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1 Introduction39

In this Supporting Information, we provide extended analysis and discussion to support the results40

presented in the main text. In Sec. 2, we describe how the flux vectors (in Figs. 1D-E and 2C41

of the main text) are calculated and illustrated. In Sec. 3, we show that principal component42

analysis (PCA) provides a natural low-dimensional embedding of neural dynamics that we can use43

to visualize fluxes between brain states. In Sec. 4, we show that, although the brain functions44

out of equilibrium, it does operate at a steady state. Demonstrating that the brain operates at a45

non-equilibrium steady state opens the door for future investigations using tools and intuitions that46

have recently been generalized from equilibrium statistical mechanics.1–3 In Sec. 5, we show that47

if one shuffles the order of neural time-series data (thereby destroying the arrow of time), then48

the fluxes between states vanish and the system returns to equilibrium. In Sec. 6, we establish49

that estimating entropy production using hierarchical clustering yields two desirable properties.50

First, because a system’s entropy production can only decrease with coarse-graining,4 in order51

to establish that a system is fundamentally out of equilibrium, one must simply demonstrate that52

the coarse-grained entropy production is significantly greater than zero. Second, by defining the53

clusters hierarchically,5 we prove that the estimated entropy production becomes more accurate as54

the number of clusters increases. In Sec. 7, we demonstrate how to choose the number of clusters55

(or coarse-grained states) k when estimating the entropy production. In Sec. 8, we illustrate the56

k = 8 coarse-grained states analyzed in the main text, and demonstrate that the brain operates at57

a steady state across all of the cognitive tasks. In Sec. 9, we present the fluxes between coarse-58

grained states in the neural dynamics as directed networks, which we refer to as flux networks.59

We demonstrate that these flux networks vary in structure across different cognitive tasks. In Sec.60

10, we estimate the entropy production of individual humans and demonstrate that, even at the61

individual level, physical and cognitive exertion yields increases in broken detailed balance. In62

Secs. 11-13, we show that the entropy production results in the main text do not depend on the63

assumption that the neural dynamics are Markovian (Sec. 11), are robust to reasonable variation64

in the number of coarse-grained states k (Sec. 12), and cannot be explained by head movement65

within the scanner, variance in the neural time-series, nor the lengths of blocks in different tasks66
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(Sec. 13). In Sec. 14, we compare our main results against phase-randomized surrogate data.67

Finally, in Sec. 15, we detail how the neural data was processed.68

2 Visualizing flux currents69

In order to visualize net fluxes in neural dynamics, we project the dynamics onto the first two70

principal components and employ a technique known as probability flux analysis.6 The net flux of71

transitions from a given state (x, y) to its neighboring states can be visualized using the flux vector72

u(x, y) =
1

2

(
ω(x−1,y),(x,y) + ω(x,y),(x+1,y)

ω(x,y−1),(x,y) + ω(x,y),(x,y+1)

)
. (S1)

To compute the errors for a given flux vector u(x), we calculate the covariance matrix Cov(u1(x), u2(x))73

by averaging over 100 bootstrapped trajectories (see Materials and Methods in the main text).74

Then, we illustrate the errors by plotting an ellipse whose axes are aligned with the eigenvectors75

of the covariance matrix and whose radii are equal to twice the square root of the corresponding76

eigenvalues (Fig. S1).77

3 Low-dimensional embedding using PCA78

In order to visualize net fluxes between states in a complex system, we must project the dynamics79

onto two dimensions. While any pair of dimensions can be used to probe for broken detailed bal-80

ance, a natural choice is the first two principal components of the time-series data. Indeed, principal81

u1

u2

u12σ

u22σ

Supporting Fig. 1 | Visualizing flux vectors. Schematic demonstrating how we illustrate the

flux of transitions through a state (vector) and the errors in estimating the flux (ellipse).
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Supporting Fig. 2 | PCA reveals low-dimensional embedding of neural dynamics. (A)

Cumulative fraction of variance explained by first ten principal components (line) and explained

variance for each individual principal component (bars) in the combined rest and gambling

data. (B) For the same principal components (calculated for the combined rest and gambling

data), we plot the cumulative fraction of variance explained (lines) and individual explained

variance (bars) for the rest (red) and gambling (blue) data.

