Supplemental Figure Legends

Figure S1. The PatA analogue, DMPatA, is a potent inducer of eIF4A1:poly (AG)₈ RNA clamping, *Related to Figure 1.* **a.** Left panel: Polarization values obtained with wt eIF4A1 (10 µM) in the presence of DMPatA (2.5 µM) or CR-1-31-B (10 µM) and FAM-labeled RNA (10 nM). Reactions were assembled in binding buffer (14.4 mM HEPES-NaOH [pH 8], 108 mM NaCl, 14.4% glycerol, 0.1% DMSO, 2 mM DTT) in the presence or absence of 1 mM MgCl₂/1mM ATP. n=4 ± SEM. P values were calculated using one-way ANOVA. <u>Right panel:</u> Results of filter binding assay obtained with wt eIF4A1 (2.5 µM) in the absence or presence of 1 mM MgCl₂/1mM ATP and DMPatA (2.5 µM) or CR-1-31-B (10 µM). Radioactive [³²P]-poly(AG)₈ RNA (100,000 cpm) was used as input. n=3 ± SEM. P values were calculated using one-way ANOVA. **b.** ATPase activity of pre-clamped eIF4A1:RNA:DMPatA complexes. eIF4A1, poly (AG)₈ RNA, 0.5 mM cold ATP with or without DMPatA (2.5 uM) were pre-incubated at RT for 30 min, after which 1 µCi γ-³²P-ATP (3000 Ci/mmol) was added and ATP hydrolysis monitored for 120 mins. n=3± SEM.

Figure S2. Superpositions of the eIF4A structure determined herein with those of eIF4A1:RocA (PDB 5ZC9) and the Drosophila DEAD box helicase, Vasa (PDB 2DB3), *Related to Figure 2.* **a.** The similarity to Vasa indicates that DMPatA and RocA are likely binding to the pre-existing closed conformation induced by binding of RNA and AMP-PNP. Root mean squared deviations (r.m.s.d) derived from the number of corresponding C α atoms in parentheses are indicated. **b, c** Simulated annealing Fo-Fc omit maps for (**a**) RNA and (**b**) DMPatA contoured at 2.5 σ . An annealing temperature of 2500K was used.

Figure S3. Comparison of interactions between eIF4A1 and DMPatA or RocA, *Related to Figure 2.* **a.** Ligplot schematic diagram showing DMPatA and RocA contacts to eIF4A1. **b.** RocA-eIF4A1 and RocA-RNA interactions as defined by Iwasaki et al. (2019) and based on PDB 5ZC9.

Figure S4. RNA binding of eIF4A1 mutants with substitutions at DMPatA interacting amino acids, *Related to Figure 4.* **a.** Coomassie-stained polyacrylamide gel of the protein preparations used in this study. **b.** Polarization values obtained with the indicated proteins when incubated with FAM-labelled (AG)₈ RNA and ATP. $n=3 \pm$ SEM. **c.** Polarization values obtained with wt eIF4A1 and D198K with FAM-poly (AG)₈ RNA in the presence of either DMPatA (2.5 μ M) or CR-1-31-B (10 μ M). $n=5 \pm$ SEM. P values were calculated using two-way ANOVA. **d.** Polarization values obtained with wt eIF4A1, R282K, and D305A mutants with FAM-labelled (AG)₈ RNA in the presence of DMPatA (2.5 μ M). $n=5 \pm$ SEM.

Figure S5. Schematic diagram illustrating construction and validation of *EIF4A2* and *EIF4A1*^{FI63L}. *EIF4A2* eHAP1 cells, *Related to Figure 4*. **a.** The sequence within *EIF4A2* exon 5 targeted by the indicated sgRNA (bold) is shown. The PAM is shaded orange and the resulting nucleotide change within *EIF4A2* identified in a clonal isolate consisted of a 2 base pair insertion, resulting in early termination of translation (amino acid changes are indicated in blue and * denotes the location of the stop codon). For *EIF4A1*^{FI63L} engineering, the targeted codon is highlighted by a dashed orange box and the engineered change in the donor ssODN is indicated in green. A clonal isolate was expanded and the presence of the F163L mutation confirmed by Sanger sequencing of a PCR product obtained from amplifying exon 5. Shown are Western blots of protein extracts isolated from the indicated cells assessing eIF4A1 and eIF4A1^{FI63L}EIF4A2⁻ (green triangles) eHAP1 cells. Cell were exposed to the indicated concentrations for 2 days and viability was measured using the SRB assay. The IC₅₀'s of CR-1-31-B towards the test cell lines were: CR-1-31-B/eHAP, 0.3 ± 0.07 nM; CR-1-31-B/*EIF4A2*, 0.37 ± 0.08 nM; CR-1-31-B /*EIF4A1*^{F163L}*EIF4A2*, >115 nM; n = 3 \pm SEM.

r.m.s.d. = 0.38 Å (378 C α atoms)

С

r.m.s.d. = 1.4 Å (346 C α atoms)

Figure S2

b

Asp 198

ÒMe

A7

G6

3.0

Gln 195

10¹ 10² 10³

0

10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 1

CR-1-31-B (nM)