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A. Derivation of the binding probability of a promoter

In this section we derive the probability of a promoter bound by an RNAP and we assume that free RNAPs can
only bind to unbound promoters with a rate kon. Once the RNAP binds to the promoter, it becomes an initiating
RNAP which either unbinds from the promoter with a rate koff or starts transcribing with a rate Γn. We assume that
a transcribing RNAP moves along the gene deterministically and after a gene-dependent time, it drops off the gene
and becomes free again. The process is summarized in Figure 1. We assume that the binding probability of promoter
Pb is in the steady state and time-independent so that

cnFn(1− Pb)kon = Pb(koff + Γn). (S1)

Here cn is the total concentration of RNAPs in the nucleus and Fn is the fraction of free RNAPs. Solving the above
equation, we obtain the binding probability as

Pn,b =
cnFn

cnFn + koff+Γn

kon

. (S2)

Therefore, the Michaelis-Menten constant is Kn = koff+Γn

kon
, which is inversely proportional to the binding rate of

RNAP to the promoter. A similar model also applies to the translation process and one just needs to replace RNAPs
by ribosomes, genes by mRNAs and promoters by ribosome binding sites [1].
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+ 
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Supplementary Figure 1 A summary of the transcription process.

B. Transitions between different phases

In this section, we consider the simple scenario that all genes have the same recruitment ability 1/Kn to RNAPs.
At the translational level, the protein production rate of gene i is

kr,i = Γrmi
cr,free

cr,free +Kr
(S3)

where Γr is the initiation rate of translation, cr,free is the concentration of free ribosomes in the cytoplasm and Kr

is the corresponding Michaelis-Menten constant. For simplicity, we assume the recruitment abilities of mRNAs to
ribosomes and their translation initiation rates as the same for different genes, therefore the ratios between the protein
production rates of different genes are simply equal to the ratios between their mRNA copy numbers. This agrees
with the fact that protein levels are often primarily determined by mRNA levels [2, 3] (we will relax this assumption
later). Using a similar argument as the transcription process, the conservation of ribosome number leads to∑

i

mi(1 + Λr,i)
crFr

crFr +Kr
= r − rFr. (S4)

Here r is the number of ribosomes, Fr is the fraction of free ribosomes. Λr,i = ΓrLi/vr is the capacity of ribosomes
for mRNA i: the maximum number of translating ribosomes a single mRNA can have in the limit when its ribosome
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binding site is constantly occupied. Here Li is the length of the mRNA in the unit of codons and vr is the elongation
speed of ribosome.

Therefore, given the translation rate Eq. (S3), we can obtain the time-dependence of non-degradable protein mass

dMp,i

dt
= kr,iLi = Γrmi

cr,free
cr,free +Kr

Li (S5)

As the cell mass increases and the cell divides, the ratio between the masses of two proteins will be well approximated
by the ratio of their mass production rates. Assuming that the total protein mass M is dominated by non-degradable
proteins, we find the mass fraction of protein i in the total proteome in the steady state as

φi =
Mp,i

M
=

miLi∑
j mjLj

. (S6)

Since the lifetimes of mRNAs are short compared with the cell cycle duration, the mRNA numbers are approximately
proportional to their production rates, therefore mi ∝ Γn,igiτm,i and we obtain

φi =
Mp,i

M
=

Γn,igiτm,iLi∑
j Γn,jgjτm,jLj

. (S7)

Here τm,i is the lifetime of the mRNA of gene i. Therefore, once the gene copy number is fixed, the mass fraction of
one particular protein in the entire proteome is also fixed. In fact, the constant mass fraction is still valid when we
relax the assumption that all mRNAs share the same Kr and Γr and in this case, Eq. (S4) is modified as∑

i

mi(1 + Λr,i)
crFr

crFr +Kr,i
= r − rFr, (S8)

which can be written as ∑
i

mi

V
(1 + Λr,i)

crFr

crFr +Kr,i
= cr − crFr. (S9)

