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Supplemental Information

Figure S1: Variation in the degree of stable chimerism in B cell subsets within the samemice. Related to Figure 1.

BA

0

20

40

60

Left

Humerus

Radius

Tibia
Femur

Humerus

Radius

Tibia
Femur

Right

%
 d

on
or

%
 d

on
or

%
 d

on
or

1

2

0

20

40

60

0

20

40

60

80
80

AA4.1+ IgMhi IgD-

FM
GC
FM

Left

Axillary

Inguinal

Deep cerv

%
 d

on
or

1

2

0

20

40

60

80

Brachial

Sup cerv1

Sup cerv2

Right

Axillary

Inguinal

Deep cerv

Brachial

Sup cerv1

Sup cerv2

Spleen

Mesenteric

1 3 42

(A) Variation in the chimerism among AA4.1+IgMhiIgD− B cell progenitors and recirculating FM B cells within
different BM sites. (B) Variation in chimerism across different lymph nodes. Data from two representative ani-
mals.



Figure S2: Empirical descriptions of the timecourses of numbers (A-D) and chimerism (E-H) of potential B cell
precursors of FM and GC B cells. Related to Figure 4.
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Figure S3: Fitted alternative models of FM B cell dynamics. Related to Figure 4.
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Figure S4: Predictions from competing models of FM B cell dynamics in young mice. Related to Figure 5.
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Figure S5: Comparing germinal centre B cell numbers in germ free, busulfan chimeric and WT mice. Related to
Figure 6.
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Figure S6: Fitted alternative models of splenic germinal centre B cell dynamics. Related to Figure 6.
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Figure S7: Fitted alternative models of lymph node germinal centre B cell dynamics. Related to Figure 6.
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Figure S8: Age-associated B cells (AABC) accumulate in older mice. Related to Figure 4.
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Table S1: Comparison of models describing the population dynamics of Follicular Mature (FM) B cells, pooled
from LN and spleen, using Akaike weights (Methods S1, part D) as percentage measures of relative support. The
most strongly favoured model is highlighted. Related to Figure 4.

Model and Akaike weight (%)
Source Simple

homogeneous
Time-dependent
turnover

Time-dependent
division

Time-dependent
influx

Kinetic
heterogeneity

T1 9.0 64 3.0 18 5.0
T2 0.0 0.0 0.0 0.0 0.0
T1 + T2 0.0 0.5 0.0 0.5 0.0

Table S2: Comparison of models describing the population dynamics of germinal centre (GC) B cells in spleen,
with or without the additional information regarding proliferation from the Ki67 reporter mice. ∗Showed weak
time-dependence in the rates of turnover (halving every ∼800 mo) or division (doubling every >1000 mo); were
rejected in favour of the simple homogeneous model. Related to Figure 6.

Model and Akaike weight (%)
Source Simple

homogeneous
Time-
dependent
turnover

Time-
dependent
division

Time-
dependent
influx

Kinetic
heterogeneity

Incumbent

Without informing models using data from Ki67-Cre-ERT2-YFP reporter mice
T1 18 16 7 12 5 18
T2 5 11 1 2 1 4
Informing models using data from Ki67-Cre-ERT2-YFP reporter mice
T1 0 3 2 9 0 0
T2 2 16∗ 11∗ 57 0 0

Table S3: Comparison of models describing the population dynamics of GC B cells in lymph nodes. Related to
Figure 6.

Model and Akaike weight (%)
Source Simple

homogeneous
Time-
dependent
influx

Time-
dependent
turnover

Time-
dependent
division

Kinetic
heterogeneity

Incumbent

Without informing models using data from Ki67-Cre-ERT2-YFP reporter mice
T1 0 21 1 0 0 0
T2 0 22 0 0 0 0
FM 6 37 11 2 0 0
Informing models using data from Ki67-Cre-ERT2-YFP reporter mice
T1 0 0 0 0 5 0
T2 0 0 0 0 11 0
FM 0 0 0 0 84 0



Methods S1
Details of all mathematical and statistical analyses; related to Figures 4-6.

