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Note S1. High-throughput mediation analysis (Hitman)

Model

As discussed in the manuscript, we need to know a priori whether or not our treatment or exposure (E)
changes the outcome (Y ) and in what direction. We then test whether or not the observed causal effect of
the exposure on the outcome in our study is significant and is in the direction known a priori. We represent
this potential causal effect as E −→ Y. Lack of an arrow indicates no causal effect,1 so the model assumes
that Y does not affect E (as occurs when E is randomized).

The test of E −→ Y possibly includes covariates, but does not include the mediators. Our unmediated
model (without covariates or error terms) is E λ1−→ Y , where the structural parameter λ1 represents the total
effect (http://davidakenny.net/cm/mediate.htm). The corresponding structural equation model (SEM), with
optional covariate X. If there are multiple covariates per sample, X is a vector per sample.

Y = λ0 + λ1E + λ2X + UY ′

The direction of the observed total effect is the sign of λ̂1, which is the estimate of λ1. sgn(λ1) is predefined,
and we should have sgn(λ̂1) = sgn(λ1). We test the null hypothesis λ1 = 0, and if it is significant and
sgn(λ̂1) = sgn(λ1), we infer that E causally affected Y. Once we have a causal effect, we can move on to
Hitman to identify which analytes may be mediating it.
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Our causal models including the effects of mediators (M ) are shown in the figure above, which does not
include covariates, and where error terms are suppressed in panel a. In panel a, we have E −→ M −→ Y,
with many mediators. Our causal mediation model per mediator is shown in panel b. We are then interested
in the mediation effect (or indirect effect), represented by α1θ2. θ1 is the direct effect per mediator. As lack
of an arrow indicates no causal effect, this model assumes that neither M nor Y affect E (as occurs when E
is randomized), and that Y does not affect M. Hitman does not test these assumptions.

Our model in panel a is based on a biological system, such as a cell, where an intervention (or exposure)
like a gene knockout can have effects across all activities in the cell. The number of potential mediators of
the exposure is P, where P is astronomically large. In an omics experiment, we measure p (with p much
smaller than P, p << P) analytes across n samples, with n << p. The P mediators in Figure 1a have
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unknown relationships among themselves and on the outcome. Ideally, we would identify these relationships
so that we can account for them, but with few samples and an astronomical number of mostly unmeasured
mediators, we do not attempt that here, and instead pursue an exploratory, one-at-a-time analysis of our
measured mediators, so that we can identify which mediators to pursue with further studies.

Our linear SEM per mediator with covariate X is:

E = ν0 + ν1X + UE (1)
M = α0 + α1E + α2X + UM (2)
Y = θ0 + θ1E + θ2M + θ3X + UY (3)

where U terms represent omitted factors that explain finite sources of variation. The SEM’s coefficients
represent finite structural parameters estimable from the data. These terms must be mutually independent
for the validity of mediation analyses. When we randomize E, we know that UE is independent of the
other U ’s. However, UM is often dependent with UY , due to another mediator (likely unmeasured) affecting
both M and Y . So, “theoretical knowledge must be invoked to identify the sources of these correlations
and control for common causes (so called ‘confounders’) of M and Y whenever they are observable”.2 Such
confounders can be included in X. When X is a vector per sample, ν1, α2, and θ3 are vectors.

Hitman is based on the causal steps approach. One variant of the causal steps approach is the joint sig-
nificance test. Other variants of the causal steps approach test that the exposure affects the outcome, but
the joint significance test does not34. The joint significance test has been shown to have more power than
the product method and to control its false positive rate, because it is an intersection-union test.5 The joint
significance test calls as significant “consistent” mediators, which carry the causal effect, but it also calls
as significant “inconsistent” mediators, which suppress the causal effect. However, the causal effect of the
exposure on the outcome provides prior evidence and motivates the search only for consistent mediators.
For example, if E increases Y (i.e. an increase in E increases Y ), then we would want consistent mediators
M such that E increases M and M increases Y , or such that E decreases M and M decreases Y . Whereas
the joint significance test might find as significant an inconsistent mediator where E increases M and M
decreases Y .4 We address this in Hitman.