In Phase 1 (see the discussions in the main text and below), mi ∝ n and we assume that the constant mass fractions
of proteins are valid so that n ∝ V , r ∝ V , which we will confirm self-consistently later. Here V is the cell volume and
we assume a constant ratio between the total protein mass and cell volume ρ = M/V . Therefore, the above equation
is independent of the cell volume and Fr is approximately constant. The ratio between the masses of two proteins
becomes

Mp,i

Mp,j
=

Γr,imiLi

Γr,jmjLj

crFr +Kr,j

crFr +Kr,i
. (S10)

Since cr is constant as we assume and Fr is constant as we show in the above, we find that Eq. (S10) is also constant
once the gene copy number is fixed which self-consistently validates the assumption that the RNAP copy number and
ribosome copy number are proportional to the cell volume.

In the following we define the average capacities of genes and mRNAs as

Λn =
∑

giΛn,i/
∑

gi, (S11)

Λr =
∑

miΛr,i/
∑

mi. (S12)

We can rewrite Eq. (S4) as a self-consistent equation to find the mass fraction of free ribosomes in the proteome given
the total number of mRNAs and the mass fraction of total ribosomes

mR

∑
imi

M
(1 + Λr)

φr,f

φr,f + K̃r

= φr − φr,f , (S13)

here mR is the protein mass of a single ribosome and K̃r = KrmR/ρ. Meanwhile, the time derivative of total protein
mass is

dM

dt
= vrΛr

φr,f

φr,f + K̃r

∑
i

mi, (S14)
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and the growth rate is set by the fraction of actively translating ribosomes

µ =
dM/dt

M
=

vr
mR

Λr

Λr + 1
(φr − φr,f ). (S15)

From Eqs. (S13, S15), we find that to have a constant exponential growth rate as the cell volume increases, the ratio
between total mRNA number and total protein mass must be constant. This is satisfied when the transcription rate
is proportional to the RNAP number, which is valid when Fn � 1 and is called Phase 1 of gene expression [4]. From
Eq. (8) in the main text, we find that the approximation Fn � 1 starts to break down when

n >
∑
i

gi(1 + Λn) ≡ nc. (S16)

When n is above nc, the linear scaling between the transcription rate and RNAP number begins to break down. In
fact, based on the assumption that cn � Kn, the transcription rate will quickly be constrained by the gene copy
number when Eq. (S16) is satisfied. When the cell enters Phase 2, the growth of cell mass deviates from strict
exponential growth. In the extreme scenario, when crFr � Kr, the translation rate per mRNA will be independent
of the ribosome number at all. Assuming cr � Kr, one can estimate the transition criteria as

r >
∑
i

mi(1 + Λr) ≡ rc. (S17)

C. Effects of non-specific binding of RNA polymerases

In the main text, we mainly discuss eukaryotic cells in which non-specific binding of RNAPs is not relevant. However,
non-specific binding of RNAPs is believed to be significant in bacteria and a finite fraction of DNA-bound RNAPs
are found to be inactively transcribing [5]. In this section, we discuss the transition from Phase 1 to Phase 2 taking
account of the non-specific binding of RNAPs. In this case, the conservation of total RNAP number becomes∑

i

gi(1 + Λn,i)
cnFn

cnFn +Kn
+ gns

cnFn

cnFn +Kns
= n− nFn (S18)

where gns is the number of non-specific binding sites and Kns is the non-specific binding Michaelis-Menten constant.
In the following, we assume that Kns � Kn which we believe is biologically reasonable. One necessary condition for
cells to be in Phase 1 is Fn � 1 therefore we can rewrite Eq. (S18) as∑

i

gi(1 + Λn,i)
cnFn

cnFn +Kn
+ gns

cnFn

cnFn +Kns
= n (S19)

To see under what conditions the mRNA production rate is proportional to n, we replace cnFn

cnFn+Kn
by x and rewrite

the above equation as

x+
gns
nc

Kn

Kns

x

1− x
=

n

nc
(S20)

where nc =
∑

i gi(1 + Λn,i) and we have used the assumption that Kns � Kn. We find the condition for x to be
proportional to n is that x � 1. Assuming gnsKn/Kns is comparable to or smaller than nc, the condition x � 1 is
equivalent to

n� nc. (S21)