A – Modelling the dynamics of precursor cell numbers and chimerism
We considered T1, T2, and T1+T2 combined as the potential direct precursors (sources) of FM B cells, and T1, T2
and FM B cells as potential sources of GC B cells. In adult mice, we described the time-variation in the sizes of these
populations with the empirical descriptor function S(t) = S0 e

−ν t (Fig. ??, panels A-D), where the parameters S0
and ν were estimated by fitting to the log-transformed cell counts using least squares.

Similarly, the timecourses of donor chimerism in these populations were all described well with χ(t) = χstable (1−
e−ν t), shown in Fig. ??, panels E-H; here, χstable and ν were estimated using non-linear least squares.

We assumed a constant per capita rate of influx ψ from the source S(t), giving a total influx of ϕ(t) = ψS(t)
cells/day. The daily influx of host and donor cells into the target population is then

ϕdonor(t) = ψ S(t)χ(t),

ϕhost(t) = ϕ(t)− ϕdonor(t).
(S1)

The unknown ψ is estimated along with the other model parameters. In the time-dependent recruitment model, we
assumed the form ψ(t) = ψ0 e

p t, and estimated ψ0 and p.

B – Mathematical models
Simple homogeneous model: In this model we assume that cells form a kinetically homogeneous population that
self-renews through homeostatic division with first-order kinetics at rateα, and is lost (turns over) at a rate δ, which
combines death and onward differentiation. The inverse of α is the mean interdivision time, and the inverse of
δ is the mean residence time of a cell. Influx of cells from the source compartment is denoted ϕ(t), which is the
product of the per capita rate of influx ψ and the timecourse of the size of precursor population S(t), which is
described empirically (see part A). We model the dynamics of Ki67hi (H) and Ki67lo (L) cells using the following
ODE model;

Influx Influx

LossLoss

Division

Loss of
Ki67

Division

Ki67lo Ki67hi

L̇(t) = ψS(t)(1− ϵ) + β H(t)− (α+ δ)L(t),

Ḣ(t) = ψS(t)ϵ + α (2L(t) +H(t))− (β + δ)H(t).
(S2)

Here, β is the rate of loss of Ki67 expression aftermitosis, and ϵ is the proportion of the cells entering from the source
that are Ki67hi; we used its average observed value in themodel fitting process. We assumed eqns. S2 held identically
for host and donor cells. We fitted the following combinations of the solutions to these equations simultaneously to



the timecourses of

Total cell numbers = N(t) = Hdonor(t) +Hhost(t) + Ldonor(t) + Lhost(t)

Normalised chimerism =
1

χsource(t)

Hdonor(t) + Ldonor(t)

N(t)

Proportions of donor and host cells expressing Ki67 =
Hdonor(t)

Hdonor(t) + Ldonor(t)
,

Hhost(t)

Hhost(t) + Lhost(t)
,

using the empirical descriptions of the size (S(t)) and chimerism (χsource(t)) of the source population (see part A).
We define time t0 to be age at BMT of the youngest recipient (approximately 7 weeks), at which time the size of
donor compartment is zero. Therefore, the Ki67hi proportion among donor cells at t0 reflects that in the source,
κdonor(t0) = ϵ. The Ki67hi proportion among host cells at t0 is defined as κ0. We estimated β, α, δ, ψ, κ0 and
H(t0) + L(t0), the size of the host compartment at t0.

Time-dependentmodels: In these extensions of themodel above, the per capita rate of influx of new cells from the
source population ψ, the rate of cell division α, or the rate of loss δmay vary with time. We allowed each sub-model
to exhibit time-dependence in only one process. These three sub-models are also homogeneous; at any given instant,
all cells in the population exhibit the same rates of division and turnover. We assumed that the time-dependent
parameter varied with mouse age t as exp(rt), where r was estimated from the data and was unconstrained (i.e. the
rate constant could either rise or fall with time).

