the two groups analyzed by two-tailed unpaired Student's t-test. All data are expressed as mean ± SEM.

Supplemental Figure 13. Dnmt1 expression in iBAT of D1KO and fl/fl littermate control mice (n=6 for fl/fl and 7 for D1KO).

All data are expressed as mean ± SEM. *indicates statistical significance by two-tailed unpaired Student's t-test.

Supplemental figure 14. Metabolic characterization of female D1KO and fl/fl mice on chow diet. (**A**)-(**D**) Oxygen consumption (**A**), RER (**B**), Locomotor activity (**C**), and Cumulative food intake (**D**) in female D1KO mice on chow diet. For **A-C**, n=4/group; for **D**, n=6 for fl/fl and 8 for D1KO. In (**A**), *indicates statistical significance between the two groups analyzed by ANOVA with repeated measures, time 0-12 hours, F(1,6)=9.163, p=0.023; time 24-36 hours, F(1,6)=19.341, p=0.005; time 48-60 hours, F(1,6)=5.976, p=0.050; time 72-84 hours, F(1,6)=12.619, p=0.012. In (**D**), *indicates statistical significance between the two groups analyzed by two-tailed unpaired Student's t-test.

Supplemental figure 15. Gene expression analysis of *Atp2a2* (**A**), *Pm20d1* and *Nrg4* (**B**), and *Mstn* (**C**) in iBAT of chow-fed female D1KO and fl/fl littermate control mice. n=5 for fl/fl, 7 for D1KO. All data are expressed as mean \pm SEM. Statistical analysis was performed by two-tailed unpaired Student's t-test.

Supplemental figure 16. Metabolic characterization of male D1KO and their control fl/fl mice on chow diet.

(A)-(D) Body weight growth curve (A, n=5 for fl/fl and 8 for D1KO), Body composition (B, n=8/group), GTT (C, n=5 for fl/fl and 8 for D1KO), and ITT (D, n=5 for fl/fl and 8 for D1KO) in male D1KO and their control fl/fl mice on chow diet.

All data are expressed as mean ± SEM. *indicates statistical significance between fl/fl and D1KO by two-tailed unpaired Student's t-test.

Supplemental figure 17. Female D1KO mice are susceptible to DIO. Female D1KO and fl/fl were put on HFD diet when they were 6 weeks old.

(A)-(C) Body weight growth (A, n=4/group), Body composition (B, n=6/group), and Fat pad weight (C, n=8/group) of female D1KO mice and their littermate fl/fl controls fed HFD. *indicates statistical significance between the two groups by unpaired two-tailed Student's t-test.

(**D**)-(**H**) Energy expenditure (**D**), Oxygen consumption (**E**), RER (**F**), Locomotor activity (**G**), and Cumulative food intake (**H**) of female D1KO mice and their littermate fl/fl controls on HFD (n=4/group). For left panel in (**D**) and (**E**), *indicates statistical significance between the two groups by One-Way ANOVA with repeated measures. In (**D**), time 0-12 hours, F(1,6)=11.528, p=0.015; time 12-24 hours, F(1,6)=8.212, p=0.029; time 24-36 hours, F(1,6)=8.023, p=0.03; time 36-48 hours, F(1,6)=24.505, p=0.003; time 48-60 hours, F(1,6)=15.466, p=0.008; time 60-72 hours, F(1,6)=11.626, p=0.014; time 72-84 hours, F(1,6)=4.803, p=0.071, time 84-96 hours, F(1,6)=7.092, p=0.037. In (**E**), time 0-12 hours, F(1,6)=11.971, p=0.013; time 12-24 hours, F(1,6)=8.235, p=0.028; time 24-36 hours, F(1,6)=7.909, p=0.031; time 36-48 hours, F(1,6)=20.564, p=0.004; time 48-60 hours, F(1,6)=13.091, p=0.011; time 60-72 hours, F(1,6)=10.221, p=0.019; time 72-84 hours, F(1,6)=4.509, p=0.078; time 84-96 hours, F(1,6)=6.344, p=0.045. For right panel in (**D**) and (**E**), *indicates statistical significance between the two groups by unpaired two-tailed Student's t-test.

