1	The Small Molecule Zaractin Activates ZAR1-Mediated Immunity in Arabidopsis
2	Authors: Derek Seto ¹ , Madiha Khan ^{1,3} , D. Patrick Bastedo ¹ , Alexandre Martel ¹ , Trinh Vo ¹ , David
3	Guttman ^{1,2} , Rajagopal Subramaniam ^{1,3} *, Darrell Desveaux ^{1,2} *
4	¹ Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
5	² Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario,
6	Canada
7	³ Agriculture and Agri-Food Canada, Carleton University, Ottawa, Ontario, Canada
8	[¶] These authors contributed equally
9	* Corresponding authors: rajagopal.subramaniam@agr.gc.ca, darrell.desveaux@utoronto.ca
10	Supporting Information
11	
12	
13	
14	
15	
16	
17	
18	
10	

PtoDC3000(hopF1r)

1	Supplementary Fig. 2 Multiple Arabidopsis <i>pbl</i> knockout lines remain resistant to
2	PtoDC3000(hopF1r). Disease phenotypes of Col-0, zar1-1, or indicated pbl knockout Arabidopsis plants
3	after spraying with <i>Pto</i> DC3000(<i>hopF1r</i>) or <i>Pto</i> DC3000(EV) at OD ₆₀₀ = 1.0. Symptoms pictured are 14 days
4	post-infection. T-DNA insertion lines are listed in Table S1 and were all genotyped for homozygosity.
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

11 Supplementary Fig. 3 | Multiple Arabidopsis *pbl* knockout lines remain resistant to

12 PtoDC3000(hopF1r) as demonstrated by bacterial growth assays. Bacterial growth on Arabidopsis Col-

13	0, zar1-1, (A) pbl8,	, pbl15, (B) pbl21,	(C) pbs1, or pbl30 plants aft	er spraying with <i>Pto</i> DC3000(<i>hopF1r</i>) or
----	----------------------	----------------------------	-------------------------------	--

*Pto*DC3000(EV) as indicated at OD₆₀₀ = 1.0. Letters represent statistically significant differences (Tukey's

15	HSD. P < 0.05). T-DI	NA insertion lines are	e listed in Table S1	and were all genot	vped for homozygosity.
10	100)1 000,1101			. and mere an genot	, pea 101 11011102, 60510, 1

1 Supplementary Fig. 4 | BIK1 is not required for HopF1r-triggered immunity in Arabidopsis. (A) Disease 2 phenotypes of Col-0, zar1-1, or bik1 Arabidopsis plants after spraying with PtoDC3000(hopF1r) at OD₆₀₀ = 3 1.0. Symptoms pictured are 14 days post-infection. (B) Growth of PtoDC3000(hopF1r) (grey) or PIDIQ 4 disease quantification (white) on Col-0, zar1-1, and bik1 plants. Bacterial counts were taken at 3 days 5 post-infection. Lowercase letters represent statistically significant differences (Tukey's HSD, P < 0.05). 6 Experiments were replicated three times with similar results. Capital letters represent statistically 7 significant differences for PIDIQ disease quantification (Tukey's HSD, P < 0.05). *bik1* line was genotyped 8 for homozygosity.

6 represent statistically significant differences (Tukey's HSD, P < 0.05). Experiments were replicated three

- 7 times with similar results.

- 1 Supplementary Fig. 6 | Purified HopF1r and HopF1r^{D/A} used for ADP-ribosylation. The same amount of
- 2 purified His::HopF1r or His::HopF1r^{D/A} used in the ADP-ribosylation assay (Fig. 1D) was run on SDS-PAGE
- 3 and Coomassie stained (CBB) to indicate size and equal loading of enzyme. Dashed arrow indicates
- 4 position of His::HopF1r (~25 kDa).

12	Supplementary Fig. 7 Chemical screen to induce the ZRK3-PBL27 interaction. Y2H assay screening
13	plates of induced interactions between ZRK3 and PBL27 against a subset of the Yeast-Active chemical
14	library showing the three top hits of the screen. All chemicals were tested at a concentration of 30 μ M.
15	The first column of each plate includes two positive control (+) wells [HopZ1a-induced ZED1-PBL15
16	interaction] ⁶ , and 6 negative control (-) wells (DMSO). Structures of chemicals identified as strongest
17	inducers of ZRK3-PBL27 interactions from Y2H chemical screen and their common backbone are
18	displayed below.