Kinetic-heterogeneity model: This model comprises two subsets, which are independent, fed separately from the
same source population, and are lost and/or divide at different rates. The resulting dynamics of the population as a
whole are therefore the weighted average of the more ‘transient’ subset (rapid net loss, δf − αf ) and a ‘persistent’
subset (slower net loss, δs − αs). We solve the following equations for Ki67hi and Ki67lo cells among the transient
and persistent subsets, and formulate it identically for host and donor cells;

Ḣf (t) = ϕ(ψ, t) f ϵ + αf (2Lf (t) +Hf (t))− (β + δf )Hf (t),

L̇f (t) = ϕ(ψ, t) f (1− ϵ) + β Hf (t)− (αf + δf )Lf (t),

Ḣs(t) = ϕ(ψ, t) (1− f) ϵ + αs (2Ls(t) +Hs(t))− (β + δs)Hs(t),

L̇s(t) = ϕ(ψ, t) (1− f) (1− ϵ) + β Hs(t)− (αs + δs)Ls(t).

(S3)

Along with the kinetic parameters we also estimate the proportions of the transient subset in the precursor (f ) and
in the target (q) populations, and the initial fractions of Ki67hi cells in the transient and persistent subsets. The
initial numbers of host-derived cells in the transient and persistent subsets are defined as N0 q and N0 (1 − q),
respectively.

Incumbentmodel: In thismodel, described inHogan et al. (2015) andRane et al. (2018), heterogeneity is exhibited
only in the host compartment, which is assumed to comprise (i) an ‘incumbent’ subset of older, self-renewing cells
that are resistant to displacement by new cells and (ii) a ‘displaceable’ subset that is replaced continuously by cohorts
of new cells entering the pool. All donor cells are assumed to behave as displaceable cells.

Ḣ(t) = ϕ(ψ, t)ϵ + α (2L(t) +H(t))− (β + δ)H(t),

L̇(t) = ϕ(ψ, t)(1− ϵ) + β H(t)− (α+ δ)L(t),

Ḣinc(t) = αinc (2Linc(t) + Yinc(t))− (β + δinc)Hinc(t),

L̇inc(t) = β Hinc(t)− (αinc + δinc)Linc(t).

(S4)



We assume that the incumbent subset is established early in life, before the minimum age of BMT in our chimeric
animals (∼7 weeks).

C – The time taken to approach to stable chimerism in a B cell population is deter-
mined predominantly by the clonal lifetime
Here we illustrate for the simplest homogenous model the factors that determine the rate at which chimerism in a
population reaches that of its precursor population. Assume a populationN(t) is fed by precursors at constant total
rate ϕ, divides at per capita rate α and is lost through death or differentiation at per capita rate δ;

dN/dt = ϕ− (δ − α)N(t).

The quantity δ − α is the net loss rate, which we denote λ:

dN/dt = ϕ− λN(t).

Assume the source acquires a stable chimerism χ, and that host (h) and donor (d) cells behave identically;

dNd/dt = χϕ− λNd(t)

dNh/dt = (1− χ)ϕ− λNh(t)

The normalised chimerism of the population is

χnorm =
Nd

χ(Nd +Nh)
,

which evolves according to

d

dt
χnorm(t) =

1

χN(t)

(
χϕ− λNd(t)−

Nd(t)

N(t)

dN(t)

dt

)
=

1

χN(t)

(
χϕ− λNd(t)−

Nd(t)

N(t)

(
ϕ− λN(t)

))
=

1

χN(t)

(
χϕ− ϕ

Nd(t)

N(t)

)
=

ϕ

N(t)

(
1− χnorm(t)

)
. (S5)

If the population is at equilibrium thenN(t) = ϕ/λ, giving

d

dt
χnorm(t) = λ

(
1− χnorm(t)

)
, (S6)

which implies
χnorm(t) = 1− e−λt; (S7)

that is, the chimerism in the population reaches that of its precursors at a rate determined purely by the clonal
lifespan 1/λ. If the population is initially out of equilibrium at sizeN0,

χnorm(t) = 1− 1

1 + (eλt − 1) ϕ
λN0

, (S8)



the rate of approach to χnorm = 1 is then governed by both λ and the daily influx as a proportion of the initial pool
size, ϕ/N0 (intuitively, if the pool is initially over-populated, ϕ/λN0 < 1 and chimerism increases more slowly
because of the excess of host cells; if the pool is depleted, ϕ/λN0 > 1 and stable chimerism is achieved more
quickly). Equation S8 reduces to S7 whenN0 = ϕ/λ.