(I)-(K) Fed insulin levels (I), GTT (J), and ITT (K) of female D1KO mice and their littermate fl/fl controls on HFD (n=4/group). *indicates statistical significance between the two groups by unpaired two-tailed Student's t-test.

Supplemental figure 18. Metabolic characterization of male D1KO and their control fl/fl mice on HFD. Male D1KO and fl/fl mice were put on HFD diet when they were 6 weeks of age.

(**A**)-(**B**) Body weight growth curve (**A**, n=6 for fl/fl and 5 for D1KO) and Fat pad weight (**B**, n=9 for fl/fl and 12 for D1KO) in male D1KO and fl/fl mice on HFD. *indicates statistical significance between the two groups by unpaired two-tailed Student's t-test.

(**C**) Representative H&E staining of iBAT and iWAT in male D1KO and fl/fl mice on HFD (n=3 replicates per group).

(**D**)-(**H**) Oxygen consumption (**D**, n=4/group), Energy expenditure (**E**, n=8/group), RER (**F**, n=4/group), Locomotor activity (**G**, n=4/group), and Cumulative food intake (**H**, n=4/group) in male D1KO and fl/fl mice on HFD. *indicates statistical significance between the two groups by One-Way ANOVA with repeated measures.

In (**D**), time 0-12 hours, F(1,6)=37.841, p<0.0001; time 12-24 hours, F(1,6)=18.319, p=0.005; time 24-36 hours, F(1,6)=30.925, p=0.001; time 36-48 hours, F(1,6)=24.505, p=0.003; time 48-60 hours, F(1,6)=18.941, p=0.005; time 60-72 hours, F(1,6)=16.78, p=0.006; time 72-84 hours, F(1,6)=41.852, p<0.0001; time 84-96 hours, F(1,6)=22.729, p=0.003; time 96-108 hours, F(1,6)=44.918, p<0.0001; time 108-120 hours, F(1,6)=9.602, p=0.021; time 120-132 hours, F(1,6)=9.033, p=0.024; time 132-144 hours, F(1,6)=13.070, p=0.011; time 144-156 hours, F(1,6)=8.865, p=0.025.

In (**E**), time 0-12 hours, F(1,14)=12.51, p=0.003; time 12-24 hours, F(1,14)=19.578, p<0.0001; time 24-36 hours, F(1,14)=13.916, p=0.002; time 36-48 hours, F(1,14)=25.796, p<0.0001; time 48-60 hours, F(1,14)=11.584, p=0.004; time 60-72 hours, F(1,14)=6.167, p=0.026; time 72-84 hours, F(1,14)=7.817, p=0.014; time 84-96 hours, F(1,14)=13.148, p=0.003; . time 96-108 hours, F(1,14)=12.291, p=0.003; time 108-120 hours, F(1,14)=3.771, p=0.073; time 120-132 hours, F(1,14)=4.383, p=0.055; time 132-144 hours, F(1,14)=6.143, p=0.022; time 144-156 hours, F(1,14)=7.986, p=0.013.

In (**H**), Time (0-24h), F(1,6)=7.718, p=0.032; Time (24-48h), F(1,6)=12.882, p=0.012; Time (48-72h), F(1,6)=3.777, p=0.1; Time (72-96h), F(1,6)=2.277, p=0.182; Time (96-120h), F(1,6)=3.193, p=0.124; Time (120-144h), F(1,6)=5.011, p=0.066; Time (144-168h), F(1,6)=12.757, p=0.012.

(I)-(J) Quantitative PCR analysis of thermogenic gene expression in iBAT (I) and iWAT (J) of male D1KO and fl/fl mice on HFD (n=8/group). *indicates statistical significance between the two groups by unpaired two-tailed Student's t-test.

(K) Immunoblotting of UCP1 protein in iBAT of male D1KO and fl/fl mice on HFD (n=3/group). *indicates statistical significance between the two groups by unpaired two-tailed Student's t-test. (L)-(M) GTT (L) and ITT (M) in male D1KO and fl/fl mice on HFD (n=5/group). *indicates statistical significance between the two groups by unpaired two-tailed Student's t-test.