component analysis has been widely used to uncover low-dimensional embeddings of large-scale82

neural dynamics.7, 8 Combining the time-series data from the rest and gambling task scans (that is,83

the data studied in Fig. 1 in the main text), we find that the first two principal components capture84

over 30% of the total variance in the observed recordings (Fig. S2A), thereby comprising a natural85

choice for two-dimensional projections. Moreover, we confirm that the projected dynamics cap-86

ture approximately the same amount of variance in both the rest and gambling tasks, confirming87

that PCA is not overfitting the neural dynamics in one task or another (Fig. S2B).88

4 The brain operates at a stochastic steady state89

In the main text, we established that the brain breaks detailed balance (Figs. 1 and 4). Yet we90

did not clarify whether this broken detailed balance arises from changes in the state probabilities91

themselves, or whether these probabilities are time-invariant and therefore the brain operates at a92

non-equilibrium steady state. Notably, some of the tools and intuitions developed in traditional93

statistical mechanics to study equilibrium systems have recently been generalized to systems that94

operate at non-equilibrium steady states.1 For example, Evans et al. generalized the second law95
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Supporing Fig. 3 | Small changes in state probabilities imply steady-state dynamics.

Change in state probabilities ṗi, normalized by the standard deviation σṗi , plotted as a function

of the first two principal components at rest (A) and during the gambling task (B).

of thermodynamics to non-equilibrium steady-state systems by discovering the (steady state) fluc-96

tuation theorem.2 More recently, Dieterich et al. showed that, by mapping their dynamics to an97

equilibrium system at an effective temperature, some non-equilibrium steady-state systems are98

governed by a generalization of the fluctuation-dissipation theorem.3 Thus, it is both interesting99

and practical to investigate whether the brain operates at a non-equilibrium steady state. We re-100

mark that by “non-equilibrium” we refer to the breaking of detailed balance at large scales, not the101

obvious non-equilibrium nature of the brain at the cellular and molecular scales.102

Previous analyses of fMRI time-series suggest that the brain indeed operates at steady state.9103

To test for steady state in our data, we must examine whether the state probabilities are stationary in104

time; that is, letting pi denote the probability of state i, we must determine whether ṗi = dpi/dt = 0105

for all states i. The change in the probability of a state is equal to the net rate at which transitions106

flow into versus out of a state. For the two-dimensional dynamics studied in Fig. 1 in the main107

text, this relation takes the form108

ṗ(x,y) = ω(x−1,y),(x,y) − ω(x,y),(x+1,y) + ω(x,y−1),(x,y) − ω(x,y),(x,y+1), (S2)

where ωij = (nij − nji)/ttot is the flux rate from state i to state j, nij is the number of observed109

transitions i→ j, and ttot is the temporal duration of the time-series.6110
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Here, we calculate the changes in state probabilities for both the rest and gambling scans.111

Across all states in both task conditions, we find that these changes are indistinguishable from112

zero when compared to statistical noise (Fig. S3). Specifically, the changes in state probabilities113

are much less than twice their standard deviations, indicating that they cannot be significantly114

distinguished from zero with a p-value less than 0.05. In Sec. 8, we confirm the same result (that115

the brain operates at steady-state) for the coarse-grained states analyzed in Fig. 4 in the main116

text. Combined with the findings in the main text, the stationarity of the neural state probabilities117

demonstrates that the brain operates at a non-equilibrium steady-state.118

5 Shuffling time-series restores detailed balance119

In Fig. 1 in the main text, we demonstrate that the brain breaks detailed balance by exhibiting120

net fluxes between states. Here we demonstrate that if the temporal order of the neural data is121

destroyed (say, by shuffling the time-series), then the fluxes vanish and detailed balance is restored.122

Specifically, for both the rest and gambling task scans, we generate 100 surrogate time-series123

with the order of the data randomly shuffled. Averaging across these shuffled time-series, we124

find that the fluxes between states are vanishingly small compared to statistical noise (Fig. S4),125

thus illustrating that the system has returned to detailed balance. We remark that other common126

surrogate data techniques, such as the random phases and amplitude adjusted Fourier transform127

surrogates, are not applicable here because they preserve the temporal structure of the time-series128

data.10
129

6 Estimating entropy production using hierarchical clustering130

Complex systems are often high-dimensional, with the number of possible states or configurations131

growing exponentially with the size of the system. In order to estimate the information entropy pro-132

duction of a complex system (Eq. 1 in the main text), we must reduce the number of states through133

the use of coarse-graining, or dimensionality reduction, techniques. Interestingly, the entropy pro-134

duction admits a number of strong properties under coarse-graining.4, 11–13 Of particular interest is135

the fact that the entropy production can only decrease under coarse-graining.4 Specifically, given136

two descriptions of a system, a “microscopic” description with states {i} and a “macroscopic”137
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Supporting Fig. 4 | Shuffled data do not exhibit fluxes between neural states. Prob-

ability distribution (color) and nearly imperceivable fluxes between states (arrows) for neural

dynamics, which are shuffled and projected onto the first two principal components, both at

rest (A) and during a gambling task (B). The flux scale is indicated in the upper right, and the

disks represent two-standard-deviation confidence intervals that arise due to finite data (see

