Supporting Information

Atmosphere-Induced Transient Structural Transformations of Pd-Cu and Pt-Cu Alloy Nanocrystals

Lea Pasquale,^{†,‡,*} Sharif Najafishirtari,^{†,*,#} Rosaria Brescia,[§] Alice Scarpellini,[§] Cansunur Demirci,^{†,‡} Massimo Colombo,[†] and Liberato Manna[†]

[†] Department of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

[‡] Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy

[§] Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

Figure S1. TGA of (a) Pd-Cu, (b) Pt-Cu (c) Cu, (d) Pd and (e) Pt NC colloidal solution under air flow. Weight is reported as a function of time.

The TGA was performed on a Q500 instrument from TA Instruments. After solvent evaporation, the sample (~3 mg of NCs) was equilibrated at 30 °C for 30 min, then heated to 600 °C with a 10 °C min⁻¹ heating rate under 50 mL min⁻¹ of air flow. On the basis of the weight loss as a function of time, it can be seen that the thermal annealing at 450 °C in air was efficient for removing the organic surfactants from the bi- and monometallic NC surface.

Figure S2. Size distribution histograms for (a) Pd-Cu NCs obtained by measuring 755 NCs and for (b) Pt-Cu NCs by measuring 1445 NCs.

Figure S3. FFTs corresponding to (a) Figure 1c, matching with the [110] zone-axis projection of fcc CuPd (ICSD 103082) and (b) Figure 1g, matching with the [100] zone-axis projection of fcc CuPt (ICSD 108402).

Figure S4. BF-TEM images of the as-synthesized (a) Cu, (b) Pd, (c) Pt NCs, with the corresponding size distribution histograms displayed as insets, and (d, e, f) XRD patterns with the expected peak position reference for fcc Cu (cyan, ICSD 53757) and fcc Cu₂O₁ (blue, ICSD 53322), fcc Pd (magenta, ICSD 180881) and fcc Pt (red, ICSD 180981).

The NC size and shape of monometallic Cu, Pd and Pt NCs were analyzed by *BF-TEM* (Figure S₂ a-c). The average size of Cu, Pd and Pt NCs were 6.8 ± 1.7 nm based on 405 particles, 5.2 ± 1.0 nm on 1375 particles, and 7.6 ± 1.7 nm on 174 particles, respectively. The XRD patterns collected from the NCs were in agreement with fcc-Cu₂O, fcc-Pd and fcc-Pt structures (Figure S₂ d-f). As reported by Yin et al.,¹ the presence of sharper peaks indexed to the fcc of metal Cu in the pattern of Cu NCs can be related to NC size larger than 5 nm.¹ However, it cannot be explicitly concluded that the particle size is 5 nm as the XRD gives information about the crystallite or domain size rather than particle size.

Figure S5. HAADF-STEM images of alumina supported (a, b) Pd-Cu and (c, d) Pt-Cu NCs after oxidizing (a, c) and reducing (b, d) treatments with the corresponding size distribution histograms displayed as insets.

Figure S6. HAADF-STEM images of alumina supported Pd-Cu NCs after oxidizing treatment.

Figure S7. HAADF-STEM images of alumina supported (a, b) Cu, (c, d) Pd and (e, f) Pt NCs after oxidizing (a, c, e) and reducing (b, d, f) treatments with the corresponding size distribution histograms displayed as insets.

Figure S8. (a, b) HRTEM images of single-crystal Pd-Cu nanoparticles of alumina supported Pd-Cu NCs after oxidation with the corresponding (c, d) FFT patterns, matching with $Pd_{0.7}Cu_{0.3}O$.

Calculation of Pd_{0.7}Cu_{0.3}O NC size based on starting Pd-Cu NC size

To estimate the enlargement of $Pd_{0.5}$ - $Cu_{0.5}$ NC size ascribed to the formation of $Pd_{0.7}Cu_{0.3}O$ NCs, the following calculations are taken into account. First, considering the number of Pd atoms in the unit cell equal to 4, as well as the known unit cell volume of Pd-Cu (53.41 Å³ in the Pd₁Cu₁ card ICSD 103082), the number of Pd atoms in the NC was calculated from the following expression:

$$N_{Pd\ atoms\ in\ PdCu\ NC} = \frac{N_{Pd\ atoms\ per\ unit\ cell}}{V_{PdCu\ unit\ cell}} V_{PdCu\ NC}$$

(Eq. S1)

where $V_{PdCu NC}$ is the volume calculated by the average of the NC size. The number of Cu atoms in the NC is equal to that of Pd being the atomic Pd:Cu ratio = 50:50. The expected volume $V_{Pdo.7Cuo.3O NC}$ of oxidized NC was calculated considering the unit cell volume equal to 47.77 Å³ and the number of Cu atoms per unit cell of Pd_{0.7}Cu_{0.3}O equal to 0.6 as follows, assuming that the NC has a spherical shape:

$$V_{Pd0.7Cu0.30 NC,Cu} = \frac{N_{Cu \ atoms \ in \ Pd0.7Cu0.30 \ NC}}{N_{Cu \ atoms \ per \ Pd0.7Cu0.30 \ unit \ cell}} V_{Pd0.7Cu0.30 \ unit \ cell}$$

(Eq. S₂)

The unit cell volume of $Cu_{0.3}Pd_{0.7}O$ was calculated by modifying the tetragonal cell of PdO (ICSD 24692). The new cell has Cu and Pd ions with fractional occupancies (0.3 and 0.7, respectively) in the sites of Pd ions and parameters, a = b = 3.005 Å and c = 5.29 Å, calculated according to the plots in ref. 2 for $Cu_xPd_{1-x}O$, with x = 0.3.

The size of NC is then given by:

$$d_{Pd0.7Cu0.30 NC,Cu} = 2r_{Pd0.7Cu0.30 NC,Cu} = 2\sqrt[3]{\frac{3V_{Pd0.7Cu0.30,Cu}}{4\pi}}$$

(Eq. S₃)

where d and r are the diameter and radius of NC, respectively.

From the experimental data, the average size of the starting $Pd_{0.5}$ - $Cu_{0.5}$ NC is 4.9 ± 1.8 nm while that calculated for oxidized NC with the Equations (S₃) is 7.0 nm, value in agreement with that observed in the HAADF-STEM images (7.8 ± 2.0 nm). This means that the growth of NC size is 43% referred to the starting diameter.