Supplemental figure 19. Characterization of D1KO and fl/fl during cold exposure. Two months old male D1KO and fl/fl mice were subjected to a chronic 7-day cold exposure challenge at 5°C. (**A**)-(**B**) Quantitative RT-PCR analysis of thermogenic gene expression (n=4/group) (**A**) and representative H&E staining (**B**, 3 replicates/group) in iWAT of male D1KO and fl/fl mice after chronic 7-day cold exposure.

(**C**)-(**D**) Quantitative RT-PCR analysis of thermogenic gene expression (n=4/group) (**C**) and representative H&E staining (**D**, 3 replicates/group) in eWAT of male D1KO and fl/fl mice after chronic 7-day cold exposure.

All data are expressed as mean ± SEM. *indicates statistical significance between the two groups by unpaired two-tailed Student's t-test.

Supplemental figure 20 (Related to Figure 6). Metabolic characterization of D3aKO and their control fl/fl mice on chow diet.

(A)-(B) Body weight growth curve (A, n=4/group) and Food intake (B, n=4 for fl/fl and 3 for D3aKO) in D3aKO and their control fl/fl mice on chow diet. *indicates statistical significance between the two groups by unpaired two-tailed Student's t-test.

(**C**) Representative fat depot and liver images in D3aKO and their control fl/fl mice on chow diet (n=4 replicates/group).

(**D**)-(**H**) Energy expenditure (**D**), Oxygen consumption (**E**), Locomotor activity (**F**), GTT (**G**), and ITT (**H**) in D3aKO and their control fl/fl mice on chow diet (n=4/group).

In (**D**), (**E**) and (**F**), *indicates statistical significance between the two groups by one-way ANOVA with repeated measures. In (**D**), time 0-12 hours, F(1,6)=9.188, p=0.023; time 12-24 hours, F(1,6)=19.367, p=0.005; time 24-36 hours, F(1,6)=2.211, p=0.188; time 36-48 hours, F(1,6)=6.333, p=0.045; time 48-60 hours, F(1,6)=6.769, p=0.041; time 60-72 hours, F(1,6)=4.799, p=0.071; time 72-84 hours, F(1,6)=9.362, p=0.021; time 84-96 hours, F(1,6)=7.857, p=0.037.

In (**E**), time 0-12 hours, F(1,6)=7.96, p=0.03; time 12-24 hours, F(1,6)=14.272, p=0.009; time 24-36 hours, F(1,6)=1.758, p=0.233; time 36-48 hours, F(1,6)=5.197, p=0.063; time 48-60 hours, F(1,6)=5.789, p=0.053; time 60-72 hours, F(1,6)=4.883, p=0.069; time 72-84 hours, F(1,6)=9.109, p=0.023; time 84-96 hours, F(1,6)=8.357, p=0.028. In (**G**) and (**H**), *indicates statistical significance between the two groups by unpaired two-tailed Student's t-test.

CpG sites at Myod1 promoter and 5'-region

Δ

Supplemental figure 21. (**A**) CpG sites at *Myod1* promoter and 5'-region. Yellow highlights indicate CpG sites; green highlight indicates the TATAA-box; red highlight indicates translational start site (ATG); blue-highlighted region indicates the location of guide RNA (gRNA) that was used in the directed methylation targeting approach described in (**B**).

(**B**) Schematic diagram of the strategy to specifically target demethylation at *Myod1* promoter with dCas9-TET1CD and gRNA system.

Supplemental figure 22. Representative images indicate IHC staining of mCherry (red), perilipin (green), DAPI (Blue) and merged images from iBAT of lentivirus-injected mice (3 replicates/group). Three-month-old chow-fed male C57BL/6J mice were bilaterally injected with lentiviruses expressing dCas9-TET1CD plus lentiviruses expressing either targeting Myod1-gRNA-mCherry or non-targeting scramble-gRNA-mCherry into iBAT. Tissues were collected 2 months after the injection.

Supplemental Figure 23. ATAC-seq analysis of chromatin accessibility at $Pgc1\alpha$ (**A**), Ucp1 (**B**) and $Pgc1\beta$ (**C**) loci.

Supplemental Figure 24. Interaction between E2F4/RBL1/RBL2 transcription repressor complex at *Prdm16* promoter.

