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Supplementary Figure 1. Patient-Derived Explant Culture (PDEC) Platform. a, Sample
processing. Breast epithelial tissue samples from reduction mammoplasties or breast cancer
samples from elective surgeries were brought to the tissue culture laboratory within hours of
surgery. The sample was divided in three parts. One part of the tumor was stored as a formalin-
fixed paraffin embedded (FFPE) sample and another part was snap-frozen for
protein/DNA/RNA profiling at -80 °C. The remaining part was enzymatically dissociated into
small fragments, which were embedded in 3D matrix. Images on the right show histological
sections with H&E staining of the original and 3D cultured explant. b, H&E-stained histological
sections of PDEC-BC and PDEC-N samples, which were cultured in a 3D culture for 7 days.
Control is the corresponding uncultured sample (n= 3 biologically independent samples). c,
Molecular and histological subtypes of the breast cancers and histology of reduction
mammoplasties used in this study. d, Immunofluorescent images of MMEC, PDEC-BC, and
PDEC-N cultured in 3D matrix for 7 days and stained for apoptosis marker cleaved-caspase 3
(CC3). Bortezomib (100 uM) treatment was used as a positive control for apoptosis (n= 3
biologically independent samples). e, Immunofluorescent images as in d to illustrate the
apoptosis grading (n= 3 biologically independent samples). f, Immunofluorescent staining of
MMEC, PDEC-BC, and PDEC-N with hypoxia marker, Hiflo.. PDEC-Ns grown in 3% oxygen
were used as a positive control for hypoxia (n= 3 biologically independent samples). g,
Immunofluorescent staining of MMEC, PDEC-BC, and PDEC-N with antibody specific for
proliferation marker ki67 (n= 3 biologically independent samples). h, Quantification of
apoptosis, proliferation, hypoxia, and explant sizes of PDEC-BC and PDEC-N (nd = not
detected). N = independent experiments are listed. i, Tp53 mutation profiles of tumors from
three patients (P9T, P13T, P15T) and the corresponding PDEC-BCs cultured in 3D for 7d. j,
Quantification of ERa+ cells in 25 patient samples either uncultured or cultured in BMx-Mat
for 7 days. Grade 0 = <10% ERa+, Grade 1 = 10-39% ERao+, Grade 2 = 40-69% ERo+, Grade
3 =70-100% ERa+. Scale bar = 10 pum.



Supplementary Table 1.
Sample preparation methods and the parameters for the rheological measurements

a
Matrix Sample preparation method Coating Acceleration voltage (kV)
Egg white Liquid propane freeze-drying 30 mA 120s platinium 15
GrowDex Liquid propane freeze-drying 4 nm iridium 15
Agarose Liquid propane freeze-drying 5 nm iridium 1.5
Alginate Critical point drying 10 nm iridium 15
Alginate-RGD Biological sample preparation 16 nm iridium 1
Matrigel 3mg/ml  Biological sample preparation 11 nm iridium 1
Matrigel 8.8mg/ml  Biological sample preparation 16 nm iridium 1
Collagen Biological sample preparation 5 nm iridium 1.5
Ovomucin Biological sample preparation 16 nm iridium 1.5
b
Matrix ~ Concentration  Strain Stress Frequency
(mg/ml) (%) (Pa) (rad/s)
Agarose 70 1 0.3 1
Agarose 30 1 0.3 1
Agarose 20 1 0.3 1
Agarose 10 1 0.3 1
Alginate 70 1 0.3 1
Alginate 40 10 0.30r0.15 1
Alginate-RGD 40 1or50r10 0.30r05 1
GrowDex 10 1 0.3 1
Matrigel 8.8 1 0.3 1
Matrigel 3 1 0.3 1
Collagen 8.7 1 0.3 1
Collagen 3 1 0.3 1
Collagen 1.5 1 0.3 1
Ovomucin 50 1 0.3 1
Egg white - 1 0.3 1




Supplementary Table 1. a, Sample preparation methods, coatings and acceleration voltages
of different matrices for scanning electron microscopy (SEM). b, Parameters of the rheological

measurements. Strain, stress and frequency for different matrices and concentrations.