Materials and Methods in the main text).

description with states {i′}, we say that the second description is a coarse-graining of the first138

if there exists a surjective map from the microstates {i} to the macrosctates {i′} (that is, if each139

microstate i maps to a unique macrostate i′; Fig. S5A). Given such a coarse-graining, Esposito140

showed4 that the entropy production of the macroscopic description Ṡ ′ can be no larger than that141

of the microscopic description Ṡ; in other words, the coarse-grained entropy production provides142

a lower bound for the original value, such that Ṡ ′ ≤ Ṡ.143

The monotonic decrease of the entropy production under coarse-graining implies two desir-144

able mathematical results. First, if one finds that any coarse-grained description of a system breaks145

detailed balance (that is, if the entropy production at any level of coarse-graining is significantly146

greater than zero), then one has immediately established that the full microscopic system breaks147

detailed balance. Thus, even without knowledge of the microscopic non-equilibrium processes at148

play, one can establish that the brain fundamentally breaks detailed balance at small scales simply149

by observing violations of detailed balance at large scales (Figs. 1 and 4 in the main text).150

By extending this logic, here we show that hierarchical clustering provides systematic im-151
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Supporting Fig. 5 | Hierarchy of lower bounds on entropy production. (A) Coarse-

graining is defined by a surjective map from a set of microstates {i} to a set of macrostates

{i′}. Under coarse-graining the entropy production cannot increase. (B) In hierarchical clus-

tering, states are iteratively combined to form new coarse-grained states (or clusters). Each

iteration defines a coarse-graining from k states to k− 1 states, thereby forming a hierarchy of

lower bounds on the entropy production.

provements to the entropy production estimates. In hierarchical clustering, each cluster (or coarse-152

grained state) at one level of description (with k clusters) maps to a unique cluster at the level below153

(with k− 1 clusters; Fig. S5B). This process can either be carried out by starting with a large num-154

ber of clusters and then iteratively picking pairs of clusters to combine (known as agglomerative155

clustering), or by starting with a small number of clusters and then iteratively picking one cluster to156

split into two (known as divisive clustering, which we employ in our analysis).14 In both cases, the157

mapping from k clusters to k − 1 clusters is surjective, thereby representing a coarse-graining of158

the system, as defined previously. Thus, letting Ṡ(k) denote the entropy production estimated with159

k clusters, hierarchical clustering defines a hierarchy of lower bounds on the microscopic entropy160

production Ṡmicro:161

0 = Ṡ(1) ≤ Ṡ(2) ≤ Ṡ(3) ≤ . . . ≤ Ṡmicro. (S3)

This hierarchy, in turn, demonstrates that the estimated entropy production Ṡ(k) becomes larger162

(and thus more accurate) with increasing k.163

We remark that the discussion above neglects finite data effects. We recall that estimating the164

entropy production requires first estimating the transition probabilities Pij from state i to state j.165

This means that for Markov systems with k clusters, one must estimate k2 different probabilities.166
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Thus, while increasing k improves the accuracy of the estimated entropy production in theory, in167

practice increasing k eventually leads to sampling issues that decrease the accuracy of the estimate.168

Given these competing influences, when analyzing real data the goal should be to choose k such169

that it is as large as possible while still providing accurate estimates of the transition probabilities.170

We discuss a systematic strategy for choosing k in the following section.171

7 Choosing the number of coarse-grained states172

As discussed above, when calculating the entropy production, we wish to choose a number of173

coarse-grained states k that is as large as possible while still arriving at an accurate estimate of the174

transition probabilities. One simple condition for estimating each transition probability Pij is that175

we observe the transition i → j at least once in the time-series. For all of the different tasks, Fig.176

S6A shows the fraction of the k2 state transitions that are left unobserved after coarse-graining with177

k clusters. We find that k = 8 is the largest number of clusters for which the fraction of unobserved178

transitions equals zero (within statistical errors) for all tasks; that is, the largest number of clusters179

for which all state transitions across all tasks were observed at least once. For this reason, we use180

k = 8 coarse-grained states to analyze the brain’s entropy production (Fig. 4 in the main text).181