														Bait:	ZED1													
			[omso)				Con	npou	nd 1 ((Zara	ctin)				Con	npou	nd 2					Con	npou	nd 3		
	۲						•	۲						•	•				•	•	•	•						•
								•						•	•							•						•
BLS								0						•	•						•	•						•
ray:								•						•							•	•						•
ey ar								•						•						•	•	•	•		•			•
٤								۲						•	•						•	•						•
	•														•		•											
	•		•			-		•	•	•	•				•		•					•			•			
	PBL21	PBL42	PBL19	PBL28	PBL37	PBL32	SZE1	PBL21	PBL42	PBL19	PBL28	PBL37	PBL32	SZE1	PBL21	PBL42	PBL19	PBL28	PBL37	PBL32	SZE1	PBL21	PBL42	PBL19	PBL28	PBL37	PBL32	SZE1
	PBL20	PBL41	PBL15	PBL4	PBL40	PBL31		PBL20	PBL41	PBL15	PBL4	PBL40	PBL31		PBL20	PBL41	PBL15	PBL4	PBL40	PBL31		PBL20	PBL41	PBL15	PBL4	PBL40	PBL31	
	PBL13	PBL33	PBL3	PBL5	PBL6	PBL1	SZE2	PBL13	PBL33	PBL3	PBL5	PBL6	PBL1	SZE2	PBL13	PBL33	PBL3	PBL5	PBL6	PBL1	SZE2	PBL13	PBL33	PBL3	PBL5	PBL6	PBL1	SZE2
	PBL12	PBL27	PBL29	PBL16	PBS1	PBL10		PBL12	PBL27	PBL29	PBL16	PBS1	PBL10		PBL12	PBL27	PBL29	PBL16	PBS1	PBL10		PBL12	PBL27	PBL29	PBL16	PBS1	PBL10	
	PBL11	PBL25	PBL39	BIK1	PBL38	PBL2	PBL36	PBL11	PBL25	PBL39	BIK1	PBL38	PBL2	PBL36	PBL11	PBL25	PBL39	BIK1	PBL38	PBL2	PBL36	PBL11	PBL25	PBL39	BIK1	PBL38	PBL2	PBL36
	PBL8	PBL24	PBL26	PBL35	PBL17	PBL18	RIPK	PBL8	PBL24	PBL26	PBL35	PBL17	PBL18	RIPK	PBL8	PBL24	PBL26	PBL35	PBL17	PBL18	RIPK	PBL8	PBL24	PBL26	PBL35	PBL17	PBL18	RIPK
	PBL7	PBL23	PBL9	PBL34				PBL7	PBL23	PBL9	PBL34				PBL7	PBL23	PBL9	PBL34				PBL7	PBL23	PBL9	PBL34			
	CDG1	PBL22	PBL43	PBL30				CDG1	PBL22	PBL43	PBL30				CDG1	PBL22	PBL43	PBL30				CDG1	PBL22	PBL43	PBL30			

2 Supplementary Fig. 8 | Zaractin and related chemicals do not induce a ZED1-PBL27 interaction. Y2H

3 assay testing interactions between ZED1 and a PBL array against chemicals that were identified as the

4 strongest inducers of the ZRK3-PBL27 interaction (Fig. S7). Panels from left to right: DMSO, Compound 1

5 (Zaractin), Compound 2, Compound 3. All chemicals were tested at a concentration of 30 μM.

6 Interaction layouts are depicted on right. Grey boxes are not relevant to this study.

Col-0

DMSO

zar1-3

Col-0

zar1-3

Cmpd 3 (300 µM)

0

1

Col-0

zar1-3

DMSO

Col-0

zar1-3

Cmpd 1 (Zaractin 300 µM)

1	Supplementary Fig. 9 Immune induction dose-response for the three compounds identified in our
2	chemical screen. (A) Growth of PtoDC3000 on Col-0 or zar1-3 Arabidopsis plants treated with DMSO or
3	150 μ M of indicated compound 2 days before infection. Duplicate experiments are shown for
4	Compound 1 (Zaractin; left panels), Compound 2 (middle panels), and Compound 3 (right panels). (B)
5	Growth of <i>Pto</i> DC3000 on Col-0 or <i>zar1-3</i> plants treated with DMSO or 300 μ M of indicated compound 2
6	days before infection. Duplicate experiments are shown for Compound 1 (Zaractin; left panels) and
7	Compound 3 (right panels). Plants were sprayed with <i>Pto</i> DC3000 at OD ₆₀₀ = 1.0. Letters represent
8	significance groups (Tukey's HSD, P < 0.05).
9	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
10	
10	
19	
20	

2 Supplementary Fig. 10 | Zaractin triggers immunity in a ZAR1-dependent manner using an

independent T-DNA line. Growth of *Pto*DC3000 on Col-0 or *zar1-1* Arabidopsis plants treated with

4 DMSO or 300 μM Compound 1 (Zaractin) 2 days before infection. Plants were sprayed with *Pto*DC3000

5 at OD₆₀₀ = 1.0. Letters represent statistically significant differences (Tukey's HSD, P < 0.05).

