
Supporting Information for: BLaDE: A Basic

Lambda Dynamics Engine for GPU

Accelerated Molecular Dynamics Free Energy

Calculations

Ryan L. Hayes† and Charles L. Brooks III∗,†,‡

†Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United

States

‡Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States

E-mail: brookscl@umich.edu

Phone: (734) 647-6682

Simulation Details

Unless otherwise noted, BLaDE simulations utilized a friction constant of 0.1 ps−1, as

numerical experiments suggested higher values slowed convergence of simulations. Stan-

dalone BLaDE simulations used an alchemical friction coefficient of 1 ps−1, while BLaDE

in CHARMM and DOMDEC in CHARMM simulations used an alchemical friction coeffi-

cient of 5 ps−1. Monte Carlo pressure coupling moves were attempted every 100 steps and

coupled to a 1 atmosphere pressure bath with volume changes sampled from a Gaussian

distribution with a standard deviation of 100 Å3. PME electrostatics used β−1 = 3.125 Å,

an interpolation order of 6 and a maximum grid spacing of 1.1 Å (the box was divided by the

minimum integer having powers of 2 times 16, 18, 20, 24, or 27 that satisfied the maximum

S1



grid spacing). Van der Waals force switching used a switch radius of 9 Å and force cutoff of

10 Å. A time step of 2 fs was used in all simulations.

For constant energy simulations and time step stability simulations of the 216 TIP3P

water molecule box and DHFR, a different friction coefficient of 1 ps−1, a force cutoff of 10

Å and a force switch radius of 8.5 Å, and a temperature of 300 K were used. For these simu-

lations, DHFR also used an interpolation order of 6. For constant energy simulations, initial

equilibration was 1 ns in an NVT, followed by 1 ns of NVE production. Time step stability

simulations of the 216 TIP3P water molecule box used a 1 ns NVT equilibration followed by

NVT production for 500000 steps at the indicated time step, while DHFR simulations used

a 1 ns equilibration followed by a 1 ns production.

Profiling runs were run for 1 ns in sets of 10 with varying software and hardware config-

urations. DHFR profiling runs mimicked the stripped down nature of the standard DHFR

benchmark system, except they utilized force switching for van der Waals interactions be-

cause this is the only option currently available in BLaDE. A PME interpolation order of

4 was used, and van der Waals force switching used a switch radius of 7.5 Å and a cutoff

radius of 9 Å. The use of force switching rather than the standard potential switching for

the DHFR benchmark was shown to have no effect on computational cost for DOMDEC

and OpenMM. Unlike the alchemical simulations, DHFR profiling was also run at constant

volume, which substantially improved the efficiency of DOMDEC, but had little effect on

BLaDE and OpenMM. The temperature was 298 K, and the SHAKE tolerance was 1×10−8.

Other profiling simulations used the longer cutoffs and higher interpolation order listed pre-

viously, a temperature of 298.15 K, and a more stringent SHAKE tolerance of 1× 10−9.

Free energy comparisons utilized the same options. For T4L and HSP90, full flattening

runs of both ensembles (folded and unfolded or complex and solvent) were run, followed

by production. For RNase H, only the folded ensemble was studied, using the same set

of previously determined biases for all simulations. Simulation setups have been described

in previous publications.1–3 T4L utilized five independent trials of 40 ns for production,

S2



RNase H utilized twelve independent trials of 400 ns for production, and HSP90 utilized

five independent trials of 30 ns for production. Production was rerun in T4L as described

previously if simulations were judged to be uncoverged based on adjustments of more than

1.2 kcal/mol to any of the fixed biases after the production simulation. In addition to

comparing with a reference simulation run with the same options as DOMDEC in CHARMM,

simulations were also compared to experiment for the 18 sequences in T4L, the 12 sequences

in RNase H, and the 9 ligands in HSP90 with measured free energies (Table S1).

Table S1: RMS Difference of MSλD Free Energies from Experiment (kcal/mol)

T4L RNase H HSP90
Protein MSλD Protein MSλD Ligand MSλD

Standalone BLaDE 0.95 1.25 0.45
BLaDE in CHARMM 0.91 1.27 0.68
DOMDEC in CHARMM 0.93 1.25 0.60
DOMDEC in CHARMM (reference) 0.97 1.18 0.46

Direct Nonbonded Kernels

In the main text, we noted that previous work found performance improvements when writing

separate nonbonded kernels for blocks with more than 12 atoms using a staggered approach

and less than 12 atoms using a reduction approach.4 Reduction means each thread operates

on the same j atom simultaneously, and the result is then summed and stored, while stag-

gering means each thread works on a different j atom, so forces on j can be accumulated

without the need for a reduction over all 32 threads before moving on to the next j atom.

In BLaDE we tried both methods (without splitting the blocks into two groups of those

with fewer and more atoms), and found always using the reduction approach was faster than

always using the staggered approach.

We also implemented a kernel that switched between the two approaches at an empirically

determined break-even point. We found the break even point to be 26 j atoms, which is

much higher than the previously identified break even point of 12 atoms.4 This suggests

S3



reduce operations are less expensive than they once were, possibly due to the ability to

reduce with shuffle operations instead of shared memory. The kernel switching between

reduction and staggering failed to result in a significant speedup, achieving almost exactly

the same performance as the pure reduction kernel. The overhead of bookkeeping whether

to use reduction or staggering eliminated the gains from the reduced amount of work, and

resulted in more complicated code, and was therefore abandoned.

Another nonbonded kernel was written in an attempt to eliminate extra operations.

While noninteracting j atoms are identified by whether they are too far from the bounding

box of i atoms and skipped, noninteracting i atoms still occupy a thread, thus the full

interaction between the i and j blocks must be computed, even if there is only one interacting

i atom. Therefore, we load only interacting j atoms from as many blocks as necessary to

achieve a full complement of 32 atoms to occupy all 32 threads, and then instead of looping

over j atoms, we loop over i atoms, and skip non-interacting i atoms as well. This introduced

substantially more bookkeeping and hence more registers of local variables. On RTX 2080

Ti GPUs, this reduced the occupancy slightly meaning fewer pairs of blocks could run at the

same time on the GPU, but did improve performance by almost 5%; however, earlier GPUs

had fewer registers available, so occupancy decreased substantially, resulting in substantially

slower execution. Consequently, this approach was abandoned as well, even though it gave

slight improvements on RTX 2080 Ti GPUs, because of its inconsistency across GPUs and

because of the substantial extra code complexity.

References

(1) Hayes, R. L.; Vilseck, J. Z.; Brooks, C. L., III Protein Science 2018, 27, 1910–1922.

(2) Hayes, R. L.; Nixon, C. F.; Marqusee, S.; Brooks, C. L., III Journal In preparation,

Vol, Page.

S4



(3) Raman, E. P.; Paul, T. J.; Hayes, R. L.; Brooks, C. L., III Journal of Chemical Theory

and Computation 2020, 16, 7895–7914.

(4) Eastman, P.; Pande, V. S. Journal of Computational Chemistry 2010, 31, 1268–1272.

S5