Interestingly, we find that k = 8 coarse-grained states is a good choice for two additional182

reasons. The first comes from studying the amount of variance explained by k clusters (Fig. S6B).183

We find that the increase in explained variance from k − 1 to k clusters is roughly constant for184

k = 3 and 4, then k = 5 to 8, and then k = 9 to 16. This pattern means that k = 4, 8, and 16185

are natural choices for the number of coarse-grained states, since any further increase (say from186

k = 8 to 9) will yield a smaller improvement in explained variance. Similarly, the second reason187

for choosing k = 8 comes from studying the average distance between states within a cluster,188

which is known as the dispersion (Fig. S6C). Intuitively, a coarse-grained description with low189

dispersion provides a good fit of the observed data. Similar to the explained variance, we find that190

the decrease in dispersion from k − 1 to k clusters is nearly constant for k = 3 to 4, then k = 5191

to 8, and then k = 9 to 16, once again suggesting that k = 4, 8, and 16 are natural choices for the192

number of clusters. Together, these results demonstrate that the coarse-grained description with193
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Supporting Fig. 6 | Choosing the number of coarse-grained states k. (A) Fraction of

the k2 state transitions that remain unobserved after hierarchical clustering with k clusters for

the different tasks. Error bars represent two-standard-deviation confidence intervals that arise

due to finite data. (B) Percent variance explained (top) and the increase in explained variance

from k − 1 to k clusters (bottom) as functions of k. (C) Dispersion, or the average distance

between data points within a cluster (top), and the decrease in dispersion from k − 1 to k

clusters (bottom) as functions of k.

k = 8 states provides a good fit to the neural time-series data while still allowing for an accurate194

estimate of the entropy production in each task.195

8 Coarse-grained states and transition matrices196

We are now prepared to examine the k = 8 coarse-grained neural states and the transitions between197

them. In Fig. S7A, we project each of the eight coarse-grained states onto seven pre-defined198

cognitive systems.15 We find that each of the states corresponds to high-amplitude activity in one199

or two systems, and we label each state based on this high-amplitude activity.200

We can now measure the rate of transitions between the coarse-grained states during different201

cognitive tasks (Fig. S7B-I, left). We note that the transition rates are given simply by dividing202

the transition probabilities Pij by the fMRI repetition time ∆t = 0.72 s. At rest, we find that the203

transition rates appear nearly symmetric, indicating that the brain is close to detailed balance (Fig.204

S7B, left). By contrast, careful examination of the transition rates during the seven cognitive tasks205

reveals asymmetries, illustrating broken detailed balance (Fig. S7C-I, left).206
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ṗ i

1

x 10-2

Supporting Fig. 7 | Transitions between coarse-grained neural states. (A) Coarse-grained

neural states calculated using hierarchical clustering (k = 8), with surface plots indicating the
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z-scored activation of different brain regions. For each state, we calculate the cosine simi-

larity between its high-amplitude (green) and low-amplitude (orange) components and seven

pre-defined neural systems:15 default mode (DMN), frontoparietal (FPN), visual (VIS), somato-

motor (SOM), dorsal attention (DAT), ventral attention (VAT), and limbic (LIM). We label each

state according to its largest high-amplitude cosine similarities. (B-I) Transition rates (left)

between each of the eight coarse-grained states and the changes in state probabilities ṗi nor-

malized by their standard deviations σṗi (right) at rest (B) and during seven cognitive tasks:

emotional processing (C), working memory (D), social inference (E), language processing (F ),

relational matching (G), gambling (H), and motor execution (I). Transition rates are computed

by dividing the transition probabilities Pij by the fMRI repetition time ∆t = 0.72 s. Across all

panels, averages and standard deviations are computed over 100 bootstrap samples.

Given the transition rates, we can now determine whether the brain operates at steady state.207

We note that the rate of change of the state probability pi is given by208

ṗi =
1

∆t

∑
j

(Pji − Pij) . (S4)

Computing the change ṗi in the probability of each state in Fig. S7A, and normalizing by the209

standard deviation σṗi (computed over 100 bootstrap samples), we are able to determine whether210

any of the state probabilities vary significantly in time. Across all states in all tasks, we find that211

the changes in state probabilities are much less than twice their standard deviations (Fig. S7B-I,212

right). We therefore conclude, at least at this coarse-grained level, that the brain operates at steady213

state.214

9 Flux networks: Visualizing fluxes between coarse-grained states215

In Fig. 4 in the main text, we demonstrate that the brain has the capacity to operate at a wide216

range of distances from detailed balance. We did so by estimating the entropy production of neural217

dynamics during different cognitive tasks. In addition to investigating the entropy production, one218

can also examine the specific neural processes underlying the violations of detailed balance, which219

are encoded in the fluxes between neural states. The rate of flux from state i to state j is given220

by Pij − Pji, normalized by the fMRI repetition time ∆t = 0.72 s. In other words, the fluxes are221

simply the antisymmetric parts of the transition rates in Fig. S7. We find that these fluxes are small222