Figure S9. DRIFT spectra in the carbonyl region recorded during the adsorption (a, c) and desorption (b, d) of CO at room temperature on alumina supported Cu NCs after the (a, b) oxidizing and (c, d) reduction treatments.

Figure S10. Deconvolution of DRIFT spectra recorded at 10-min of CO (a) adsorption and (b) desorption on Pd-Cu alloy NCs supported on Al_2O_3 after oxidation.

Figure S11. DRIFT spectra in the carbonyl region recorded during adsorption (a, c) and desorption (b, d) of CO at room temperature on alumina supported Pd NCs after (a, b) oxidizing and (c, d) reduction treatments.

Figure S12. DRIFT spectra in the carbonyl region recorded during adsorption (a, c) and desorption (b, d) of CO at room temperature on alumina supported Pt NCs after (a, b) oxidizing and (c, d) reduction treatments.

Figure S13. XANES spectra of alumina supported Pd-Cu (a, b) and Pt-Cu (c, d) NCs collected at RT in He at (a) Pd K-edge and (b) Cu K-edge along with the XANES spectra of PdO and CuO (collected at the SuperXAS beamline of the SLS) references and at (c) Pt L_{III}-edge and (d) Cu K-edge along with the XANES spectra of Pt foil reference, and PtO and CuO reference spectra collected at SuperXAS beamline of the SLS.

Figure S14. In situ XANES evolution of the alumina supported Pd-Cu NCs (a, c) at the Pd K-edge and (b, d) at the Cu K-edge during (a, b) the oxidizing and (c, d) the reduction treatments.

Figure S15. In situ XANES evolution of the alumina supported Pt-Cu NCs (a, c) at the Pt L_{III}-edge and (b, d) at the Cu K-edge during (a, b) the oxidizing and (c, d) the reduction treatments.

Figure S16. Concentration profiles of components as a function of the temperature during reduction (a) and during oxidation (c) at the Cu K-edge. XANES spectra of the species formed during reduction (b) and during oxidation (d) for the alumina supported Pd-Cu NCs along with the XANES spectra of Cu foil reference, CuO and Cu₂O reference spectra collected at the SuperXAS beamline of the SLS, and Pd-Cu NCs spectrum collected at room temperature in He.

During reduction at the Cu K-edge of the Pd-Cu NCs, the concentration profile as a function of temperature evidenced a two-step reduction process (Figure Si6a) in which the component D_r started to be significantly reduced into the intermediate component I_r at T~50 °C and then the formation of the component A_r started to be significant at T>150 °C. The comparison between the pure component spectra with the reference ones (Figure Si6b) suggested that the D_r consists of a fingerprint of CuO, the I_r of Cu₂O one and A_r to the metallic Cu structure. The best fit of the FT of the EXAFS spectra (Table S2) for the component D_r presented contributions of Cu-O and Cu-Cu coordination shells at 2.00 Å and at 2.97 Å, characteristic of CuO, and a lesser extent of PdCuO mixed oxide. The best fit of I_r component was based on the contribution of two species. Specifically, Cu-O and Cu-Cu shells at 1.94 Å and 3.00 Å related to Cu₂O and Cu-Cu one at 2.65 Å referred to Pd-Cu were found. Finally, the A_r component was mainly characterized by a single Cu-Cu coordination shell at 2.48 Å related to metallic Cu with a minor contribution of Cu-Cu shell at 2.58 Å of Pd-Cu species and Cu-O shell at 1.86 Å for Cu₂O.

When the reduced NCs were subjected to an oxidative environment at the Cu K-edge, three components named D_o (descending), I_o (intermediate) and A_o (ascending) were identified and presented as a function of the temperature in Figure Si6c, d along with the corresponding spectra. Initially, already a room temperature under the

exposure to the oxygen, the decrease of the constituent D_0 proceed parallel with the appearance of constituent I_0 ; as soon as the temperature started to increase in the heating ramp, the component A_0 progressively increased until reaching the complete oxidation at 350 °C. The comparison between the XANES spectra with the reference ones (Figure S16d) revealed the formation of the intermediate Cu_2O as component I_0 . This was confirmed from its absorption edge lying in between those of the constituents D_0 and A_0 , related to the Cu^{+2} and CuO species, respectively. The EXAFS signal and FT of the components D_0 and I_0 required two contributions for a better fit (Table S2), one from Cu and Pd atoms in an ordered CuPd alloy and one from O atoms in Cu_2O . In particular, the contribution of the first one decreased from D_0 to I_0 with the increase of the second one (coordination number (CN) of Cu-O equal to 0.49 for D_0 to 1.97 for I_0). Finally, the best fit for A_0 confirmed the formation of CuO with a minor extent of PdCuO.

Figure S17. Concentration profiles of components as a function of the temperature during reduction (a) and during oxidation (c) at the Cu K-edge. XANES spectra of the species formed during reduction (b) and during oxidation (d) for the alumina supported Pt-Cu NCs along with the XANES spectra of Cu foil reference, CuO and Cu₂O reference spectra collected at SuperXAS beamline of the SLS, and Pt-Cu NCs spectrum collected at room temperature in He.

During reduction at the Cu K-edge of the Pt-Cu NCs, the spectrum of the descending D_r component (Figure Sr7b) was similar to that of CuO, while the second (intermediate component I_r) and the third (ascending component A_r) ones showed characteristic features similar to those of Cu₂O and metallic Cu,^{3·4} respectively. The concentration dependence of these three components (Figure Sr7a) proved that first, D_r started to be reduced already at room temperature into I_r, and at the beginning of the heating ramp, A_r started to be significant. As suggested by the qualitative analysis of the XANES part, the structural parameter determined by the fitting of the FT (Table S4) confirmed the presence of CuO as starting species assigned to D_r. The intermediate I_r component showed a main peak in the R-space around 2.60 Å compatible with Cu-Cu fist neighbors in the fcc Pt-Cu structure. A minor contribution at 1.90 Å was related to oxygen neighbors around Cu absorbing atoms for Cu₂O. Finally, the A_r component was satisfactorily described by a Cu poor disordered alloy (CN Cu-Cu = 3.28 ± 0.6, CN Cu-Pt = 5.34 ± 0.7) with a minor contribution at 1.93 Å related to Cu₂O. The low coordination number of 0.33 found for this last species suggested the formation of small clusters. This result describing the final state at the end of the reduction was in line with those

obtained at the Pt L_{III} -edge, corresponding with the formation of a Pt-rich Pt-Cu alloy, corroborated by the SAED analysis.