Supplementary Table 2.
Primer sequences used in this study

Name Oligonucleotide sequences:

TSO TSO: AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG

SMART PCR primer: AAGCAGTGGTATCAACGCAGAGT

P5 SMART primer: AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGT*A*C
Sequencing read 1: GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC

Name The primer nucleotide sequences for mouse samples (5°-3”) are as follows:

PGR forward: GTCACTATGGCGTGCTTACC

PGR reverse: CCAGCCTGACAACACTTTCT

GREBI forward: CCATTTCCAGTGAGCCCATT

GREBI reverse: AGGTGCTTCTGTTTCTTGGG




Supplementary Figure 2.




Supplementary Figure 2. Scanning Electron Microscopy (SEM) Images of the Matrices.
a, Collagen 1.5 mg/mL. b, Collagen 3 mg/mL. ¢, Collagen 8.7 mg/mL. d, Matrigel 3 mg/mL.
e, Matrigel 8.8 mg/mL. f, Agarose 10 mg/mL. g, Agarose 20 mg/mL. h, Agarose 30 mg/mL. i,
Agarose 70 mg/mL. j, GrowDex 15 mg/mL. k, Alginate-RGD 40 mg/mL. 1, Alginate 70
mg/mL. m-n, Egg white, two different fields of view (FoV) are presented to show the structural
variation within a gel. 0, Ovomucin 50 mg/mL. N = 3 independent samples per condition. Scale

bar =200 nm.



Supplementary Figure 3.
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Supplementary Figure 3. Rheology, Cell Phenotype Quantification, Expression Profiles,
and Antiestrogen Treatment Responses in Explant Cultures. a, The mechanical behavior
of the matrices as a function of deformation (strain %) at +37 °C obtained from the oscillatory
strain amplitude sweeps. LMx-type matrices (red) shows a large variation in the mechanical
properties: from ultra-soft to stiff gels with a difference of five orders of magnitude and from
strain softening (G~ decreases as a function of strain %) to strain stiffening (G~ increases as a
function of strain %). From the mechanical point of view, Agarose 5 mg/mL, (0.5 %) Collagen
8.7 mg/mL, and Matrigel 8.8 mg/mL performed similarly. They had a storage modulus of ~
100-500 Pa, which describes the stiffness of the gels. They all also showed strain stiffening,
meaning that the material becomes stiffer and harder to deform when mechanical stress or strain
is applied. b, Collected mechanical data of the matrices obtained from the oscillatory time
sweeps at +37 °C. The elastic modulus (E) is estimated from the complex modulus (G*) using
the assumed Poisson’s ratio of 0.44. N = independent experiments are listed. ¢, Quantification
of luminal and basal identity in the explant cultures. Based on expression of luminal (CK8) and
basal (CK14) markers, explants were assigned to one of five different groups; Group 1: 100%
luminal; Group 2: 75% luminal, 25% basal; Group 3: equally positive for CK8 and CK14;
Group 4: 75% basal and 25% luminal; and Group 5 :100% basal. Images show examples in
each group. d, The LMx-Al gene expression of top 2000 differentially expressed genes. The
expression profiles differ from LMx-Ag-, BMx-Mat-grow explants, and from their original
uncultured sample in MMECs. The columns are clustered by sample and rows are clustered by
gene. The dendrogram height indicates the distances between clusters in the gene expression
profiles. e, QRT-PCR analysis of ERa target gene GREB1 mRNA levels in MMECs grown in
7d and treated with indicated compounds (E2 = 17B-estradiol). Statistical significance was
tested using the one-way ANOV A test with Dunnett’s multiple comparisons post hoc test: ****
p < 0.0001. f, Immunofluorescence images of MMECs grown in LMx-Ag, treated with the
indicated drugs for 24h and stained for Ki67 and F-actin. g, Immunofluorescence staining of
p38p in a soft and stiff LMx-Ag matrix and western blot image of p38p expression in an
increasing polymer concentration of LMx-Ag matrix (10 — 70 mg/mL). h, Enrichment of the
pluripotency-related gene expression signatures in LMx-Ag-cultured PDEC-BC samples
compared to the original tumors. The list of genes is adopted from PluriTest. i, The list of
mammary epithelial-related pluripotency markers enriched in LMx-Ag-cultured PDEC-BC
samples compared to the original tumors. j, The genes were ordered based on the fold change
and differentially expressed genes are marked with an asterisk (adjusted p-value <0.05*, 0.01**
or 0.001***), k, Enrichment of the pluripotency-related gene set in the LMx-Al-cultured
MMECs and in the LMx-Ew- and LMx-Ag-cultured PDECs. All data are presented as mean
values +/- SD and n= 3 explants examined from 3 biologically independent samples. Scale bar
=10 pum.
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Supplementary Figure 4.
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Supplementary Figure 4. Enrichment map of BMx-Mat enriched pathways. The Gene Set
Enrichment Analysis indicates differences in the gene expression profiles between BMx- and
LMx-gels. GSEA results are visualized using Cytoscape’s Enrichment map. Node size: number