D – Fitting and selecting mathematical models

Likelihood

Weattempted to explain the kinetics of host and donor cells in busulfan chimericmice with an array ofmathematical
models, detailed in the main text and illustrated in Fig. 4A. As described, variation in the degree of depletion of host
HSCs by busulfan treatment led to mouse-to-mouse variation in the level of stable bone-marrow chimerism (the
fraction that are donor-derived), and hence also in peripheral subsets. We removed this variation by dividing the
chimerism in each B cell subset by the chimerism χ in the T1 precursor population. This normalised chimerism
(donor fraction) is

χnorm =
Donor cell numbers

Total cell numbers× χ
.

This approach allows us to fit a single model to data from multiple mice. Each model was fitted simultaneously to
the timecourses of total cell counts (N(t), the sum of host and donor cells), the normalised chimerism χnorm(t),
and the proportions of Ki67hicells in the host and donor compartments (κhost(t) and κdonor(t)). Cell counts were
log-transformed while χnorm, κhost and κdonor were logit-transformed, to ensure that measurement errors were ap-
proximately normally distributed. The joint likelihood of the datasets (with variables representing their transformed
values) is then

L =
n∏
i=1

exp

(
−(Ni−Npred

i )2

2σ2
N

)
√
2πσN

×
exp

(
−(χnorm,i−χpred

norm,i)
2

2σ2
χ

)
√
2πσχ

×
exp

(
−(κi,host−κ

pred
i,host)

2

2σ2
κhost

)
√
2πσκ,host

×
exp

(
−(κi,donor−κ

pred
i,donor)

2

2σ2
κdonor

)
√
2πσκ,donor

≡
exp(−SSRN/2σ2N )(√

2πσN

)n ×
exp(−SSRχ/2σ2χ)(√

2πσχ

)n ×
exp(−SSRκ,host/2σ2κ,host)(√

2πσκ,host

)n ×
exp(−SSRκ,donor/2σ2κ,donor)(√

2πσκ,donor

)n ,

where n is the number of animals, each yielding four observations, and SSR denotes the sum of squared residu-
als, with each being a function of the data and the model parameters. This gives the joint log-likelihood (up to a
constant);

logL = −1

2

(
SSRN
σ2N

+
SSRχ
σ2χ

+
SSRκ,host
σ2κ,host

+
SSRκ,donor
σ2κ,donor

)
− n(log σN + log σχ + log σκ,host + log σκ,donor).

Parameter estimation

We used a Bayesian approach to estimating the model parameters, the errors associated with the measurements
in each dataset, and a measure of support for each model. The inputs to this procedure are the joint likelihood
shown above, and a set of prior distributions on the model parameters and the unknown measurement errors in
each dataset. We refer to these unknowns collectively as θ. The Bayesian procedure updates these priors with the
likelihood, to generate posterior distributions of θ that reflect our knowledge of these parameters in the light of
the data, collectively denoted y. Strong (narrow) priors help to regularise a model’s behaviour and prevent it from
learning too much from the data – and hence guard against over-fitting. The joint posterior distribution of the



parameters is calculated using Bayes’ rule,

p(θpost|y) =
p(y|θpost) . p(θprior)

p(y)
(S9)

where p(y) is the likelihood of the data (averaged over the priors) that normalises the posterior such that it integrates
to 1. We consider priors to be tools that improve a model’s ability to learn from the data, and subjected them to
similar standards of evaluation and revaluation as any other component of the model. Detailed descriptions of the
priors, together with the code and data for performing all of the analyses presented in this study, are available at
github.com/sanketrane/B_cells_FM_GC.

