

Supplementary Information for

Network-based Forecasting of Climate Phenomena

Josef Ludescher, Maria Martin, Niklas Boers, Armin Bunde, Catrin Ciemer, Jingfang Fan, Shlomo Havlin, Marlene Kretschmer, Jürgen Kurths, Jakob Runge, Veronika Stolbova, Elena Surovyatkina, Hans Joachim Schellnhuber

E-mail: josef.ludescher@pik-potsdam.de or maria.martin@pik-potsdam.de

This PDF file includes:

Fig. S1 Table S1 SI References

Fig. S1. Results of the network analysis and propagation of extreme rainfall from southeastern South America to the eastern Central Andes. The figure shows the network divergence of a directed and weighted network constructed from 3-hourly rainfall events above the 99th percentile. The network divergence is defined as the difference of in-strength and out-strength at each grid cell, $\Delta S_i = S_i^{in} - S_o^{out}$, where the in- and out-strengths at each node are themselves given by the sums of all network weights assigned to directed links leading into and out of that node. Positive values thus indicate sinks of the directed and weighted network, which are interpreted as locations where synchronized extreme rainfall occurs within 2 days after it occurred at several other locations. Negative values indicate sources, that is, locations where synchronized rainfall occurs within 2 days before it occurs at several other locations. The boxes labelled 1 to 7 track the path of the extreme events from southeastern South America toward the Central Andes. Figure adapted with permission from ref. (4), copyright 2014 Nature Publishing Group.

Phenomenon	Network Forecast	Comparable state-of-the-art	Similar state-of-the-art oper-
		operational forecast	ational forecast
El Niño onset	73% of El Niño onsets and	No comparable 12 months	Forecasts for Nov-Jan pro-
	89% of their absences were	ahead forecast available.	vide less than 10% explained
	correctly hindcasted or fore-		variance when initiated in
	casted in the calendar year		February and more than 80%
	before. Mean lead time be-		when initiated in September

Table S1. Comparison between network-based forecasts and comparable or similar state-of-the-art operational forecasts, to the best of our knowledge.

			J
	before. Mean lead time be-		when initiated in September
	fore an El Niño onset is 12		of the same year (2) .
	months (1) .		
Droughts in the Central	Six out of the seven most se-	No prior attempt to fore-	Same as left.
Amazon	vere droughts in the last four	cast this specific climate phe-	
	decades were hindcasted at	nomenon.	
	lead times of 12 to 18 months		
	(3).		
Extreme Rainfall in the east-	Up to 2 days lead time	No prior attempt to fore-	Same as left.
ern Central Andes	for correctly forecasting 60%	cast this specific climate phe-	
	(90% during El Niño condi-	nomenon.	
	tions) of the extreme rainfall		
	events (4).		
Indian summer monsoon on-	73% (84%) correct onset	No dedicated long-term fore-	Two weeks in advance on-
set and withdrawal	(withdrawal) hindcasts for	cast for Central India, stan-	set forecast for Kerala in
	Central India for 1965-2015	dard weather forecast of	South India, no dedicated
	(5). All forward-looking on-	about 5 days (7) .	withdrawal date forecast (7) .
	set (withdrawal) forecasts		
	with 40 (70) days lead time		
	were correct for 2016-2020		
	(6).		
Extreme stratospheric polar	Predictive skill up to 45	No prior attempt to forecast	Predictability up to 30 days
vortex states	days for extreme 15-day-	a 15-day-mean of the SPV.	for daily events, but strongly
	mean events (8)		varying for individual events
			and usually much shorter
			(9).

References

- 1. J. Ludescher *et al.*, Improved El Niño forecasting by cooperativity detection. *Proc. Natl. Acad. Sci. USA* **110**, 11742-11745 (2013).
- 2. NOAA climate.gov. https://www.climate.gov/news-features/blogs/enso/spring-predictability-barrier-we%E2%80%99d-rather-be-spring-break. Accessed February 12 2021.
- 3. C. Ciemer *et al.*, An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures. *Environmental Research Letters* **15**, 9, 094087, https://doi.org/10.1088/1748-9326/ab9cff (2020).
- 4. N. Boers *et al.*, Prediction of extreme floods in the eastern Central Andes based on a complex networks approach. *Nature Commun.* **5**, 5199 doi: 10.1038/ncomms6199 (2014).
- 5. V. Stolbova, E. Surovyatkina, B. Bookhagen, J. Kurths, Tipping elements of the Indian monsoon: Prediction of onset and withdrawal. *Geophys. Res. Lett.* **43**, 8, 3982-3990 (2016).
- Potsdam Institute for Climate Impact Research, Monsoon Page. https://www.pik-potsdam.de/services/infodesk/forecastingindian-monsoon. Accessed July 31 2020.
- 7. D. S. Pai, R. M. Nair, Summer monsoon onset over Kerala: new definition and prediction. J. Earth Syst. Sci. 118, 123-135 (2009).
- 8. M. Kretschmer, J. Runge, D. Coumou, Early prediction of extreme stratospheric polar vortex states based on causal precursors. *Geophys. Res. Lett.* 44, 16, 8592-8600 (2017).
- 9. D. I. Domeisen *et al.*, The role of the stratosphere in subseasonal to seasonal prediction Part I: Predictability of the stratosphere. J. Geophys. Res. Atmos., **125**, e2019JD030920 (2020).