of genes in the set; node color: red - enrichment in the BMx-Mat.
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Supplementary Figure 5.
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Supplementary Figure 5. Histone Methylation (H3K27me3) Patterns. a, GSEA analysis shows
the enrichment of gene-repressive H3K27me3 signature in ERo- MMECs, cultured in LMx-Al. b,
GSEA analysis shows the enrichment of H3K27me3 signature in ERo- PDEC-BCs, cultured in LMx-
Ew and LMx-Ag. ¢, Enrichment map shows gene-set enrichment results of uncultured MCF7 and
PDEC-BC (P182T, P184T) samples compared with LMx-Ag cultured explants and the vice versa.
Node size, genes in pathway; node color, enrichment score. d, Quantification of the % of ERa+ cells
of the total number of cells in MMECs grown in soft LMx-Al and treated with anisomycin and GSK-
126 for 48h (n= 23 explants examined over 6 independent biological replicates in both conditions).
Data are presented as mean values +/- SD. e, Western blot images show the effect of increasing
concentration of anisomycin concentration on p38p/p38 and ERa expression in TNBC cell lines (n=
3).f, GSEA analysis shows the enrichment of p38 and ERa signaling related pathways in the magnet
compressed LMx-Ag matrix compared to uncompressed samples. N = 3 biologically independent
samples. Red circle shows the pathways that are enriched with FDR q = <0.25. Node size, genes in
pathway; node color, enrichment score.
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Supplementary Figure 6.
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Supplementary Figure 6. Grading of the Mammographic Density and ERa. a, Two p38 MAPK
inhibitors RWJ67657 and SB203580 were tested for their ability to suppress p38p. RWJ67657
specifically inhibits p38a with no effect on the p38y, p380 isoforms or other kinases'. We also used
SB203580, which directly inhibits the p38 MAPK catalytic activity without interfering the upstream
phosphorylation of p38p by the upstream kinases®. SP600125 is a JNK specific inhibitor (n= 3). b,
GSEA analysis shows the downregulation of p38 and ERa signaling related pathways in the LMx-
Ag matrix grown MMECs after p38 inhibition. Node size, genes in pathway; node color, enrichment
score. ¢, GSEA analysis shows the downregulation of JNK pathway after JNK inhibition in LMx-Ag
cultured MMECs. d, GSEA analysis shows the downregulation of p38 and ERa signaling related
pathways in the magnetic compressed LMx-Ag matrix cultured PDEC-BCs from three different
patients (P1031T, P1034T, P1032T) after p38 inhibition. Node size, genes in pathway; node color,
enrichment score. e, Western blot shows the effect of p38 inhibitor (RWIJ67657) with and without
EZH?2 inhibitor (GSK-126) on H3K27me3 (n= 3). f, Immunohistochemical staining of phospho-38
and ERa in normal breast epithelium (FoV = field of view) (n= 3 independent samples). g,
Immunohistochemistry analyses of ERa expression in 18 reduction mammoplasty samples (n= 18).
Each sample is categorized according to four groups (grades 1-4) according to the level of ERa+
expression (Fig 7 f). h, The table showing ERo+ expression (grade 0-4) and corresponding
mammographic breast density values (MGR density 1-4). Patients diagnosed using ultrasound are
indicated with an asterisk. Scale bar 50= um.
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Supplementary Figure 7.
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Supplementary Figure 7. Correlation of Phospho-38 and ERa in Breast Cancer IHC Samples.
a, Immunohistochemical staining of consecutive slices of 16 breast tumor samples (cohort a) for
phosphorylated (Thr180/Tyr182) p38 and ERa. Individual tumors were categorized into p38+ /
ERo+ (n = 10), p38+ / ERa— (n = 3) and p38- / ERa— (n = 3). b, cohort b of 25 tumors stained for
phosphorylated (Thr180/Tyr182) p38 and ERa. Individual tumors were categorized into p38+ /
ERo+ (n =17), p38+ / ERa— (n = 6) and p38- / ERa— (n = 2). Scale bar 50= pm.
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Supplementary Figure 8.
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Supplementary Figure 8. Data from cBioPortal cancer genomic datasets for breast cancer. a,
Correlation between p38 and ERa protein levels in breast cancer. Breast invasive carcinoma,
TCGA, Provisional dataset for 892 RPPA in cBioPortal was examined. Spearman and Pearson
correlation coefficients r and their corresponding p-values are shown (p-values were calculated
with 2-sided t-test). b, Correlation between ERa /progesteron receptor (PR) protein (IHC) or
mRNA and MAP3K1 mRNA in cBioPortal cancer genomic datasets for breast cancer.
Spearman and Pearson correlation coefficients r and their corresponding p-values are shown
(p-values were calculated with 2-sided t-test). ¢, Correlation between ERa/PR and EZH?2
mRNA expression. d, ERo and p38 mRNA levels do not correlate. Spearman and Pearson
correlation coefficients r and their corresponding p-values are shown (p-values were calculated
with 2-sided t-test). e, H3K27me3 peaks at the promoter region of Esr/ in TNBC (MDA-MB-
231, MDA-MB-436, MDA-MB-453, SUM159PT) and ERa+ (MCF7, T47D, UACC812, ZR-
75-1 ZR-75-30) breast cancer cell lines. Shown are ChIP-seq data from the public Cistrome
database (www.cistrome.org)*®. The peaks are visualized using Integrative Genomics Viewer