During oxidation at the Cu K-edge, three components involved during the oxidative treatment at Cu K-edge (descending D_o , intermediate I_o and ascending A_o components) were found (Figure Sı7c). A decrease in the relative fraction of the component D_o was paralleled by the transient growth in the contribution of the Io and a minor fraction to A_o . Then, at the beginning of the heating ramp, I_o was progressively increased along with A_o until it disappeared as the temperature reached 350 °C (Figure Sı7c). The best fit of the FT EXAFS spectra for D_o and I_o (Table S4) showed scattering at 2.64 Å due to the Cu atoms in the first coordination shell and Pt atoms in the second one related to the formation of the fcc Pt-Cu alloy. These two components differed only in the Cu-Cu coordination number slightly higher for I_o . A small contribution at around 1.90 Å was observed for the fitted Cu-O shell related to Cu₂O. Finally, the complete oxidation of Cu was evident for the component A_o from the presence of the Cu-O shell at 1.95 Å related to CuO with an increased intensity of the Cu-O interaction at 2.0 Å for Cu₂O compared to what found for D_o and I_o .

Table S1: Structural parameters obtained from the fitting of EXAFS at the Pd K-edge for the alumina supported Pd-Cu NCs (k range for the Fourier transform 2.5-12.4 Å⁻¹, the R-range for the fitting was 1-3.5/4 Å).

	Scattering Path	CN ¹	R (Å)	$\sigma^2(\AA^2)$	R-factor
			<u>PdCu</u>		
As-	Pd-Pd1	5.30*	2.703 ± 0.009	0.009 ± 0.001	
synthetized	Pd-Cu1	5.68*	2.625 ± 0.017	0.014 ± 0.002	0.011
Pd-Cu NCs	Pd-Pd2	1.38*	3.806 ± 0.009	0.009 ± 0.001	_
	Pd-Cu2	1.04*	3.728 ± 0.017	0.014 ± 0.002	
	Scattering Path	СN	R (Å)	$\sigma^2(\AA^2)$	R-factor
	5		<u>PdO</u>		,
	Pd-O1	2.80*	2.026*	0.003 ± 0.001	_
	Pd-Pd1	1.86*	3.059 ± 0.006	0.006 ± 0.001	-
Red. D _r		<u> </u>	<u>dCuO</u>		0.016
	Pd-O1	0.68*	2.026*	0.003 ± 0.001	_
	Pd-Cu1	1.69*	3.004 ± 0.031	0.015*	_
	Pd-Pd1	1.34*	3.059 ± 0.006	0.006 ± 0.001	_
	Seattoring Dath	CN	$\mathbf{P}(\mathbf{\hat{\lambda}})$	$-2(\hat{\lambda}_2)$	D facto
	Scattering Path		K (A)	0 ⁻ (A ⁻)	к-јасто
Red. Ar	Dd Dd			0.011 0.001	_
	Pd Cup	7.30 ± 0.47	2.700 ± 0.000	0.011 ± 0.001	-
		2.00 ± 0.47	2.039 ± 0.014	0.014 ± 0.003	0.013
	Pd-Pu2	2.71 ± 0.03	3.809 ± 0.000	0.011 ± 0.001	
	Fu-Cu2	1.04 ± 0.03	3.742 ± 0.014	0.014 ± 0.003	
	Scatterina Path	CN	R (Å)	$\sigma^2(A^2)$	R-facto
	beattering Fath	CIV	PdCu	0 (11)	Rjueto
Oxi. Do	Pd-Pd1	6.53 ± 0.56	2.717 ± 0.005	0.007 ± 0.001	-
	Pd-Cui	3.43 + 0.56	2.667 + 0.013	0.011 + 0.003	- 0.017
	Pd-Pd ₂	1.94 ± 0.69	3.820 ± 0.005	0.007 ± 0.001	_ 0.017
	Pd-Cu ₂	1.04*	3.770 ± 0.013	0.011 ± 0.003	_
	Scattering Path	CN	R (Å)	$\sigma^2(\AA^2)$	R-facto
			<u>PdO</u>		
	Pd-O1	2.80*	2.026*	0.005 ± 0.001	_
	Pd-Pd1	3.08*	3.061 ± 0.017	0.012 ± 0.005	
Oxi. A _o		<u> </u>	<u>dCuO</u>		0.023
	Pd-O1	0.44*	2.026*	0.005 ± 0.001	
	Pd-Cu1	0.67*	2.954 ± 0.081	0.012*	_

	Scattering Path	CN	R (Å)	$\sigma^2(\AA^2)$	R-factor
			<u>PdO</u>		
	Pd-O1	2.80*	2.026*	0.003 ± 0.001	
	Pd-Pd1	7.89*	3.058*	0.007 ± 0.001	-
RT He		0.017			
	Pd-O1	0.77*	2.027*	0.003 ± 0.001	
	Pd-Cu1	1.56*	3.027 ± 0.080	0.016*	
	Pd-Pd1	4.25*	3.059 ± 0.007	0.007 ± 0.001	-

 $_{\rm 1}$ The calculation of CN at each shell was calculated as the product of $NS_{\rm o^2}$.

*Parameters were fixed in the fitting and obtained as the product of N of the shell from the model and adjusted S_{o^2} for the reference Pd.

Table S2: Structural parameters obtained from the fitting of EXAFS at the Cu K-edge for the alumina supported Pd-Cu NCs (k range for the Fourier transform 2.5-12.4 Å⁻¹, the R-range for the fitting was 1-3/4 Å).