The models were represented as systems of ordinary differential equations (ODEs), described in detail in Methods
S1, part B. We solved them numerically using the integrate_ode_rk45 solver in the Stan programming language and
used the default no-U-turn sampler (NUTS) to generate the posterior distributions of the parameters. We con-
firmed that the log-transformed cell counts, and the logit-transformed values of the normalised chimerism and the
Ki67hi proportions in host and donor compartments, were all normally distributed with constant errors (standard
deviations). These standard deviations were additional parameters that were estimated from the data. We used the
R-stan package in R to interface and compile the Stan scripts that encoded the priors, model definitions, and the
sampling and fitting procedures.

Comparing models

Theassessment of amodel’s utility depends onhowaccurately it explains a given dataset (measured by the likelihood)
aswell as its ability to accurately predict newobservations. A complexmodelwith an excessive number of parameters
will tend to overfit any given dataset and perform poorly when predicting new observations. On the other hand, a
model that is too simple will fail to capture trends in the data, generate a low likelihood, and will also make poor
predictions of new observations. The Akaike Information Criterion (Akaike, 1974, Burnham and Anderson, 2002)
is commonly used to identify the model(s) within a set of alternatives that provide the best trade-off(s) between
likelihood and complexity. However, the AIC penalises all model parameters equally, which may not be appropriate
when they differ in their ability to influence a fit. In this study, we use the Leave-one-out information criterion
(LOO-IC; Vehtari et al. (2017)) which penalizes the addition of model parameters only to the extent that they are
informed by the data and so can contribute to overfitting.

Briefly, we define the log predictive density of a single observation yi given a model with parameters θ – that is, the
average value of the log-likelihood log

(
p(yi|θ)

)
across the joint posterior distribution of θ. We approximate this

by makingD draws from the posterior distribution, calculating the likelihood of yi for each set of parameters, and
averaging. This process is repeated for each data point (y1, ..., yn) to calculate the log point-wise predictive density
(lppd) for the whole dataset:

lppd =
n∑
i=1

log

(
1

D

D∑
d=1

p(yi|θdpost)
)
. (S10)

One then uses the leave-one-out (loo) method, a special case of cross-validation, whereby the dataset of n observa-
tions (y1, ..., yn) is partitioned into n training datasets each of size n− 1. Fitting the model to the training sample
that excludes datapoint i gives a joint posterior θ(-i)post. This posterior is then used to estimate the prediction accuracy
of the model for the excluded observation i (the test sample), which is defined as the log of the average likelihood of
the test sample across the posterior distribution. This likelihood is approximated by averaging overD draws from
the posterior. This process is repeated, making each observation in the dataset (y1, ..., yn) the test sample, and the
lppdloo is defined to be the sum of the log likelihoods of all these prediction accuracies:

lppdloo =
n∑
i=1

log

(
1

D

D∑
d=1

p(yi|θ(-i)dpost )

)
(S11)



where the term in large parentheses characterizes the D posterior simulations fitted on n − 1 observations when
the ith observation is left out. The information criterion LOO-IC is defined as −2 × lppd (Vehtari et al., 2017).
To calculate it we use the loo-2.0 package in the rstan library, which estimates the lppdloo using Pareto-smoothed
importance sampling (PSIS) – an approximation of leave-one-out cross-validation that uses existing posterior draws
from the model fits (Vehtari et al., 2015).

We then used the estimated LOO-IC values to assess the relative support for models using the analog of the Akaike
weight – the probability that a givenmodel will explain new data better than othermodels considered in the analysis.
Following Burnham and Anderson (Burnham and Anderson, 2002), these weights are

wi =
exp(−1

2∆LOO-ICi)∑M
m=1 exp(12∆LOO-ICm)

, (S12)

where ∆LOO-ICi is the difference in LOO-IC values between model i of M candidates and the model with the
lowest LOO-IC value.

E – Modelling the development of FM B cells in young mice

Empirical description of T1 precursor numbers in young mice

To capture the dynamics of T1 cells in young mice (Fig. 5A) we used the empirical function S(t) = S0 (1 +
tn exp(−bt)), and fitted this to the log-transformed cell counts, using least squares to estimate S0, n and b.