13
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Supporting Fig. 8 | Each cognitive task induces a unique pattern of fluxes. (A) Flux rates

between the eight coarse-grained states at rest and during the seven cognitive tasks. The

flux rate from state i to state j is given by Pij − Pji, normalized by the fMRI repetition time

∆t = 0.72 s. (B) Flux networks illustrating the fluxes in panel A. Edge weights indicate flux
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rates, and fluxes are only included if they are significant relative to the noise floor induced by

finite data (one-sided t-test, p < 0.001).

during rest, and much stronger during different cognitive tasks (Fig. S8A). Moreover, we find that223

each task induces a unique pattern of fluxes between neural states.224

To visualize the pattern of fluxes, we introduce the concept of a flux network, with nodes rep-225

resenting the coarse-grained states and directed edges reflecting fluxes between states (Fig. S8B).226

These networks illustrate, for example, that the fluxes almost vanish during rest, thereby indicating227

that the brain nearly obeys detailed balance. Interestingly, in the emotion, working memory, social,228

relational, and gambling tasks—all of which involve visual stimuli—the strongest fluxes connect229

visual (VIS) states. By contrast, these fluxes are weak in the language task, which only involves230

auditory stimuli. Finally, in the motor task, wherein subjects are prompted to execute physical231

movements, the dorsal attention (DAT) state mediates fluxes between disparate parts of the net-232

work, perhaps reflecting the role of the DAT system in directing goal-oriented attention.16, 17 In this233

way, broken detailed balance in the brain is not driven by a single subsystem, but rather involves234

different combinations of subsystems depending on the specific task being performed. Examining235

the structural properties and cognitive neuroscientific interpretations of these flux networks is an236

important direction for future studies.237

10 Entropy production in individual humans238

Throughout the main text, we combine the neural dynamics of all subjects in order to increase the239

statistical power of our analyses. However, it is also interesting to investigate violations of detailed240

balance in individual humans. The primary difficulty in doing so lies in estimating the transition241

probabilities Pij that are required to compute the entropy production (Eq. 1 in the main text). As242

discussed in Sec. 7, concatenating the neural time-series across subjects allows us to estimate the243

transition probabilities using k = 8 coarse-grained states (Fig. S6). By contrast, when analyzing244

individual subjects, the largest number of states for which we observe every transition at least once245

in each task is k = 3 (Fig. S9A).246
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Supporting Fig. 9 | Entropy production in individual subjects. (A) Fraction of the k2

state transitions that remain unobserved after hierarchical clustering with k clusters for each

subject and each task. Data points and error bars represent two standard deviations over

the 590 different subjects. (B) Entropy production of individual subjects increases with the

rate of physical responses across the different task settings (Pearson correlation r = 0.826,

p = 0.012). Data points and error bars represent medians and interquartile ranges over the 590

subjects, and the dashed line indicates linear best fit. (C) Entropy production increases with

error rate in the working memory task (Pearson correlation r = 0.141, p < 0.001). We confirm

that relationship also holds after removing outliers (Pearson correlation r = 0.133, p = 0.002).

Dashed line and shaded region indicate linear best fit and 95% confidence interval. To account

for finite-data errors, all data points in all panels are averaged over 100 bootstrap samples for

each subject and each task.

Performing hierarchical clustering with k = 3 clusters, we estimate the entropy production247

for each of the 590 subjects during each task (and rest). As in the main text (Fig. 4), we then248

investigate the dependence of entropy production on physical and cognitive exertion. Across all249

tasks, we find that the entropy production of neural dynamics increases significantly with the rate250

of motor responses (Fig. S9B). This result confirms that the population-level relationship between251

broken detailed balance and physical effort (Fig. 4B in the main text) extends to the scale of252

individual humans.253

To examine the relationship between entropy production and cognitive demand, we once254

again focus on the working memory task. At the population level, we found that the high cognitive255
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load condition induces a two-fold increase in entropy production over the low load condition (Fig.256