	Scattering Path	CN	R (Å)	$\sigma^2(\AA^2)$	R-factor
		<u>j</u>	<u>PdCu</u>		
As- synthetized Pd-Cu NCs	Cu-Cu1	3.11*	2.663 ± 0.079	0.010*	- - - 0.012
	Cu-Pd1	3.11*	2.654 ± 0.010	0.018 ± 0.002	
		<u>.</u>	<u>Cu₂O</u>		0.013
ru curtes	Cu-O1	0.36	1.962± 0.006	0.010± 0.002	_
	Cu-Cu1	1.08	2.836± 0.079	0.018 ± 0.002	
			- (2)		
	Scattering Path	CN	R(A)	$\sigma^2(A^2)$	R-facto
	<u> </u>		CuO	**	
	<u> </u>	1.15 ± 0.1	2.005 ± 0.010	0.003**	_
Red D	Cu-Cui	2.31± 0.1	2.905 ± 0.024	0.007	0.010
Ked. $D_{\rm r}$	<u> </u>	<u><u> </u></u>		o. oo o **	0.010
		1.20 ± 0.2	1.902 ± 0.010	0.003	-
		0.95	3.000 ± 0.024	0.007	-
	Cu-rui	0.32	3.010 ± 0.050	0.012	
	Scatterina Path	СN	R (Å)	$\sigma^2(\AA^2)$	R-facto
			си ₂ О	- ()	
Red. Ir	C_{11} - O_1	2,20+0.4	1.044 ± 0.018	0.012 ± 0.002	_
		6.88 ± 1.2	2 001 ± 0 020	0.013 ± 0.003	_
	cu cui	0.00 ± 1.5	PdCu	0.027 ± 0.003	0.008
	Cu-Cu	2.26 ± 0.4	2.651 ± 0.020	0.027 ± 0.003	_
	Cu-Pdı	2.26 ± 0.4	2.657 ± 0.016	0.013 ± 0.002	
	Scattering Path	CN	R (Å)	$\sigma^{2}(\AA^{2})$	R-facto
		9	<u>Cu₂O</u>		
Red A.	Cu-O1	0.20*	1.845 ± 0.028	0.003 ± 0.004	
	Cu-Cu1	0.60*	3.013 ± 0.012	0.017 ± 0.001	
			DACH		
Accu. III		1	rucu		0.020
	Cu-Cu1	<u>1.58*</u>	2.586 ± 0.043	0.017 ± 0.011	0.020
	Cu-Cuı Cu-Pdı	1.58* 2.58*	2.586 ± 0.043 2.585 ± 0.056	0.017 ± 0.011 0.015 ± 0.003	0.020
	Cu-Cuı Cu-Pdı	1.58* 2.58*	2.586 ± 0.043 2.585 ± 0.056 <u>Cu</u>	0.017 ± 0.011 0.015 ± 0.003	- 0.020
	Cu-Cuı Cu-Pdı Cu-Cuı	1.58* 2.58* 2.58*	2.586 ± 0.043 2.585 ± 0.056 <u>Cu</u> 2.487 ± 0.043	0.017 ± 0.011 0.015 ± 0.003 0.017 ± 0.011	0.020
	Cu-Cuı Cu-Pdı Cu-Cuı Scattering Path	1.58* 2.58* 2.58* 2.58*	$\frac{2.586 \pm 0.043}{2.585 \pm 0.056}$ $\frac{Cu}{2.487 \pm 0.043}$ $R(Å)$	0.017 ± 0.011 0.015 ± 0.003 0.017 ± 0.011 $\sigma^{2} (\mathring{A}^{2})$	0.020
	Cu-Cuı Cu-Pdı Cu-Cuı Scattering Path	1.58* 2.58* 2.58* 2.58* CN	$\frac{2.586 \pm 0.043}{2.585 \pm 0.056}$ \underline{Cu} 2.487 ± 0.043 $R (Å)$ $\underline{Cu_2O}$	0.017 ± 0.011 0.015 ± 0.003 0.017 ± 0.011 $\sigma^2 (\mathring{A}^2)$	0.020
	Cu-Cu1 Cu-Pd1 Cu-Cu1 Scattering Path Cu-O1	1.58* 2.58* 2.58* 2.58* CN 0.49*	$\frac{2.586 \pm 0.043}{2.585 \pm 0.056}$ $\frac{Cu}{2.487 \pm 0.043}$ $R(Å)$ $\frac{Cu_2O}{1.877 \pm 0.022}$	0.017 ± 0.011 0.015 ± 0.003 0.017 ± 0.011 $\sigma^{2} (\mathring{A}^{2})$ 0.004 ± 0.003	0.020
Oxi. Do	Cu-Cuı Cu-Pdı Cu-Cuı Scattering Path	1.58* 2.58* 2.58* 2.58* CN 90.49*	$\frac{2.586 \pm 0.043}{2.585 \pm 0.056}$ $\frac{Cu}{2.487 \pm 0.043}$ $R (Å)$ $\frac{Cu_2O}{1.877 \pm 0.022}$	0.017 ± 0.011 0.015 ± 0.003 0.017 ± 0.011 $\sigma^{2} (\mathring{A}^{2})$ 0.004 ± 0.003	0.020 R-facto
Oxi. Do	Cu-Cu1 Cu-Pd1 Cu-Cu1 Scattering Path Cu-O1 Cu-O1	1.58* 2.58* 2.58* 2.58* CN 0.49*	rucu 2.586 ± 0.043 2.585 ± 0.056 Cu 2.487 ± 0.043 R (Å) Cu ₂ O 1.877 ± 0.022 PdCu 2.538 ± 0.013	0.017 ± 0.011 0.015 ± 0.003 0.017 ± 0.011 $\sigma^2 (\mathring{A}^2)$ 0.004 ± 0.003 0.009 ± 0.001	0.020
Oxi. Do	Cu-Cu1 Cu-Pd1 Cu-Cu1 Scattering Path Cu-O1 Cu-O1 Cu-Cu1 Cu-Pd1	1.58* 2.58* 2.58* 2.58* CN 0.49* 3.43* 3.43*	2.586 ± 0.043 2.585 ± 0.056 \underline{Cu} 2.487 ± 0.043 R (Å) $\underline{Cu_2O}$ 1.877 ± 0.022 \underline{PdCu} 2.538 ± 0.013 2.595 ± 0.019	0.017 ± 0.011 0.015 ± 0.003 0.017 ± 0.011 $\sigma^{2} (\mathring{A}^{2})$ 0.004 ± 0.003 0.009 ± 0.001 0.013 ± 0.001	0.020