Explaining the developmental dynamics of FM B cells in young mice

To test the hypothesis of lower recruitment of T1 B cells in neonates than in adults, we allowed the rate of influx
to increase with time early in life, approaching the value ψ estimated from our best-fitting model in adults aged 7
weeks and older; we assumed the form ψ(t) = ψ(1− exp(−rψt)). The estimated rate rψ was sufficiently large that
ψ(t) was very close to ψ at age 7 weeks (Fig. 5E).

To test whether FM B cells in young mice are lost more rapidly than those in adult mice, we extended the time-
dependent loss model, in which we had described the loss rate from age t0=7 weeks onwards as δ(t) = δ0e

−r(t−t0).
For t < t0 we assumed δ(t) = δ0(1− ern(t−t0)) with rn > r (Fig. 5F).

We fitted both extensions of the time-dependent loss model to the counts of FM B cells in young mice separately,
estimating rψ and rn in the process.

Estimating the age distribution of FM B cells in young mice

To generate the predicted age distributions of cells under the two models above, we recast the models as partial
differential equations (PDEs) that explicitly track cell age. In the time-dependent loss model, the population density
of FM B cells of age a in mice of age t is given by the solution to

∂N(a, t)

∂a
+
∂N(a, t)

∂t
= −(δ(t)− α)N(a, t). (S13)

The rate of influx of cells of age zero N(0, t) is the source influx ψS(t), or ψ(t)S(t) for the model in which the
per capita influx rate varies with age. The other boundary condition is the age distribution of cells at time zero, size
N(a, 0). We assumed that the FM B cell compartment at the time of birth is sufficiently small that we could set
N(a, 0) = 0. We solved this model using the parameters estimated from fitting the extensions of time-dependent
loss model (described above) to the total counts of FM B cells in young mice. We then calculated the normalised



cell age distribution of FM B cells at t = 7 weeks using

G(a, t) =
N(a, t)∫ t

0 N(a, t)da
.

See Rane et al. (2018) for full details of the solution of this class of model.

Modelling the distribution of GFP expression in FM B cells

We assumed that the GFP intensity within FMB cells declines exponentially with their age, since there is no residual
Rag activity from the T1 stage onwards (Yu et al., 1999) and the estimated slow rate of self-renewal of FM B cells
means that dilution of GFP through division is minimal. Newly matured FM B cells of age a = 0 therefore have
GFP intensity fmax, which then declines as f(a) = fmaxe

−γa, and fmax and γ are parameters to be estimated.
There is therefore a 1-to-1 correspondence between GFP expression f and cell age a, and so we recast the FM B cell
population densityN(a, t) (the solution to eqn. S13) as

N(f, t) = N(a, t)

∣∣∣∣dadf
∣∣∣∣

= N

(
ln fmax − ln f

γ
, t

)
1

γf

(S14)

where the Jacobian da/df preserves local cell densities under coordinate transformations. The mean fluorescence
intensity (MFI) of GFP in FM B cells in a mouse of age t is then

MFI(t) =

∫ fmax
fmin

f N(f, t) df∫ fmax
fmin

N(f, t) df
, (S15)

where fmin is a lower cutoff in GFP expression needed to avoid divergence in the integral (GFP never decays to
zero) and was set to 0.1, well below all values observed experimentally. For each model, we estimated fmax and γ
by fitting eqn. S15 to the observed timecourse of the MFI of GFP in FM B cells. Using the solution N(f, t) for
each model we then predicted the timecourse of the MFI within GFPpos FM B cells only, using a gating threshold of
fmin = 1000.

