## **Supplementary material**

Holstein Friesian dairy cattle edited for diluted coat color as a potential adaptation to climate change

Götz Laible, Sally Cole, Brigid Brophy, Jingwei Wei, Shane Leath, Swati Jivanji, Mathew D.

Littlejohn and David N. Wells

| Name  | Sequence                                                                                                                                | Application                  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| 122_F | GGCTCTGATGGGTGTTCTTC                                                                                                                    | gRNA, PMEL                   |  |
| 129_F | ATGGGTGTTCTTCTGGCTGT                                                                                                                    | gRNA, <i>PMEL</i>            |  |
| 130_F | TGGGTGTTCTTCTGGCTGTA                                                                                                                    | gRNA, <i>PMEL</i>            |  |
| ssODN | GGAGAGAAAAACCAGAGCAGGTGTGCAACCCCAAATTCACAC<br>TTGTTCATGTCCAACATCCCACACTCACCTTCTGTGGTCCCTAC<br>AGCCAGAACACCCATCAGAGCCACATGGAGAAGGTATTTTC | HDR template, <i>PMEL</i>    |  |
| 1249  | TGCTTTAAGATGAGACTGACC                                                                                                                   | Mutation- specific PCR, PMEL |  |
| 1305  | AGCCAGAACACCCATCAG                                                                                                                      | Mutation- specific PCR, PMEL |  |
| 1283  | TTGCTGGAAGGAAGAACAGG                                                                                                                    | PCR/ddPCR primer, PMEL       |  |
| 1284  | GGAGACACCTGAAGCACTAC                                                                                                                    | PCR/ddPCR primer, PMEL       |  |
| 1287  | TGGGTGTTCTTCTGGCTGTAGGGACCACA                                                                                                           | Drop-off probe (HEX), PMEL   |  |
| 1285  | TGATGGGTGTTCTGGCTGTAGGGACCACA                                                                                                           | HDR probe (FAM), PMEL        |  |
| 1289  | GGCTCTGATGGGTGTTCTTCTGGCTGTAGGGACCACAG                                                                                                  | Dark probe, PMEL             |  |
| 1286  | TGCACACCTGCTCTGGTTTTTCTCTCCCCT                                                                                                          | Reference probe (FAM), PMEL  |  |
| 1670  | CCAGCCACCCTCCCCTTCACC                                                                                                                   | PCR, MC1R                    |  |

**Table S1.** PCR primer, probe, gRNA and repair template sequences used to characterise the *PMEL* locus and white spotting genes.

| 1671   | CGCAATGATCCTCCACGCTCG    | PCR, MC1R              |  |  |
|--------|--------------------------|------------------------|--|--|
| 1041   | ACTATCATATGCTTACCGTAAC   | PCR, gRNA/Cas9 plasmid |  |  |
| 795    | GGGCCATTTACCGTCATTGA     | PCR, gRNA/Cas9 plasmid |  |  |
| 211    | TGCCCCAGAGAAGAGAAGG      | PCR, LALBA             |  |  |
| 212    | ATTGCTAACGGGAGTGAAGTAAGT | PCR, LALBA             |  |  |
| 1664   | GTGATTTGGGTCCCTCTGGG     | PCR, OFF 1             |  |  |
| 1665   | GCTGTGCCTAAGGTCCCAAT     | PCR, OFF 1             |  |  |
| 1666   | GCACGACTGAGGGACTTTCA     | PCR, OFF 2             |  |  |
| 1667   | AACTCATCTCCCGCTACCCT     | PCR, OFF 2             |  |  |
| 1668   | GGCCTTAGGGAGCAGACTTG     | PCR, OFF 3             |  |  |
| 1669   | TGGAATGTGTGGGCTCCATC     | PCR, OFF 3             |  |  |
| KIT_F  | TGGTGAAGGAGGCATGTCTG     | PCR, KIT               |  |  |
| KIT_R  | GGTGTGCCTTTGTGAATTCA     | PCR, KIT               |  |  |
| MITF_F | CGAGACACCACCGGAAACTT     | PCR, MITF              |  |  |
| MITF_R | TTCTGTGTTTGGAAGGGGCC     | PCR, MITF              |  |  |
| PAX3_F | ATGTTAGGTGCAGGTGGAGC     | PCR, PAX3              |  |  |

## PAX3\_R GCTTCCCACCTTGACCTCTC

Table S2. Genotype for major-effect QTL associated with white spotting.

| QTL*       | ID          | Position ARS_UCD1.2 | Q allele <sup>+</sup> | q allele <sup>#</sup> | BEF2 gen <sup>@</sup> | CC14 gen <sup>&amp;</sup> |
|------------|-------------|---------------------|-----------------------|-----------------------|-----------------------|---------------------------|
| chr2_PAX3  | rs109979909 | chr2:110817975      | А                     | С                     | AC                    | AC                        |
| chr6_KIT   | rs451683615 | chr6:62557125       | А                     | G                     | AA                    | AA                        |
| chr22_MITF | rs209784468 | chr22:31651379      | А                     | G                     | AA                    | AA                        |

\* QTL from Jivanji et al. 2019; positions reference tag variant or candidate mutation

<sup>+</sup> Allele associated with increased spotting

<sup>#</sup> Allele associated with decreased spotting

<sup>@</sup> parental cell line

& edited cell line



**Fig. S1. Target site sequence of the genome edited calves**. Shown is an alignment of Sanger sequence results of the *PMEL* target region of one wt calf and the two mutant calves, genome edited for the p.Leu18del PMEL mutation.



**Fig. S2.** The edited claves are homozygous for the *MC1R*  $E^{D}$  allele. Shown are the Sanger sequence results for the *MC1R* region covering the causative sequence variant of the  $E^{D}$  allele for the non-edited parental cell line BEF2 and the surviving calf (PMEL calf 1). For comparison, the sequence variation (bold, asterisk) between the E+ (wt) and E<sup>D</sup> *MC1R* alleles is depicted at the top.







**Fig. S4. Original gel photo used to generate Fig. S3.** (A) Shown are amplification results for a gRNA/Cas9 plasmid-specific amplicon with genomic DNA isolated from the two edited calves (PMEL-1, 2) and the three non-edited control calves (WT-1, 2, 3). M: DNA size marker; C+ve: positive control of gRNA/Cas9 plasmid; H<sub>2</sub>O: water control. Lanes labelled as 'unrelated' show PCR results of an unrelated project in a different species. (B) The same specified samples as indicated above (PMEL, WT, C+ve), analysed for the amplification of a genomic fragment specific for the endogenous bovine *LALBA* gene encoding alpha-lactalbumin. Unrelated: PCR results of an unrelated project in a different species.



**Fig. S5. Absence of mutations at the top three predicted off-target sites**. An alignment of on-target sequence and each of the three off-target sites is given at the top. Differences to the on-target sequence are highlighted in bold and an asterisk. The corresponding PAM sequence is shown in italic. Below are the Sanger sequence results for the three predicted off-target sites for the non-edited parental cell line BEF2 and the two edited calves. The box indicates the potential Cas9/gRNA 129F binding site at the off-target site.



**Fig. S6.** Absence of characteristic hair phenotypes associated with rat tail syndrome. The tails have a similar appearance with no apparent difference in developing tail switch between edited (A) and control calves (B); C, D) shows the presence of eye lashes and hair in the ears of edited and control calves; E, F, G) the difference in hair length between pigmented and non-pigmented areas is similar in edited and control calves. E: pigmented hair, edited left, control right; F: non-pigmented hair, edited left, control right; G: top (edited); left nonpigmented, right pigmented; bottom (control); left non-pigmented, right pigmented.