Oxi. Do	Cu-Cu1 Cu-Pd1 Cu-Cu1 Scattering Path Cu-O1 Cu-O1 Cu-Cu1 Cu-Pd1	1.58* 2.58* 2.58* 2.58* CN 0.49* 3.43* 3.43*	rucu 2.586 ± 0.043 2.585 ± 0.056 Cu 2.487 ± 0.043 R (Å) Cu ₂ O 1.877 ± 0.022 PdCu 2.538 ± 0.013 2.595 ± 0.019	0.017 ± 0.011 0.015 ± 0.003 0.017 ± 0.011 $\sigma^2 (\mathring{A}^2)$ 0.004 ± 0.003 0.009 ± 0.001 0.013 ± 0.001	0.020
Oxi. Do	Cu-Cu1 Cu-Pd1 Cu-Cu1 Scattering Path Cu-Cu1 Cu-Cu1 Cu-Cu1 Cu-Pd1 Scattering Path	1.58* 2.58* 2.58* 2.58* CN 0.49* 3.43* 3.43* 3.43*	rucu 2.586 ± 0.043 2.585 ± 0.056 Cu 2.487 ± 0.043 R (Å) Cu2O 1.877 ± 0.022 PdCu 2.538 ± 0.013 2.595 ± 0.019	0.017 ± 0.011 0.015 ± 0.003 0.017 ± 0.011 $\sigma^{2} (\mathring{A}^{2})$ 0.004 ± 0.003 0.009 ± 0.001 0.013 ± 0.001 $\sigma^{2} (\mathring{A}^{2})$	0.020 R-facto 0.018 R-facto
Oxi. Do	Cu-Cu1 Cu-Pd1 Cu-Cu1 Scattering Path Cu-Cu1 Cu-Cu1 Cu-Cu1 Cu-Pd1 Scattering Path	1.58* 2.58* 2.58* 2.58* CN 9 0.49* 1 3.43* 3.43* 3.43*	$\frac{R (A)}{Cu_2O}$ $R (A)$ $R (A)$ $R (A)$ $R (A)$ $R (A)$	0.017 ± 0.011 0.015 ± 0.003 0.017 ± 0.011 $\sigma^{2} (\mathring{A}^{2})$ 0.004 ± 0.003 0.009 ± 0.001 0.013 ± 0.001 $\sigma^{2} (\mathring{A}^{2})$	0.020 R-facto 0.018 R-facto
Oxi. Do	Cu-Cu1 Cu-Pd1 Cu-Cu1 Scattering Path Cu-O1 Cu-O1 Cu-Cu1 Cu-Pd1 Scattering Path	1.58* 2.58* 2.58* 2.58* CN 0.49* 3.43* 3.43* 3.43* 2.58* 2.59* 2.58* 2.59* 2.5	2.586 ± 0.043 2.585 ± 0.056 \underline{Cu} 2.487 ± 0.043 $R(Å)$ $\underline{Cu_2O}$ 1.877 ± 0.022 \underline{PdCu} 2.538 ± 0.013 2.595 ± 0.019 $R(Å)$ $\underline{Cu_2O}$ 1.905 ± 0.015	0.017 ± 0.011 0.015 ± 0.003 0.017 ± 0.011 $\sigma^{2} (\mathring{A}^{2})$ 0.004 ± 0.003 0.009 ± 0.001 0.013 ± 0.001 $\sigma^{2} (\mathring{A}^{2})$ $\sigma^{2} (\mathring{A}^{2})$	0.020 <i>R</i>-facto 0.018 <i>R</i>-facto
Oxi. Do Oxi. Io	Cu-Cu1 Cu-Pd1 Cu-Cu1 Scattering Path Cu-O1 Cu-O1 Cu-Pd1 Scattering Path	1.58* 2.58* 2.58* 2.58* CN 0.49* 3.43* 3.43* 3.43* 3.43* 3.43* 3.43*	rucu 2.586 ± 0.043 2.585 ± 0.056 Cu 2.487 ± 0.043 R (Å) Cu ₂ O 1.877 ± 0.022 PdCu 2.538 ± 0.013 2.595 ± 0.019 R (Å) Cu ₂ O 1.906 ± 0.015 3.044 ± 0.033	0.017 ± 0.011 0.015 ± 0.003 0.017 ± 0.011 $\sigma^{2} (\mathring{A}^{2})$ 0.004 ± 0.003 0.009 ± 0.001 0.013 ± 0.001 0.013 ± 0.001 0.009 ± 0.003 0.009 ± 0.003 0.009 ± 0.003 0.029 ± 0.004	0.020 <i>R</i>-facto 0.018 <i>R</i>-facto 0.012
Oxi. Do Oxi. Io	Cu-Cu1 Cu-Pd1 Cu-Cu1 Scattering Path Cu-O1 Cu-O1 Cu-Cu1 Cu-Pd1 Scattering Path Scattering Path	1.58* 2.58* 2.58* 2.58* CN 0.49* 3.43* 3.43* 3.43* 2.58* 2.59* 2.5	2.586 ± 0.043 2.585 ± 0.056 \underline{Cu} 2.487 ± 0.043 $R(Å)$ $\underline{Cu_2O}$ 1.877 ± 0.022 \underline{PdCu} 2.538 ± 0.013 2.595 ± 0.019 $R(Å)$ $\underline{Cu_2O}$ 1.905 ± 0.015 3.044 ± 0.033 \underline{PdCu}	0.017 ± 0.011 0.015 ± 0.003 0.017 ± 0.011 $\sigma^{2} (\mathring{A}^{2})$ 0.004 ± 0.003 0.009 ± 0.001 0.013 ± 0.001 $\sigma^{2} (\mathring{A}^{2})$ $\sigma^{2} (\mathring{A}^{2})$	0.020 <i>R</i>-facto 0.018 <i>R</i>-facto 0.012