We find that the condition for cells to be in Phase 1 becomes more stringent in the presence of non-specific binding.
In the following we focus on Phase 1 and consider a particular gene with the Michaelis-Menten constant Kn,i and its
transcription rate now becomes

kn,i = Γn,igi
n

Kn,i

Kn
(nc + gns

Kn

Kns
) + (1− Kn,i

Kn
)n
. (S22)

We find that when the cell is in Phase 1 so that n � nc, the mRNA production rates of most genes linearly scale
with cell volume. The mRNA production rates of those genes with Kn,i < Kn can still have a sublinear scaling with
cell volume since it is possible to make the two terms in the denominator of Eq. (S22) to be comparable for n� nc.
However, within Phase 1, the superlinear scaling of those genes with Kn,i > Kn is difficult to reach since the first
term is always much larger than the second term if n� nc.
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D. Protein mass-weighted average of Michaelis-Menten constant

In this section we argue that the appropriate average can be well approximated by the average weighted by the
protein mass fractions. Using the self-consistent Eq. (8) in Methods of the main text with heterogeneous Kn,i and
the definition of 〈Kn,i〉 as the substitution of Kn in Eq. (4) of the main text, we obtain the expression of 〈Kn,i〉 as∑

i gi(1 + Λn,i)
cnFn

cnFn+Kn,i∑
i gi(1 + Λn,i)

=
cnFn

cnFn + 〈Kn,i〉
, (S23)

therefore,

〈Kn,i〉 =
∑
i

χiKn,i, (S24)

where

χi =

gi(1+Λn,i)
cnFn+Kn,i∑
j

gj(1+Λn,j)
cnFn+Kn,j

. (S25)

We can compare the contributions of two genes as

χi

χj
=
gi(1 + Λn,i)(cnFn +Kn,j)

gj(1 + Λn,j)(cnFn +Kn,i)
. (S26)

Meanwhile the ratio of the mRNA levels of two genes is

mi

mj
=

Γn,igiτm,i(cnFn +Kn,j)

Γn,jgjτm,j(cnFn +Kn,i)
. (S27)

The corresponding ratio of protein mass can be approximated as

Mp,i

Mp,j
≈

dMp,i

dt
dMp,j

dt

≈ miLi

mjLj
=

Λn,igiτm,i(cnFn +Kn,j)

Λn,jgjτm,j(cnFn +Kn,i)
. (S28)

Here we have used Λn,i = Γn,iLi/vn. Comparing Eqs. (S26) and (S28), we find that these two ratios are highly
correlated, validating our choice of the weight as the protein mass fraction.

E. Heterogeneous initiation rates

We extend our simulations in the main text (Figure 3a, b) to include heterogeneous initiation rates. We first
computed the initiation rates that are constant for genes except RNAP and ribosome, using the same protocol as the
one introduced in Methods of the main text. We then added noises to the initiation rates Γn,i so that the distribution
becomes a lognormal distribution with the the average the same as the constant value before adding noises. The
coefficient of variation (CV) of the distribution is equal to 1. We then added the effects of fluctuating initiation

rates to the Michaelis-Menten constant Kn,i as Kn,i = K0
n,i +

Γn,i

kon
where kon = 0.01 and K0

n,i follows a lognormal

distribution with mean equal to 6× 103/µm3 and CV equal to 0.5.
We also simulated a modified model to mimic a scenario in which the nonlinear scaling has nothing to do with the

recruitment abilities. We considered two sets of Michaelis-Menten constants such that they share the same randomness

of the heterogeneous initiation rates Kn,i = K0
n,i +

Γn,i

kon
, but their random off-rates koff,i are independent of each

other so that their K0
n,i are different. The simulation is the same as Figure 6b, except that the nonlinear degrees

and the mRNA production rates are calculated using the two sets of Kn,i respectively to simulate the case that the
nonlinear scaling is independent of the Michaelis-Menten constants. We found that the Pearson correlation coefficient
between the nonlinear scalings and mRNA production rates becomes negative rather than positive (Figure 6d), in
contrast to the original model. We repeated the simulation multiple times and find that the correlation coefficient in
the modified model is always smaller than that of the original model (Figure 6e).
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F. Simulations of periodic cell cycle

In this section, we simulated the case of periodic cell cycle. We chose two degradable proteins, one superlinear and
one sublinear, and used the ratio of their concentrations to determine the timing of cell division. When the ratio of
their concentrations exceeds some threshold value, the cell divides, in concert with the idea that the ratio of cell cycle
regulators determines cell division [6]. Note that we also have an additional requirement on the minimum cell-cycle
duration to avoid cell division immediately after cell birth.