- -

3	Supplementary Fig. 11 Modification of the Zaractin R group compromises its activity. Growth of
4	PtoDC3000 on Arabidopsis Col-0 plants treated with DMSO, 300 μ M Compound 1 (Zaractin), or 300 μ M
5	of a closely related compound (Chembridge ID: 5630194) 2 days before infection. Plants were sprayed
6	with <i>Pto</i> DC3000 at OD_{600} = 1.0. Letters represent statistically significant differences (Tukey's HSD, P <
7	0.05).
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	

3 Supplementary Fig. 12 | Zaractin does not trigger a hypersensitive response in Arabidopsis.

*Pto*DC3000 (EV), *Pto*DC3000(*hopZ1a*), DMSO, BTH, or Zaractin were infiltrated into half leaves of
Arabidopsis Col-0 plants. The images were taken 16 h post-infection (hours post infiltration). The
proportion of leaves showing an HR is indicated below each construct.

2 Supplementary Fig. 13 | Purification of His::BIK , His::PBL27, and GST::ZRK3 tagged proteins. Both

- 3 His::BIK1 and His::PBL27 proteins were purified by CapturemTM His-tagged purification kit, and
- 4 GST::ZRK3 proteins were purified with Glutathione Sepharose 4B matrix. The proteins were visualized by
- 5 Coomassie stain (CBB) and confirmed by Western blot analysis (WB) with His-HRP and GST-HRP
- 6 conjugated antibodies.
- 7
- 8
- 9

2 Supplementary Fig. 15 | Zaractin insensitivity is not a general property of T-DNA insertion lines.

3 Growth of *Pto*DC3000 on Arabidopsis Col-0, (A) *zrk2-1*, or (B) *pbl7-1* plants treated with DMSO or 300

4 μ M Compound 1 (Zaractin) 2 days before infection. Plants were sprayed with *Pto*DC3000 at OD₆₀₀ = 1.0.

5 Letters represent statistically significant differences (Tukey's HSD, P < 0.05).

Table S1: List of ZRK3-PBL Y2H interactions.

ZRK3 interaction type	Gene locus	PBL/Gene name	T-DNA line
Not enhanced by HopF1r	At5g11360	BKN3	SALK_092036
	At5g11400	BKN1	<i>bkn1-3</i> (Daphne Goring: CRISPR)
	At5g11410	SZE2 (BKN2)	<i>bkn2-2</i> (Daphne Goring: CRISPR)
HopF1r-enhanced	At1g20650	PBL21	SALK_031606
	At1g61590	PBL15	SALK_055095
	At1g69790	PBL18	SALK_202072
	At1g76370	PBL22	SALK_045159
	At2g39660	BIK1	SALK_005291 (Jacqueline Monaghan)
	At3g24790	PBL25	SALK_036509
	At4g35600	PBL30	SALK_099176
	At5g01020	PBL8	SALK_044339
	At5g13160	PBS1	SALK_023996
	At5g18610	PBL27	CS408439 (pbl27-1); CS400031 (pbl27-2)
	At5g25440	SZE1	SALK_083971 (<i>sze1-3</i>)
	At5g35580	PBL13	SALK_203557

1 Table S2: List of chemicals used for Y2H experiments	í
--	---

2	Chemical Structure	Name	Source
3	S-CH _a	Acibenzolar-S-methyl (benzothiadiazole/BTH deriviative)	MilliporeSigma Product #: 32820
4	S N OH	Compound 1 (Zaractin): Benzaldehyde, 3-hydroxy-, 2-(2-benzothiazolyl)hydrazone	Chembridge ID #: 5492030
6		Compound 2: 4-Pyridinecarboxaldehyde, 2-(2-benzothiazolyl)hydrazone	Chembridge ID #: 5309607
7 8		Compound 3: 3-Pyridinecarboxaldehyde, 2-(2-benzothiazolyl)hydrazone	Chembridge ID #: 5537928
9	NH,	1,3-benzothiazol-2-amine	Chembridge ID #: 5108799
10		acetone 1,3-benzothiazol- 2-ylhydrazone	Chembridge ID #: 5549542
11 12		4-(dimethylamino) benzaldehyde 1,3- benzothiazol-2-ylhydrazone	Chembridge ID #: 5483044
13		4-fluorobenzaldehyde 1,3-benzothiazol-2-ylhydrazone	Chembridge ID #: 5630194
14		1-methyl-2-[(2E)-2- [(pyridin-4-yl)methylidene] hydrazin-1-yl]-1H-1,3-	Molport-002-929-064
15		penzoulazole	

Table S3: Binding of Zaractin to PBL27 by thermal shift assay

	PBL27	BIK1
Control	49.3 ± 0.42	45.1 ± 0.87
Zaractin (30 nM)	47.6 ± 0.59*	45.3 ± 0.81
BTH (30 nM)	48.3 ± 0.3	45.9 ± 1.8

3 Values represent mean melting temperature (°C) with standard error. * Represents significant difference

4 from the corresponding control treatment (P < 0.05). Data is representative of four independent

5 biological samples with four technical replicates in each experiment.