(A)-(C) Binding of E2F4 (A, n=5/group), RBL1 (B, n=4 for Control, and 3 for *Myod1* overexpression (OE)) and RBL2 (C, n=3 for Control and 4 for *Myod1* OE) to *Prdm16* promoter in *Myod1*-overexpressed BAT1 brown adipocytes by ChIP assay. *indicates statistical significance by two-tailed unpaired Student's t-test.

(**D**)-(**F**) Knocking down efficiency in *Myod1*-overexpressed BAT1 brown adipocytes with simultaneous knockdown of *E2f4* (**D**), *Rbl1* (**E**) and *Rbl2* (**F**) (n=6/group). *indicates statistical significance between groups with one-way ANOVA followed by Fisher's LSD multiple comparisons tests: F(3,20)=21.190, p<0.001 in (**D**), F(3,20)=46.335, p<0.001 in (**E**); F(3,20)=33.162, p<0.001 in (**F**).

(G)-(J) BAT-specific gene expression in *Myod1*-overexpressed BAT1 brown adipocytes with simultaneous knockdown of *E2f4* (G), *Rbl1* (H), *Rbl2* (I) and in combination (J) (n=6/group). *indicates statistical significance among groups with one-way ANOVA followed by Fisher's LSD multiple comparisons test. In (G), F(3,20)=51.141, p<0.0001 for *Ucp1*; F(3,20)=71.342, p<0.0001 for *Pgc1a*; F(3,20)=24.74, p<0.0001 for *Pgc1β*; F(3,20)=21.315, p<0.0001 for *Cpt1b*; F(3,20)=1.522, p=0.24 for *Cox1*; F(3,20)=2.773, p=0.068 for *Acox1*.

In (**H**), F(3,20)=46.335, p<0.001 for *Ucp1*; F(3,20)=31.467, p<0.0001 for *Pgc1α*; F(3,20)=8.475, p=0.001 for *Pgc1β*; F(3,20)=17.768, p<0.0001 for *Cpt1b*; F(3,20)=11.637, p<0.0001 for *Cox1*; F(3,20)=2.635, p=0.078 for *Acox1*.

In (I), F(3,20)=82.253, p<0.001 for *Ucp1*; F(3,20)=2.182, p=0.122 for *Pgc1a*; F(3,20)=14.071, p<0.0001 for *Pgc1β*; F(3,20)=1.569, p=0.228 for *Cpt1b*; F(3,20)=1.964, p=0.152 for *Elov/3*; F(3,20)=1.079, p=0.381 for *Cox1*; F(3,20)=1.04, p=0.396 for *Acox1*.

In (**J**), F(3,20)=16.822, p<0.001 for *Ucp1*; F(3,20)=33.361, p<0.0001 for *Prdm16*; F(3,20)=44.25, p<0.0001 for Pgc1α; F(3,20)=26.998, p<0.0001 for *Pgc1β*.

Supplemental Figure 25. The effect of DNMT1-mediated DNA methylation on histone modifications at Myod1 gene locus.

(**A**)-(**E**) H3K9me3 (**A**, n=4/group), H3K4ac (**B**, n=4/group), H3K9ac (**C**, n=3 for Scramble and 4 for *Dnmt1* siRNA), H3K4me3 (**D**, n=5/group) and H3K27me3 (**E**, n=6/group) at *Myod1* promoter in BAT1 brown adipocytes with *Dnmt1* knock down.

(F) ATAC-seq analysis of chromatin accessibility at Myod1 locus.

All data are expressed as mean ± SEM. *indicates statistical significance by two-tailed unpaired Student's t-test.