Scattering Path CN $\mathbf{R}(\mathbf{\hat{A}}) = \mathbf{\sigma}^2(\mathbf{\hat{A}}^2)$	
Scattering Path CN $\mathbf{R}(\mathbf{\hat{A}}) = \mathbf{\sigma}^2(\mathbf{\hat{A}}^2) \mathbf{R}$	
$\Lambda(\Lambda) = \Lambda(\Lambda) = \Lambda(\Lambda)$	R-factor
<u><i>CuO</i></u>	5
Cu-O1 1.02 ± 0.1 1.977 ± 0.005 0.003 ± 0.001	
Cu-Cui 2.05 [*] 2.975 ± 0.018 0.040 ± 0.010	
Oxi. A _o <u>PdCuO</u>	0.010
Cu-O1 1.25 ± 0.2 1.894 ± 0.005 0.003 ± 0.001	
Cu-Cui 0.94* 3.010 ± 0.018 0.040 ± 0.010	
Cu-Pd1 0.31* 2.997 ± 0.020 0.017 ± 0.020	
Scattering Path CN $R(\dot{A})$ $\sigma^{2}(\dot{A}^{2})$ R	R-factor
<u>CuO</u>	
Cu-O1 1.15 ± 0.1 2.008 ± 0.025 0.010**	
Cu-Cui 2.30 ± 0.1 2.978 ± 0.023 0.065**	
RT He <u>PdCuO</u>	0.010
Cu-O1 1.28 ± 0.1 1.905 ± 0.025 0.010**	
Cu-Cui 0.96 ± 0.1 3.012 ± 0.023 0.065**	
Cu-Pd1 0.32 ± 0.1 3.016 ± 0.032 0.010**	

*Parameters were fixed in the fitting and obtained as the product of N of the shell from the model and adjusted S_0^2 for the reference Cu.