AGV).
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Supplementary Figure 9.
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Supplementary Figure 9. Compressive Forces Impacting the Indicated Tissues and the 3D
Culture Conditions Explored in this Study. The in vivo estimates for the breast tissue and breast
cancer are from °!4. The ex vivo estimates for the explant cultures are from the present study. Grey

color denotes BMx gels and red color LMx gels.

Glossary of the rheometrical terms

Stress — force (in Newtons) per unit area (in m?). The SI unit is N/m? (or Pascal, Pa).

Strain —unitless parameter quantifying the extent of deformation after application of mechanical
stress.

Shear Stress (o) —the ratio of the tangential force to the cross-sectional area of the surface upon

which it acts.
A

£ 7

Shear Strain (y) —unitless parameter quantifying the extent of deformation after application of
shear
stress. For a cube, shear strain is ratio of lateral displacement over sample height.

A

N

s
LA

Shear Modulus (G) — a constant describing a material’s resistance to deformation in shear;
G= vg The SI unit is Pa.

For parallel plate geometry the shear stress (o) and shear strain (y) are defined as follows.
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R = the radius of plate

M = torque (also called as moment),

h = the gap size

0 = deflection angle (angular displacement) of the shaft

Modulus (G) is the measure of materials overall resistance to deformation. G = % and the SI
unit is Pa.

Elastic or storage modulus (G’) - measure of energy stored during a strain cycle; under sinusoidal
conditions, the part of shear stress in phase with shear strain divided by shear strain.

r=
G = ycos(@)

Viscous or loss modulus (G”’) — measure of energy lost during a strain cycle; often expressed as
the
imaginary part of the complex modulus

pv_ o .
G’ = ysln(e)

Young’s modulus (E) is one of the most common measures of intrinsic material stiffness. In isotropic
materials, £ (Young’s modulus) and G* (shear elastic modulus) are related to each other through
Poisson’s ratio (v), given by the following equation:

E =2G(1+v)

Poisson's ratio measures the deformation in the material in a direction perpendicular to the direction
of the applied force. For many common materials, Poisson’s ratio is similar to that of incompressible

rubber (v = 0.5). Thus, E is frequently approximated to 3G.

Complex modulus (G*): The complex shear modulus (G*) is the overall resistance of the gel to the
deformation and it is calculated from stress and strain amplitudes.

G*=G"+iG”. (where i = (-1)°

Strain-stiffening: an increase in a material's elastic modulus with applied strain.
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