Gene symbol	Company	Catalog #		
Acox1	ABI	Mm01246834_m1		
Acta1	ABI	Mm00808218_g1		
Atp2a1	ABI	Mm01275320_m1		
Cd137	ABI	Mm01268456-m1		
Cidea	ABI	Mm00432554_m1		
Ckm	ABI	Mm01321487_m1		
Cox	ABI	Mm04225243_g1		
Cpt1b	ABI	Mm00487191_g1		
Dio2	ABI	Mm0051664_m1		
Dnmt1	ABI	Mm00599783-g1		
Ear2	ABI	Mm04207376_gH		
Ebf2	ABI	Mm00438625_m1		
Ebf3	ABI	Mm00438642_m1		
Elovl3	ABI	Mm01194165_g1		
Eva1	ABI	Mm00468397_m1		
Fgf21	ABI	Mm00840165_g1		
Klf2	ABI	Mm00500486_g1		
Klhl13	ABI	Mm00470674_m1		
Mfsd2a	ABI	Mm01192208_m1		
Myh1	ABI	Mm01332489_m1		
Myh4	ABI	Mm01332541_m1		
Myod1	ABI	<u>Mm00440387_m1</u>		
Myog	ABI	Mm00446194_m1		
Nr4a1	ABI	Mm00440945-m1		
Nr4a2	ABI	Mm00443060_m1		
Nr4a3	ABI	Mm00450071_g1		
Otop1	ABI	Mm00554705_m1		
Ppary	ABI	Mm00440945_m1		
Pram16	ABI	Mm00712556_m1		
SIK1 Ttra	ABI	Nm00440317_m1		
	ABI	Mm00621005_m1		
	ABI	Mm01283053_m1		
	ABI	Nm00514160_m1		
RDI1 Dh/2	ABI	Mm01250721_m1		
RDIZ		Wm01242468_m1		
Nrg4		Mm00446254_m1		
Atp2a2	ABI	<u>Nm01201431_m1</u>		
PIII2001 Mycostatin		Mm01254550 m1		
mip 1220	ADI	1VIIIIU1204009_1111		
1111R-1338 miD 1226	Thormo Light	ASSAY ID 002240		
miD 206	Thormo Light	ASSAY ID 002241		
miP 1	ThormoEichor	Assay ID 000310		
IIIIR-I II6 on DNA	Thormo Ligher	A0001 ID 002222		
UO SIIKINA	Thermorisher	Assay ID 001973		

Supplemental Table 1. Primer/probe sets for gene expression

Table 2. Primer/probe sequences for gene expression

Gene	Primer (Forward: 5'-3')	Primer (Reverse: 5'-3')	Probe (5'-3')
Cyclophilin	GGTGGAGAGCACCAAGAC	GCCGGAGTCGACAATGATG	ATCCTTCAGTGGCTTGTCCCGGCT
(Ppib)	AGA		
Cebpß	CCAAGAAGACGGTGGACAA	GTGCTGCGTCTCCAGGTT	CCGCATCTTGTACTCGTCGCTCAG
	G		
Pgc1a	CATTTGATGCACTGACAGA	CCGTCAGGCATGGAGGAA	CCGTGACCACTGACAACGAGGCC
	TGGA		
Pgc1β	AGGAAGCGGCGGGAAA	CTACAATCTCACCGAACACCTCA	AGAGATTTCGAATGTATACCACACGGCC
_		A	TTCA
Ucp1	CACCTTCCCGCTGGACACT	CCCTAGGACACCTTTATACCTAA	AGCCTGGCCTTCACCTTGGATCTGA
-		TGG	