4C in the main text). However, performing the same analysis on individual subjects is infeasible,257

since it requires estimating the entropy production for each subject on only a fraction of the work-258

ing memory data. Instead, as a proxy for cognitive effort, we can examine the rate at which subjects259

make errors. Indeed, across subjects, we find that entropy production increases significantly with260

error rate (Fig. S9C), confirming that the association between broken detailed balance and cogni-261

tive effort persists at the individual level. Together, these results indicate that, even for individual262

humans, violations of detailed balance grow with physical exertion and cognitive demand.263

11 Testing the Markov assumption264

Thus far, we have employed a definition of entropy production (Eq. 1 in the main text) that relies265

on the assumption that the time-series is Markovian; that is, that the state xt of the system at time266

t depends only on the previous state xt−1 at time t − 1. For real time-series data, however, the267

dynamics may not be Markovian, and Eq. 1 in the main text is not exact. In general, the entropy268

production (per trial) is given by13, 18
269

Ṡ = lim
t→∞

1

t

∑
i1,...,it+1

Pi1,...,it+1 log
Pi1,...,it+1

Pit+1,...,i1

, (S5)

where Pi1,...,it+1 is the probability of observing the sequence of states i1, . . . , it+1. If the dynamics270

are Markovian of order `, then Eq. S5 is equivalent to271

Ṡ =
1

`

∑
i1,...,i`+1

Pi1,...,i`+1
log

Pi1,...,i`+1

Pi`+1,...,i1

. (S6)

For example, if ` = 1 we recover the Markov approximation in Eq. 1 in the main text. In gen-272

eral, computing the `th-order entropy production for a system with k states requires estimating the273

probabilities of all k`+1 sequences of length `+ 1. Thus, the number of independent statistics that274

need to be estimated grows exponentially with the order `, often making it infeasible to estimate275

the entropy production beyond order ` = 1.276

Despite the abovementioned limitations, here we estimate the entropy production of neural277

dynamics up to order ` = 5. In doing so, we demonstrate that our main results (Fig. 4 in the main278
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Supporting Fig. 10 | Higher-order approximations of entropy production in the brain.

(A) Entropy productions of orders ` = 1, 2, 3, 4, 5 computed at rest and during seven cognitive

tasks. All estimates are based on the same coarse-grained states, computed using hierarchi-

cal clustering with k = 8 clusters. (B) Entropy production estimates as a function of response

rate for the tasks listed in panel (A). Across all orders ` = 1, 2, 3, 4, 5, each response induces

an identical 0.07 bits of produced entropy (within errors, p < 0.05). (C) Entropy production es-

timates for low cognitive load and high cognitive load conditions in the working memory task,

where low and high loads represent 0-back and 2-back conditions, respectively. In all panels,

data points of increasing brightness indicate entropy production estimates of increasing order,

and error bars reflect-two standard-deviation confidence intervals that arise due to finite data

(see Materials and Methods in the main text).

text) do not depend qualitatively on the Markov approximation in Eq. 1 in the main text. Just as279

we did under the Markov approximation (Fig. 4 in the main text), we cluster the neural data using280
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k = 8 coarse-grained states. Given that we are now required to estimate k`+1 different probabilities281

(a number that grows up to 2.6 × 105 for ` = 5) rather than just k2 = 64 probabilities, there are282

inevitably entries in the sum in Eq. S6 that are infinite (i.e., those corresponding to reverse-time283

sequences i`+1, . . . , i1 that are not observed in the time-series). As is common,13, 18 we set these284

terms to zero.285

We find that all of the higher-order approximations studied (` = 2, 3, 4, 5) yield exactly the286

same hierarchy of entropy productions across task settings (Fig. S10A) as the first-order approxi-287

mation (Fig. 4A in the main text). In particular, across all orders `, the neural dynamics produce288

less entropy during rest than during each of the cognitive tasks (Fig. S10A). Moreover, the higher-289

order entropy productions remain significantly correlated with the frequency of physical responses290

in different tasks (Fig. S10B). In fact, for all orders ` examined, each response induces an iden-291

tical 0.07 bits of produced entropy (within errors; Fig. S10B). Finally, in the working memory292

task, the higher-order entropy productions remain larger in the high cognitive load condition than293

in the low-load condition (Fig. S10C). Specifically, the neural dynamics produce an additional294