We considered symmetric division so that all mRNAs and proteins are symmetrically distributed between the two
daughter cells. For simplicity, we assumed that the Michaelis-Menten constants of RNAP binding and ribosome
binding are constant in time and constant gene copy numbers. Note that our qualitative results are independent of
these assumptions and in more realistic models, these time dependences must be considered. We tracked a single
lineage of cell so that we monitored one of the daughter cells after cell division. In the simulations, we took the
lifetimes of mRNAs and degradable proteins as 5 mins. The sublinear and superlinear proteins that we used as the
signal proteins respectively have Kn,i ≈ 970 and Kn,i = 2.8× 104. The cell divides when the ratio of the superlinear
protein concentration and the sublinear protein concentration exceeds 0.3. Other simulation details are the same as
Figure 3a, b in the main text.

We found that for superlinear genes, their mRNA and protein concentrations decrease initially at the beginning of
the cell cycle due to the halved RNAP number at cell birth, but quickly increases as the RNAP number increases (vice
versa for sublinear genes). As the cell gets the periodic steady state, all mRNAs and proteins double their numbers
at cell division compared with cell birth (Figure 12).
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Table S1: A summary of the parameters used in the numerical simulations if not mentioned in the text. Note that
some of the parameters may not be realistic estimations of any specific organisms and our main conclusions are
independent of the chosen parameters.

Parameters Meaning Values
µ0 attempted growth rate 0.5 division per hour

τp,i lifetime of degradable proteins 10 min

vr translational speed of ribosome 12 aa/sec

vn transcriptional speed of RNAP 36 nt/sec

N number of genes 2000

Lr number of amino acids of ribosome 104

Ln number of amino acids of RNAP 103

Li number of amino acids of other proteins 500

Γr initiation rate of translation 10 min−1

Kr Michaelis-Menten constant of ribosome binding 6000/µm3

ρ ratio between total protein mass and cell volume 1010 aa/µm3

a ratio between cell volume and nuclear volume 20
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Supplementary Figure 2 Numerical simulations of the homogeneous model in which all genes share the same
recruitment ability to RNAPs. (a) The cell volume grows exponentially, which is proportional to the total protein
mass. (b) The mRNA copy number is proportional to the cell volume. (c) The protein number increment is
proportional to the cell volume increment for non-degradable proteins. (d) The protein copy number is proportional
to the cell volume for degradable proteins.
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Table S2: Transcription factors binding motifs annotated in Yeastract database[7] enriched in the sublinear regime.

TF Gene ORF Motif TF Gene ORF Motif

ABF2 YMR072W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7
MOT3 YMR070W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6

ACA1 YER045C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8
MOT3 YMR070W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6

ARG80 YMR042W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10
MSN2 YMR037C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5

ARR1 YPR199C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10 11 12 13
PDR8 YLR266C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8

CAD1 YDR423C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8
RLM1 YPL089C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10

CIN5 YOR028C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10 11
RME1 YGR044C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10 11

CST6 YIL036W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8
SFL1 YOR140W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9

ECM22 YLR228C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10
SIP4 YJL089W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10 11 12 13

FHL1 YPR104C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10111213141516171819
SKO1 YNL167C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8

FKH1 YIL131C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9
SKO1 YNL167C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8

FZF1 YGL254W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6
SMP1 YBR182C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

GAT3 YLR013W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7
SRD1 YCR018C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7

GCN4 YEL009C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8
SRD1 YCR018C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8

GCN4 YEL009C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8
STB5 YHR178W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10 11

GCN4 YEL009C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8
STE12 YHR084W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7