Antibody	Company	Catalog #	Application
DNMT1	Abcam	Ab87654	WB(1:500)
DNMT1	Santa Cruz	Sc20701 or	ChIP(2µg/mI)
	Biotechnology	sc-271729	
GFP	Aves labs	GFP-1010	IF(1:1000)
UCP1	Abcam	ab23841	WB(1:500)
UCP1	Abcam	Ab10983	IHC(1:500)
KDM6A (UTX)	Abcam	ab36938	ChIP(2µg/ml)
KDM6A (UTX)	Bethyl	A302-374A	WB(1:500)
	Laboratories		
HA	Cell signaling	C29F4	IP(2µg/ml), WB(1:1000)
	technology		
H3K27me3	Abcam	ab6002	ChIP(2µg/ml)
H3K9me3	Abcam	ab8898	ChIP(2µg/ml)
H3K4me3	Abcam	ab8580	ChIP(2µg/ml)
acH3K27	Abcam	ab4729	ChIP(2µg/ml)
acH3K9	Abcam	ab4441	ChIP(2µg/ml)
acH3K4	Abcam	ab176799	ChIP(2µg/ml)
mCherry	Abcam	ab205402	IF(1:1000)
МуНС	DSHB	MF20	IF(1:1000)
Perilipin	Everest biotech	EB07728	IF(1:1000)
PRDM16	Sigma	SAB2900806	WB(1:500), IP(2µg/ml)
PRDM16	Sigma	SAB3500989	ChIP(2µg/ml)
FLAG	Sigma	F3165	WB(1:1000),IP(2µg/ml)
E2F-4	Santa Cruz	sc-398543	WB(1:1000),ChIP(2µg/ml)
	Biotechnology		
p107	Santa Cruz	sc-250	WB(1:1000),ChIP(2µg/ml)
	Biotechnology		
p130	Santa Cruz	sc-374521	WB(1:1000),ChIP(2µg/ml)
<u> </u>	Biotechnology		
α-Tubulin	Santa Cruz	sc-53646	WB(1:500)
	Biotechnology	744 005 450	
Biotin-SP (long spacer)	Jackson	711-065-152	IHC(2µg/mI)
AffiniPure Donkey Anti-	ImmunoResearch		
CyIM2 AffiniBurg Donkov	laakaan	711 165 150	IE(2ug/ml)
Apti Babbit IaC (H+L)	Jackson	/11-105-152	ιr(∠μg/m)
	lackson	702 545 155	IE(2ug/ml)
ffiniPure Donkey Anti-	ImmunoResearch	703-545-155	ir(zµg/iii)
Chicken IaY (IaG) (H+I)	minunoi (cocaron		
Goat anti-Mouse IgG	Invitrogen	A11029	IF(2µg/ml)
(H+I) Highly Cross-	inviaogon	////020	(2µg/m)
Adsorbed Secondary			
Antibody, Alexa Fluor			
488			
Goat anti-Mouse IgG	Invitrogen	A11032	IF(2µg/ml)
(H+L) Highly Cross-			
Adsorbed Secondarv			

Supplemental Table 3. Antibodies used in Immunoblotting and ChIP-qPCR

Antibody, Alexa Fluor 594			
Goat anti-Mouse IgG (H+L) Highly Cross- Adsorbed Secondary Antibody, Alexa Fluor 680	Invitrogen	A21058	WB(1:10000)
Goat anti-Rabbit IgG (H+L) Highly Cross- Adsorbed Secondary Antibody, Alexa Fluor 680	Invitrogen	A21109	WB(1:10000)

Primers	Sequence (5'-3')
Myod1-pyroseq-F1	TGGTTATTTTGGGGATTTTAAGTT
Myod1-pyroseq-*R1	TCTACCCCTCCTCCCTAT
Myod1-pyroseq-S1	ATTTTGGGGATTTTAAGTTT
Myod1-pyroseq-F2	GATAGGGAGGAGGGGGTAGAGGATA
Myod1-pyroseq-*R2	TCCCAATTCCTAAATCCAACCTCAAC
Myod1-pyroseq-S2	AGGGGTAGAGGATAG
Myod1-pyroseq-F3	GTTTGGGTTGAGGTTGGATTTA
Myod1-pyroseq-*R3	CTCCCATTTCAAAAAAACTCCCATATACAC
Myod1-pyroseq-S3	GGAATTGGGATATGGAG
Myod1-pyroseq-F4	TGGTGTATATGGGAGTTTTTTGAA
Myod1-pyroseq-*R4	AACCTCATTCACTTTACTCAA
Myod1-pyroseq-S4	ATGGGAGTTTTTTGAAAT
Myod1-pyroseq-F5	AGTTGGGTTGGATTGTTATGT
Myod1-pyroseq-*R5	ACCACTACCCCTAATCCC
Myod1-pyroseq-S5	ATGTAGGGTTGGAGA
Myod1-pyroseq-F6	GGGTTAGGGATTAGGGGTAG
Myod1-pyroseq-*R6	CCTTACTCCAAAAATCCTCAAACTC
Myod1-pyroseq-S6	GGGATTAGGGGTAGT

Supplemental Table 4. Primer sequences for pyrosequencing

F: Forward primer; R: reverse primer; S: sequencing primer.

*Indicates primers with biotin-tag.