0.02 bits per second of entropy in the high-load condition compared to the low-load condition, a295

difference that is identical (within errors) across all of the Markov orders studied. Together, these296

results demonstrate that the central conclusions of the main text generalize to higher-order Markov297

approximations.298

12 Varying the number of coarse-grained states299

In Sec. 7, we presented methods for choosing the number of coarse-grained states k, concluding300

that k = 8 is an appropriate choice for our neural data. However, it is important to check that the301

entropy production results from Fig. 4 in the main text do not vary significantly with our choice of302

k. In Fig. S11A, we plot the estimated entropy production for each task setting (including rest) as303

a function of the number of coarse-grained states k. We find that the tasks maintain approximately304

the same ordering across all choices of k considered, with the brain producing the least entropy305

during rest, the most entropy during the motor task, and the second most entropy during the gam-306

bling task. Furthermore, we find that the correlation between entropy production and physical307
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Supporting Fig. 11 | Entropy production in the brain at different levels of coarse-

graining. (A) Entropy production at rest and during seven cognitive tasks as a function of

the number of clusters k used in the hierarchical clustering. Error bars reflect two-standard-

deviation confidence intervals that arise due to finite data (see Materials and Methods in

the main text). (B) Slope of the linear relationship between entropy production and physi-

cal response rate across tasks for different numbers of clusters k. Error bars represent one-

standard-deviation confidence intervals of the slope and asterisks indicate the significance of

the Pearson correlation between entropy production and response rate. (C) Difference bet-
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ween the entropy production during high-load and low-load conditions of the working memory

task as a function of the number of clusters k. Error bars represent two-standard-deviation

confidence intervals that arise due to finite data (see Materials and Methods in the main text),

and the entropy production difference is significant across all values of k (one-sided t-test,

p < 0.001).

response rate (Fig. 4B in the main text) remains significant for all k ≤ 8 (that is, for all choices of308

k for which we observe all transitions at least once in each task; Fig. S6A) as well as k = 9, 11,309

12, 13, and 14 (Fig. S11B). We remark that we do not study the case k = 2 because the entropy310

production is zero by definition for steady-state systems with two states (Fig. S11A). Finally, we311

confirm that the entropy production is significantly larger during high-cognitive-load conditions312

than low-cognitive-load conditions in the working memory task (Fig. 4C in the main text) for all313

choices of k considered (Fig. S11C). Together, these results demonstrate that the relationships314

between entropy production and physical and cognitive effort are robust to reasonable variation in315

the number of coarse-grained states k.316

13 Robustness to head motion, signal variance, and block length317

Here, we show that the effects of physical response rate and cognitive effort on entropy produc-318

tion cannot be explained by head movement within the scanner (a common confound in fMRI319

studies19), variance in the neural time-series, nor the block lengths of different tasks. To quantify320

head movement, for each time point in every time-series, we compute the spatial standard devia-321

tion of the difference between the current image and the previous image. This quantity, known as322

DVARS, is a common measure of head movement in fMRI data.20 Importantly, we find that entropy323

production is not significantly correlated with the average DVARS within each task (Fig. S12A),324

thereby demonstrating that the relationship between entropy production and physical response rate325

is not simply due to the confound of subject head movement within the scanner. Additionally,326

we find that entropy production is not significantly correlated with the variance of the neural data327

within each task (Fig. S12B). We therefore establish that our entropy production estimates are328

not simply driven by variations in the amount of noise in the neural data across different tasks.329
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Supporting Fig. 12 | Entropy production in the brain cannot be explained by head move-

ment, signal variance, nor block length. Entropy production versus the average DVARS (A),

the variance of the neural time-series (B), and the lengths of task blocks (C) at rest and during

seven cognitive tasks. Across all panels, entropy productions are estimated using hierarchical

clustering with k = 8 clusters and are divided by the fMRI repetition time ∆t = 0.72 s to com-

pute entropy production rates. Error bars reflect two-standard-deviation confidence intervals

that arise due to finite data (see Materials and Methods in the main text).

Finally, one might suspect that the fluxes between neural states (and therefore the entropy produc-330

tion) is driven by variations in the block structure of different tasks. However, we do not find a331

significant relationship between the entropy production and the lengths of blocks in different tasks332

(Fig. S12C), thereby indicating that block structure alone cannot explain the observed variations333

in entropy production across tasks.334

14 Comparing against phase-randomized surrogate data335

In Sec. 5, we showed that if one shuffles the order of neural time-series data (thereby destroying336

the arrow of time), then the fluxes between states vanish and the system returns to detailed balance337

(Fig. S4). Yet it is also interesting to consider the effect of other surrogate data techniques on338

broken detailed balance. Here, we consider two such techniques: one that randomizes the phases of339

neural activity while conserving both the auto-correlations and cross-correlations between regions340