F –Using information fromKi67-reportermice to aid discrimination betweenmodels
of GC B cell dynamics
The Ki67-Cre-ERT2-YFP system allows us to track cohorts of cells that underwent cell division during tamoxifen
treatment. We measured the frequencies of YFP-expressing cells at day 4 and day 62 post-tamoxifen and, for each
model (as described below), used the decline in YFP expression over this time period to constrain the rates of loss
and/or division. YFP expression is preserved upon cell division but is diluted by loss or onward differentiation. To
illustrate, for the simple homogeneous model, YFP expression will decline at the net rate of loss of the population
λ, which is δ − α. We can therefore relate λ to the fold loss of YFP expression over a time τ :

Y (t) = Y0 e
−λ τ =⇒ λ = − log(∆Y )/τ. (S16)

Priors on∆Y . We took the strategy ofmaking∆Y a parameter in themodel, using its observed values to generate
its prior; and sampling from this prior then allowed us to estimate or constrain other parameters. For splenic GC B
cells, the mean YFP-labelled fraction dropped from 0.35 to 0.04 over 8 weeks, yielding∆Y ∼ 0.12. This, together
with the scatter in ∆Y observed in YFP reporter mice (4 mice at the 2 week timepoint and 5 mice at the 8 week
timepoint, unpaired data; Fig. 6D in the text), suggested∆Y ∼ N (0.12, 0.05). Lymph node GC B cells exhibited



∆Y ≃ 0.42. When assuming T1 or T2 as their precursors, which turn over rapidly and are therefore not expected
to provide a persistent source of YFP-labelled cells after withdrawal of tamoxifen, we therefore assumed ∆Y ∼
N (0.42, 0.05). When assuming FM B cells to be precursors, which turn over more slowly, we considered the pos-
sibility that FM B cells might act as a reservoir that feeds new YFP+ cells into LNGC for some time after withdrawal
of tamoxifen. In the case the drop in YFP expression yields only a lower bound on λ. Accordingly, we assumed that
∆Y was skew-normally distributed with a bias towards values less than the mean of 0.42, and a standard deviation
of 0.1 (∆Y ∼ SkewNormal(0.42, 0.1,−5)). Specifically, if µ ∈ R, σ ∈ R+, and k ∈ R, then for y ∈ R,

SkewNormal(y |µ, σ, k) = 1

σ
√
2π

e−
(y−µ)2

2σ2

(
1 + erf

(
k(
y − µ

σ
√
2

))
,

where ‘erf ’ is theGaussian error function. For eachmodel we used theYFP information in the followingways:

Simple homogeneous model (with or without time-dependent influx): Using the above priors on ∆Y and the
division rate α, we then estimated the rate of loss (δ) using equation S16;

δ =
− log(∆Y )

τ
+ α.

Time-dependent division or loss: With time dependent division, we assumed priors for∆Y and δ and calculated
the rate of division at t0, which we denote α0. With time dependent loss loss, we assumed priors for∆Y and α and
calculated the rate of loss at t0 (δ0):

α0 =
log(∆Y ) + δτ

τ eτ r

δ0 =
− log(∆Y ) + ατ

τ eτ r
.

(S17)

Kinetic heterogeneity: This model (eqns. S3) predicts a biphasic loss of YFP, reflecting the net loss rates of the
transient (λf ) and persistent (λs) subsets and which were present at unknown frequencies q and 1− q, respectively.
We then assigned priors∆Y , λf and λs, to give q:

Y (τ) = Y f
0 e

−λf τ + Y s
0 e

−λs τ

∆Y = Y (τ)/Y (0) = q e−λf τ + (1− q) e−λs τ

=⇒ q =
∆Y − e−λs τ

e−λf τ − e−λs τ
.

(S18)

Here Y f
0 and Y s

0 are the fractions of YFP-labelled cells in the transient and persistent subsets, respectively, at time
τ = 0. Assuming λf > λs, the constraint 0 < q < 1 in turn constrains the priors on λf and λs;

λs <
− log(∆Y )

τ
< λf .

Placing priors on the division ratesαf andαs, we could then calculate the rates of loss of transient (δf ) and persistent
subsets (δs) using

δf = λf + αf

δs = λs + αs.



Incumbent: We derived a similar relationship between λdisplaceable and λincumbent to that in eqn. S18,

λincumbent <
− log(∆Y )

τ
< λdisplaceable.

Using priors on∆Y , λdisplaceable, λincumbent, αinc and α, we calculated δ and δinc:

δ = λdisplaceable + α

δinc = λincumbent + αinc.