** Parameters fixed for the fitting.

Table S3: Structural parameters obtained from the fitting of EXAFS at the Pt L_{III} -edge for the alumina supported Pt-Cu NCs (k range for the Fourier transform 2.5-12.4 Å⁻¹, the R-range for the fitting was 1-3.5/4 Å).

As- synthetized Pt-Cu PtCu 0.006 \pm 0.004 0.006 \pm 0.0004 0.006 \pm 0.0004 Pt-Cu 2.77 \pm 0.7 2.689 \pm 0.010 0.009 \pm 0.002 0.027 Pt-Cu NCs Pt-Ptz 3.16 \pm 0.3 3.813 \pm 0.004 0.006 \pm 0.0004 0.027 Pt-Cu NCs Pt-Ptz 3.16 \pm 0.3 3.813 \pm 0.010 0.009 \pm 0.002 0.027 Pt-Cu 1.39 \pm 0.4 3.796 \pm 0.010 0.009 \pm 0.002 0.029 Pt-Cu 1.39 \pm 0.4 3.796 \pm 0.010 0.003 \pm 0.001 0.029 Pt 0.179 \pm 0.2 2.008 \pm 0.010 0.003 \pm 0.001 0.029 Pt-Pt1 1.79 \pm 0.2 3.070 \pm 0.015 0.005 \pm 0.001 0.029 Pt-Pt1 1.79 \pm 0.2 3.070 \pm 0.015 0.005 \pm 0.001 0.029 Pt-Pt1 4.24 \pm 0.6 2.762 \pm 0.015 0.005 \pm 0.001 0.029 Pt-Pt1 8.00 \pm 0.6 2.747 \pm 0.005 0.008 \pm 0.004 0.023 Pt-Pt1 8.00 \pm 0.6 2.665 \pm 0.013 0.010 \pm 0.003 0.023 Pt-Pt1
As- synthetized Pt-Cu Pt-Pti 6.31 ± 0.8 2.706 ± 0.004 0.006 ± 0.0004 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0005 ± 0.0001 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Pt-Cu NCs Pt-Pt2 3.16 ± 0.3 3.813 ± 0.004 0.006 ± 0.0004 Pt-Cu2 1.39 ± 0.4 3.796 ± 0.010 0.009 ± 0.002 Scattering Path CN $R(\mathring{A})$ $\sigma^2(\mathring{A}^2)$ $R-factor$ Pt-O1 1.79 ± 0.2 2.008 ± 0.010 0.003 ± 0.001 0.029 Pt-O1 1.79 ± 0.2 3.070 ± 0.015 0.005 ± 0.001 0.029 Pt-Pt1 1.79 ± 0.2 3.070 ± 0.015 0.005 ± 0.001 0.029 Pt-Pt1 1.79 ± 0.2 3.070 ± 0.015 0.005 ± 0.001 0.029 Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 0.029 Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 0.023 Red. Ar Pt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 0.023 Pt-Cu1 1.52 ± 0.6 2.665 ± 0.013 0.010 ± 0.003 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.004 ± 0.003 0.023 Pt-Cu2 0.76 ± 0.3 3.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Scattering Path CN $R(\mathring{A})$ $\sigma^2(\mathring{A}^2)$ R -factor Pt-O1 1.79 ± 0.2 2.008 ± 0.010 0.003 ± 0.001 0.029 Pt-Pt1 1.79 ± 0.2 3.070 ± 0.015 0.005 ± 0.001 0.029 Pt-Pt1 1.79 ± 0.2 3.070 ± 0.015 0.005 ± 0.001 0.029 Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 0.029 Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 0.029 Red. Ar Pt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 0.023 Pt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 0.023 0.023 Pt-Cu1 1.52 ± 0.6 2.665 ± 0.013 0.010 ± 0.003 0.023 0.023 Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 0.023 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 0.023 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 0.023 0.023
Scattering Path CN R (Å) $\sigma^2(Å^2)$ R-factor Red. Dr Pt-O1 1.79 ± 0.2 2.008 ± 0.010 0.003 ± 0.001 0.029 Pt-Pt1 1.79 ± 0.2 3.070 ± 0.015 0.005 ± 0.001 0.029 Pt-Pt1 1.79 ± 0.2 3.070 ± 0.015 0.005 ± 0.001 0.029 Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 0.029 Red. Ar Pt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 0.023 Pt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 0.023 0.023 Pt-Cu 1.52 ± 0.6 2.665 ± 0.013 0.010 ± 0.003 0.023 0.023 Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 0.023 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 0.023 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 0.023 0.023
PtO Pt-O1 1.79 ± 0.2 2.008 ± 0.010 0.003 ± 0.001 0.029 Pt-Pt1 1.79 ± 0.2 3.070 ± 0.015 0.005 ± 0.001 0.029 Pt Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 0.029 Pt-Pt1 Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 Pt-Pt1 4.24 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 Pt -factor PtCu Pt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 0.023 Pt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 0.023 Pt-Cu 1.52 ± 0.6 2.665 ± 0.013 0.010 ± 0.003 0.023 Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 0.023 PtCu
Red. Dr $Pt-O_1$ 1.79 ± 0.2 2.008 ± 0.010 0.003 ± 0.001 0.029 Pt-Pt1 1.79 ± 0.2 3.070 ± 0.015 0.005 ± 0.001 0.029 Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 0.029 Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 Pt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 Pt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 0.023 Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 0.023 Pt-Cu2 $R-factor$ PtCu
Red. Dr Pt-Pt1 1.79 ± 0.2 3.070 ± 0.015 0.005 ± 0.001 0.029 Pt Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 0.029 Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 Pt Scattering Path CN $R(Å)$ $\sigma^2(Å^2)$ R -factor Pt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 0.023 Red. Ar Pt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 0.023 Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 0.023 Scattering Path CN $R(Å)$ $\sigma^2(Å^2)$ R -factor
Pt Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 Scattering Path CN $R(\mathring{A})$ $\sigma^2(\mathring{A}^2)$ $R-factor$ Pt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 0.023 Red. Ar Pt-Cu1 1.52 ± 0.6 2.665 ± 0.013 0.010 ± 0.003 0.023 Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 0.023 Scattering Path CN $R(\mathring{A})$ $\sigma^2(\mathring{A}^2)$ $R-factor$
Pt-Pt1 4.24 ± 0.6 2.762 ± 0.015 0.005 ± 0.001 Scattering PathCN $R(\mathring{A})$ $\sigma^2(\mathring{A}^2)$ R -factorPt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 Pt-Cu1 1.52 ± 0.6 2.665 ± 0.013 0.010 ± 0.003 0.023 Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 0.762 Scattering PathCN $R(\mathring{A})$ $\sigma^2(\mathring{A}^2)$ R -factor
Scattering Path CN $R(\mathring{A})$ $\sigma^2(\mathring{A}^2)$ R -factor Pt-Pti 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 0.023 Pt-Cui 1.52 ± 0.6 2.665 ± 0.013 0.010 ± 0.003 0.023 Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 0.76 ± 0.004 Scattering Path CN $R(\mathring{A})$ $\sigma^2(\mathring{A}^2)$ R -factor
Scattering PathCN $R(\mathring{A})$ $\sigma^2(\mathring{A}^2)$ R -factorPt-QuPt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 0.023 Pt-Cu 1.52 ± 0.6 2.665 ± 0.013 0.010 ± 0.003 0.023 Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 $0.76 \pm 0.76 \pm 0.3$ Scattering PathCN $R(\mathring{A})$ $\sigma^2(\mathring{A}^2)$ R -factor
Pt-Pti 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 Pt-Pti 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 Pt-Cui 1.52 ± 0.6 2.665 ± 0.013 0.010 ± 0.003 Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 Scattering Path CN $R(Å)$ $\sigma^2(Å^2)$ $R-factor$
Pt-Pt1 8.00 ± 0.6 2.747 ± 0.005 0.008 ± 0.0004 Pt-Cu1 1.52 ± 0.6 2.665 ± 0.013 0.010 ± 0.003 0.023 Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 0.023 Scattering Path CN $R(Å)$ $\sigma^2(Å^2)$ $R-factor$
Red. Ar Pt-Cui 1.52 ± 0.6 2.665 ± 0.013 0.010 ± 0.003 0.023 Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 0.023 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 0.623 Scattering Path CN $R(Å)$ $\sigma^2(Å^2)$ R -factor PtCu
Pt-Pt2 4.00 ± 0.3 3.852 ± 0.005 0.008 ± 0.0004 Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 Scattering Path CN $R(Å)$ $\sigma^2(Å^2)$ $R-factor$ PtCu
Pt-Cu2 0.76 ± 0.3 3.771 ± 0.013 0.010 ± 0.003 Scattering Path CN R (Å) σ²(Ų) R-factor PtCu PtCu PtCu PtCu PtCu
Scattering Path CN R (Å) σ²(Ų) R-factor PtCu
Scattering Path CN R (Å) σ²(Ų) R-factor PtCu PtCu
PtCu
$Pt-Pt_1 6.96 \pm 0.8 2.721 \pm 0.004 0.006 \pm 0.0004$
Oxi. D_0 Pt-Cui 2.83 ± 0.7 2.680 ± 0.011 0.008 ± 0.002 0.017
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$Pt-Cu2 1.42 \pm 0.4 3.787 \pm 0.011 0.008 \pm 0.002$
Scattering PathCN $R(\mathring{A})$ $\sigma^2(\mathring{A}^2)$ R -factor
<u>Pt</u>
$Pt-Pt_1 \qquad 8.90 \pm 0.7 \qquad 2.734 \pm 0.006 \qquad 0.012 \pm 0.001$
<u>PtO</u> 0.027
Pt-O1 0.36 ± 0.1 2.068 ± 0.035 0.013 ± 0.002
Pt-Pt2 0.36 ± 0.1 3.225 ± 0.006 0.012 ± 0.001
Scattering Path CN $R(\dot{A})$ $\sigma^2(\dot{A}^2)$ R-factor
Scattering Path CN R (Å) σ²(Ų) R-factor <u>Pt</u>
Scattering Path CN $R(Å)$ $\sigma^2(Å^2)$ R -factor Pt-Pt1 3.44 ± 0.4 2.764 ± 0.004 0.005 ± 0.0004
Scattering Path CN R (Å) σ²(Ų) R-factor Pt-Pt1 3.44 ± 0.4 2.764 ± 0.004 0.005 ± 0.0004 Pt PT Ha PtO PtO Pt Pt
Scattering Path CN $R(\mathring{A})$ $\sigma^2(\mathring{A}^2)$ R -factor Pt-Pti 3.44 ± 0.4 2.764 ± 0.004 0.005 ± 0.0004
Scattering PathCN $R(Å)$ $\sigma^2(Å^2)$ R -factorPt-Pt13.44 ± 0.42.764 ± 0.0040.005 ± 0.0004Pt-Pt13.44 ± 0.42.764 ± 0.0040.005 ± 0.0004Pt-O22.17*2.010 ± 0.0080.004 ± 0.001Pt-O22.17*2.010 ± 0.0080.004 ± 0.001Pt-Pt10.81*3.082 ± 0.0190.005 ± 0.0004