GCN4 YEL009C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7
SUM1 YDR310C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7

GCN4 YEL009C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8
TBF1 YPL128C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 101112131415161718

GCN4 YEL009C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8
TEC1 YBR083W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8

GCN4 YEL009C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7
TEC1 YBR083W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6

GCN4 YEL009C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8
UPC2 YDR213W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7

GIS1 YDR096W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8
URC2 YDR520C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9

GLN3 YER040W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 1011121314151617181920
VHR1 YIL056W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10

GLN3 YER040W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6
XBP1 YIL101C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10111213141516171819

HSF1 YGL073W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
XBP1 YIL101C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6

HSF1 YGL073W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10
XBP1 YIL101C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5

HSF1 YGL073W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 910111213141516171819202122232425
YAP1 YML007W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 101112131415161718

INO2 YDR123C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10
YAP1 YML007W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7

INO4 YOL108C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10
YAP1 YML007W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7

IXR1 YKL032C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
YAP1 YML007W 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8

KAR4 YCL055W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
YAP3 YHL009C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8

MATALPHA2 YCR039C 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8
YAP3 YHL009C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8

MCM1 YMR043W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8
YAP3 YHL009C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7

MCM1 YMR043W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8
YAP3 YHL009C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10

MGA1 YGR249W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 1011121314151617181920
YAP6 YDR259C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10111213141516171819

MGA1 YGR249W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6
VHR2 YER064C 0.00

0.25
0.50
0.75
1.00

1 2 3 4 5 6 7 8 9 10

MOT3 YMR070W 0.00
0.25
0.50
0.75
1.00

1 2 3 4 5 6
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Supplementary Figure 3 Numerical simulations of the simple model in which all genes share the same
recruitment ability to RNAPs except two genes. We show the scaling behaviors of degradable proteins here with
lifetime τp,i = 10 min (a) and τp,i = 40 min (b). The dashed lines are the theoretical predictions which are the same
as those of mRNAs. In (a), we take the simulation results at t = 100 as the initial values to remove the transient
effects and. In (b), we take the simulation results at t = 150 as the initial values.
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Supplementary Figure 4 Numerical simulations of the full model in which Kn,i is continuously distributed. (a)
Examples of mRNA numbers vs. cell volume including superlinear and sublinear scaling. The dashed line is the
y = x line. (b) Examples of non-degradable protein number vs. cell volume. The dashed line is the y = x line. (c)
Distribution of the measured nonlinear degrees α of non-degradable protein numbers from numerical simulations.
The dashed line marks the location of the median value of the nonlinear degrees. (d) We compare the theoretically
predicted nonlinear degrees of protein numbers and the measured values from numerical simulations. (e) The
mRNA production rate at time zero v.s. their corresponding nonlinear degrees. (f) We show some examples of the
scaling behaviors of degradable proteins. The dashed line is the y = x line. (g) Distribution of the measured
nonlinear degrees β of degradable protein numbers from numerical simulations. The dashed line marks the location
of the median value of the nonlinear degrees. (h) We compare the theoretically predicted nonlinear degrees of
degradable proteins and the measured values from numerical simulations.
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Supplementary Figure 5 We compare the theoretically predicted nonlinear degrees of mRNA numbers and the
measured one from numerical simulations. In both panels, the coefficient of variation of the MM constants is 1. (a)
The average MM constant is computed as a weighted average over the initial protein mass fractions. (b) The same
simulations as the left panel, but the weight is based on the time-averaged protein mass fractions over the total
duration of simulation.
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Supplementary Figure 6 We simulate the more general model in which Kn,i = (koff,i + Γn,i)/kon. The p values
are generated from the two-sided Pearson correlation test. (a) In this panel, Γn,i is constant (except for ribosome
and RNAP). The Pearson correlation coefficient between the mRNA production rates (y axis) and the nonlinear
degrees of mRNA numbers is 0.86 with the p value < 2.20e-16. (b) We add heterogeneity to Γn,i so that its
coefficient of variation (standard deviation/mean) is 1. The Pearson correlation coefficient is reduced to 0.18 with
the p value = 3.27e-16, close to the experimental value, 0.17 (Figure 4b in the main text). (c) We confirm that our
main results on the relation between the nonlinear degree and the Michaelis-Menten constant are still valid in the
presence of heterogeneity in Γn,i. (d) The negative correlation between the mRNA production rates and the
nonlinear scaling for the model in which the recruitment abilities do not affect the nonlinear scaling. The Pearson
correlation coefficient is reduced to −0.16 with the p value = 4.02e-13. (e) We repeat the simulations multiple times
and compare the correlation coefficients of the two models. The correlation coefficients of the model in which the
recruitment ability does not influence the nonlinear scaling (ρ2) are negative and always smaller than those of our
model (ρ1).
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Supplementary Figure 7 The y axis is the minus nonlinear scale in Ref. [6] calculated as the slope in the linear
fitting of mRNA concentration vs. cell volume. The x axis is the nonlinear degree β defined in this work. The
Spearman correlation coefficient is 0.8741426 (two-sided Spearman correlation test, p value < 2.20e-16). The red
points are the median values after binning.