(referred to as the multivariate phase-randomized (MPR) surrogate), and another that randomizes341

phases while conserving auto-correlations but not cross-correlations (referred to as the univariate342
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phase-randomized (UPR) surrogate).10, 21 Importantly, the auto-correlations are symmetric in time,343

while the cross-correlations are not. Therefore, randomizing the data while holding only the auto-344

correlations fixed (as in the UPR surrogate) should destroy the arrow of time and return the system345

to detailed balance. By contrast, holding the cross-correlations fixed (as in the MPR surrogate)346

should ensure that some of the broken detailed balance remains from the original data.347

Here, we compute the entropy productions of MPR and UPR surrogate data during the seven348

cognitive tasks and rest. For the MPR data, we find that the entropy production (and therefore the349

distance from detailed balance) remains significant, but is reduced relative to the original data (Fig.350

S13A). Meanwhile, for the UPR data, the entropy production nearly vanishes and the data obeys351

detailed balance (Fig. S13B). Indeed, for the MPR data, we still find significant (yet reduced) in-352

creases in entropy production with both physical response rate (Fig. S13B) and cognitive load (Fig.353

S13C), while we find no such dependencies in the UPR data. Together, these results confirm that354

randomizing the data while holding the auto-correlations fixed returns the system to detailed bal-355

ance, whereas holding the cross-correlations fixed preserves some of the broken detailed balance356

in the original data.357

15 Data processing358

The resting, emotional processing, working memory, social inference, language processing, rela-359

tional matching, gambling, and motor execution fMRI scans are from the S1200 Human Connec-360

tome Project release.22, 23 Brains were normalized to fslr32k via the MSM-AII registration with 100361

regions.24 CompCor, with five principal components from the ventricles and white matter masks,362

was used to regress out nuisance signals from the time series. Additionally, the 12 detrended mo-363

tion estimates provided by the Human Connectome Project were regressed out from the regional364

time series. The mean global signal was removed and then time series were band-pass filtered365

from 0.009 to 0.08 Hz. Then, frames with greater than 0.2 mm frame-wise displacement or a366

derivative root mean square (DVARS) above 75 were removed as outliers. We filtered out sessions367

composed of greater than 50 percent outlier frames, and we only analyzed data from subjects that368

had all scans remaining after filtering, leaving 590 individuals. The processing pipeline used here369
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Supporting Fig. 13 | Entropy production of phase-randomized surrogate data. (A) En-

tropy productions of the true data (dark shades), multivariate phase-randomized (MPR) data

(medium shades), and univariate phase-randomized (UPR) data (light shades) during rest and

seven cognitive tasks. (B) Entropy production estimates as functions of response rate for the

tasks listed in panel (A), where lines indicate linear best fits. For the real and MPR data, re-

sponses induce significant entropy production: 0.07 bits per response for real data (p = 0.02)

and 0.06 bits per response for MPR data (p = 0.03). For UPR data, we do not find a significant

increase in entropy production with responses (p = 0.12). (C) Entropy production estimates

for low cognitive load and high cognitive load conditions in the working memory task, where

low and high loads represent 0-back and 2-back conditions, respectively. We find significant

differences in entropy production between the low- and high-load conditions for both the true

data (dark shade) and MPR data (medium shade), but not the UPR data (light shade). In all

panels, estimates are computed using k = 8 coarse-grained states, and error bars reflect two

standard-deviation confidence intervals computed using 100 bootstrap samples.

24



has previously been suggested to be ideal for removing false relations between neural dynamics370

and behavior.25 Finally, for each subject and each scan, we only analyze the first 176 time points,371

corresponding to the length of the shortest task (emotional processing); this truncation controls for372

the possibility of data size affecting comparisons across tasks.373
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13. Roldán, É. & Parrondo, J. M. Estimating dissipation from single stationary trajectories. Phys.402

Rev. Lett. 105, 150607 (2010).403

14. Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F. & Mathieu, C. Hierarchical clustering:404

Objective functions and algorithms. In Proceedings of the Twenty-Ninth Annual ACM-SIAM405

Symposium on Discrete Algorithms, 378–397 (SIAM, 2018).406

15. Thomas Yeo, B. et al. The organization of the human cerebral cortex estimated by intrinsic407

functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).408

16. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal409

activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. 103,410

10046–10051 (2006).411

17. Vossel, S., Geng, J. J. & Fink, G. R. Dorsal and ventral attention systems: Distinct neural412

circuits but collaborative roles. Neuroscientist 20, 150–159 (2014).413
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