*Parameters were fixed in the fitting and obtained as the product of N of the shell from the model and adjusted S_{o^2} for the reference Pt.

Table S4: Structural parameters obtained from the fitting of EXAFS at the Cu K-edge for the alumina supported Pt-Cu NCs (k range for the Fourier transform 2.5-12.4 Å⁻¹, the R-range for the fitting was 1-3.5/4 Å).

	Scattering Path	СN	R (Å)	$\sigma^2(\AA^2)$	R-factor			
		-	<u>CuO</u>					
4.5	Cu-O1	2.42 ± 0.4	1.993 ± 0.01	0.010 ± 0.002	_			
AS-	Cu-Cu1	4.85 ± 0.7	2.880 ± 0.01	0.018 ± 0.002	- 0.022			
Pt-Cu NCs		j	<u>PtCu</u>		0.022			
I t-cu Nes	Cu-Cu1	1.64*	2.670 ± 0.01	0.018 ± 0.002	_			
	Cu-Pt1	1.64*	2.670 ± 0.01	0.010 ± 0.005				
	Scattering Path	CN	R (Å)	$\sigma^2(\AA^2)$	R-factor			
			<u>CuO</u>					
Red. Dr	Cu-O1	2.77 ± 0.4	1.952 ± 0.012	0.003 ± 0.002	0.021			
	Cu-Cu1	5.54 ± 0.7	2.936 ± 0.023	0.020 ± 0.003	-			
	Scattering Path	CN	R(Å)	$\sigma^2(\AA^2)$	R-factor			
	beattering I ath		Cu ₂ O	0 (11)	K juctor			
	Cu-O1	0.69 ± 0.2	1.001 ± 0.03	0.000 ± 0.013	-			
	Cu-Cui	2.07 ± 0.7	2.950 ± 0.03	0.014 ± 0.004	-			
Red. Ir		,,	PtCu	01014 = 01004	0.006			
	Cu-Cui	4.58 ± 0.5	2.607 ± 0.03	0.014 ± 0.004	_			
	Cu-Ptı	4.00 ± 0.6	2.574 ± 0.10	0.013 ± 0.100	_			
)				
	Scattering Path	CN	R (Å)	$\sigma^2(A^2)$	R-factor			
		<u> </u>	<u>Cu₂O</u>					
	Cu-O1	0.33 ± 0.2	1.927 ± 0.05	0.014 ± 0.011	_			
Red. A _r	Cu-Cu1	1.00 ± 0.5	2.955 ± 0.01	0.019 ± 0.002	- 0.009			
			<u>PtCu</u>					
	<u>Cu-Cui</u>	3.28 ± 0.6	2.613 ± 0.01	0.019 ± 0.002	_			
	Cu-Pt1	5.34 ± 0.7	2.613 ± 0.01	0.019 ± 0.003				
	Scattering Path	CN	R (Å)	$\sigma^2(\AA^2)$	R-factor			
			PtCu		5			
	Cu-Cu1	3.83 ± 0.6	2.644 ± 0.011	0.011 ± 0.001	-			
	Cu-Pt1	4.91 ± 1.0	2.644 ± 0.012	0.011 ± 0.002	-			
$Ox1. D_0$	-	<u>(</u>	<u>Cu₂O</u>		0.020			
	Cu-O1	0.24*	1.900 ± 0.070	0.004 ± 0.013	-			
	Cu-Cu1	0.73*	3.013 ± 0.011	0.011 ± 0.001	-			
	Scattoring Path	CN	$\mathbf{P}(\mathbf{\hat{\lambda}})$	$\sigma^2(\dot{\Lambda}^2)$	P -factor			
	Scuttering I util		PtCu		in juctor			
	Cu-Cu1	4.72 ± 1.7	2.641 ± 0.015	0.018 ± 0.005	-			
	Cu-Pt1	4.10 ± 1.1	2.647 ± 0.010	0.012 ± 0.003	_			
Oxi. I _o			Cu_2O		0.014			
	Cu-O1	0.10 ± 0.2	1.831 ± 0.010	0.003 ± 0.002	-			
	Cu-Cu1	0.16 ± 0.5	2.986 ± 0.015	0.018 ± 0.005	_			
		/						

	Scattering Path	CN	R (Å)	$\sigma^2(\AA^2)$	R-factor
		<u> </u>	<u>CuO</u>		
	Cu-O1	1.19 ± 0.1	1.953 ± 0.04	0.009 ± 0.002	
	Cu-Cu1	2.39 ± 0.2	2.643 ± 0.002	0.017 ± 0.002	
Oxi. A _o	Cu-O2	1.59 ± 0.2	1.934 ± 0.04	0.009 ± 0.002	0.008
	<u>Cu₂O</u>				
	Cu-O1	1.08 ± 0.4	1.993 ± 0.04	0.010 ± 0.002	
	Cu-Cu1	3.24 ± 0.1	2.900 ± 0.002	0.018 ± 0.002	
			- (8)	- (8 -)	
	Scattering Path	CN	R (A)	$\sigma^2(A^2)$	R-factor
DT II.	Cu-O1	2.90 ± 0.2	1.955 ± 0.008	0.004 ± 0.001	_
KI IIE	Cu-Cu1	5.71 ± 0.5	2.921 ± 0.02	0.020 ± 0.003	0.011
	Cu-O2	3.81 ± 0.3	3.692 ± 0.02	0.004 ± 0.001	_
Oxi. A _o	Cu-O2 Cu-O1 Cu-Cu1 Scattering Path Cu-O1 Cu-Cu1 Cu-Cu2	1.59 ± 0.2 1.08 ± 0.4 3.24 ± 0.1 CN 2.90 ± 0.2 5.71 ± 0.5 3.81 ± 0.3	1.934 ± 0.04 1.993 ± 0.04 2.900 ± 0.002 $R (Å)$ CuO 1.955 ± 0.008 2.921 ± 0.02 3.692 ± 0.02	0.009 ± 0.002 0.010 ± 0.002 0.018 ± 0.002 $\sigma^{2}(\mathring{A}^{2})$ 0.004 ± 0.001 0.020 ± 0.003 0.004 ± 0.001	0.008

*Parameters were fixed in the fitting and obtained as the product of N of the shell from the model and adjusted S_{0}^{2} for the reference Cu.

REFERENCES

(1) Yin, M.; Wu, C.-K.; Lou, Y.; Burda, C.; Koberstein, J. T.; Zhu, Y.; O'Brien, S., Copper Oxide Nanocrystals. J. Am. Chem. Soc. 2005, 127, 9506-9511.

(2) Christensen, G. L.; Langell, M. A., Characterization of Copper Palladium Oxide Solid Solutions by X-Ray Diffraction, X-Ray Photoelectron Spectroscopy, and Auger Electron Spectroscopy. *J. Phys. Chem. C* **2013**, 117, 7039-7049.

(3) Martini, A.; Alladio, E.; Borfecchia, E., Determining Cu–Speciation in the Cu–CHA Zeolite Catalyst: The Potential of Multivariate Curve Resolution Analysis of In Situ XAS Data. *Top. Catal.* **2018**, 61, 1396-1407.

(4) Staniuk, M.; Zindel, D.; Van Beek, W.; Hirsch, O.; Kränzlin, N.; Niederberger, M.; Koziej, D., Matching the Organic and Inorganic Counterparts During Nucleation and Growth of Copper-Based Nanoparticles - In Situ Spectroscopic Studies. *CrystEngComm* **2015**, *17*, 6962-6971.