Supplementary Figure 8 We compare the numerically simulated distribution of nonlinear degrees (circles) and
the experimentally measured distribution. In the simulation, the distribution of the Michaelis-Menten constants
follow a lognormal distribution with a coefficient of variation equal to 0.8. nc = 3200 and the simulations stop when
the total protein mass are larger than 2.5Mb. Other simulation details are the same as Figure 3 in the main text.
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Supplementary Figure 9 Functional gene sets enriched in the nonlinear scaling regime. GeneRatio represents
tags in GSEA, which is the fraction of leading-edge genes in genes both occurring in our list and in the
corresponding gene set. Point size represents the number of leading-edge genes. Single-sided permutation test of
GSEA was performed and colors of the points represent the adjusted p value (FDR). Names of the gene sets are
followed by their IDs in KEGG data base[8–10].
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Supplementary Figure 10 The RPKM values of RNA polymerase II genes and their average value. There are 52
genes annotated as RNA polymerase II holoenzyme in Gene Ontology database using AmiGO [11–13]. Error bars
represent standard errors (SE). Two-sided Wilcoxon test results show no significant between-groups differences (V1
vs. V2: W = 1196, p value = 3.12e-1; V2 vs. V3: W = 1390, p value = 8.07e-1; V3 vs. V4: W = 1357, p value =
9.77e-1; V4 vs. V5: W = 1312, p value = 7.97e-1).
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Supplementary Figure 11 Numerical simulations of the full model in which Kn,r is larger than 〈Kn,i〉. The
nonlinear degree β of the ribosome gene is about −0.2. (a) We compare the theoretically predicted nonlinear degrees
of mRNA numbers and the measured values from numerical simulations. (b) We compare the theoretically predicted
nonlinear degrees of protein numbers and the measured values from numerical simulations.
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Supplementary Figure 12 Simulations of periodic cell cycle. (a) The time trajectory of total protein mass in the
periodic cell cycle simulation. (b) The time trajectory of the two signal proteins, one superlinear (blue) and one
sublinear (red). The cell divides when the ratio of their concentrations exceeds some threshold value. Note that the
y axis of the blue curve is multiplied by six to better illustrate the data. (c) The volume-dependence of superlinear
(blue) and sublinear (red) mRNA numbers. (d) The same analysis as (c) for non-degradable proteins.
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Supplementary Figure 13 Based on the conservation of the total number of RNAPs, a self-consistent equation,
as shown in the figure, is derived for the case of homogeneous recruitment abilities to RNAPs (Eq. (8) in Methods
of the main text). Here n is the total number of RNAPs, nc =

∑
i gi(1 + Λn,i), and Fn is the fraction of free

RNAPs. cn is the concentration of total RNAPs in the nucleus. All variables except Fn are given. The blue curve
and the black line are respectively the left and right sides of the equation shown in the figure. The intersection of
the two curves allows us to find the Fn that solves the self-consistent equation. Assuming Kn/cn � 1, the fraction
of free RNAPs Fn that solves Eq. (8) in Methods must be much smaller than 1 if n < nc.