For each mediator (M), the null hypothesis is that E has no effect on M (α1 = 0); or that M has no effect
on Y (θ2 = 0); or that the direction of mediation, sgn(α1θ2), is not consistent with the direction of the total
effect, sgn(λ1), with sgn being the sign function,

sgn(x) =


− 1, if x < 0
0, if x = 0
1, if x > 0

The alternative hypothesis is that E affects M and M affects Y , and that the direction of E −→ M and
M −→ Y are consistent with that of the total effect of E on Y . This tests if M explains at least some of
the dependence between E and Y ; M need not explain all of the dependence, but it could, in which case we
have complete mediation and the direct effect vanishes.

Hitman implements tests with high-throughput mediators using the R/Bioconductor linear modeling package
Limma.6 Limma models the variance of features (e.g. proteins or metabolites) with an empirical Bayesian
method, which exploits information about shared technical variance between features for improved power,
especially when the sample size is small.6 To model variance of feature abundance in linear modeling, Limma
models feature abundance as the dependent variable.
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Workflow

Assumptions

A1. E is randomized (given X, if X is provided)
A2. M and Y follow the linear SEM in equations 2 and 3
A3. UE , UM , and UY are mutually independent
A4. UM

i.i.d.∼ N and UY
i.i.d.∼ N , each with finite means and finite, positive variances

A5. sgn (λ1) = sgn
(
λ̂1

)
with λ̂1 ̸= 0

Before Hitman

We need to ensure that the assumptions hold. Herein we describe and validate Hitman/Lotman for the
simple case where the SEM is linear and M and Y being normally distributed, but it is straightforward
to extend our approach to E being randomized given propensity scores; the value of M being associated
with its variance, as happens with RNA-seq data, which Limma accommodates with weights;7 and Y being
modeled by a generalized linear model, such as Y following a binomial distribution.

The assumption that most differentiates Hitman from other mediation methods is A5. To ensure A5 holds,
we pre-define sgn (λ1) and then we test the total effect λ1 with H0 : λ1 = 0 against Ha : λ1 ̸= 0. This test
must be significant and the observed causal effect must be in the same direction as previously known. If
the test is not significant, we cannot be confident in the direction of the total effect in our study. Examples
where A5 would not hold is if surgery did not cause a significant change in HbA1c or if surgery worsened
HbA1c, which would contradict prior knowledge. If this pre-test fails, then STOP, because Hitman would
assign all mediators a p-value of one, which is not likely to be helpful.

Hitman

For each mediator M :

1. Measure effect of E and M using equation 2. Here and later, if X is absent, remove its term. If X is
vector-valued per sample, α2 is a vector. Test α1 = 0 in Limma and define the resulting p-value p1.

2. Measure association of M and Y given E (and possibly X) using equation 3. We would like to test
θ2 = 0 using Limma. To model the variance of M with empirical Bayesian methods, we need to make
M the dependent variable. So we use an approach similar to partial correlation.

i. Estimate the residuals of Y = λ0 + λ1E + λ2X + e as eY .
ii. Estimate the residuals of M = α0 + α1E + α2X + e as eM .
iii. From the linear model eM=θ2eY + ϵ, test θ2 = 0 in Limma and define the resulting p-value p2.

Now define

S =
{

0, if sgn (α1θ2) ̸= sgn (λ1)
1, if sgn (α1θ2) = sgn (λ1)

(4)

and

Ŝ =

0, if sgn
(
α̂1θ̂2

)
̸= sgn

(
λ̂1

)
1, if sgn

(
α̂1θ̂2

)
= sgn

(
λ̂1

)
.
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3. If Ŝ = 1, then the direction of total effect agrees with that of E −→ M −→ Y , and the final p-value =
max{p1,p2}

2 . Otherwise, the direction of the indirect effect is inconsistent with that of the total effect,
and the final p-value = 1. The intuition behind the test is that knowing λ1 allows for one-sided testing
of the indirect effect.

To account for testing multiple mediators, false discovery rates (FDRs) or family-wise error rates (FWERs)
can be calculated from the mediator p-values.

Simplified Hitman without Limma: Lotman

If we follow the Hitman workflow but apply linear regression models without Limma, in step 2 we test
θ2 = 0 from equation 3 directly. This method could be used when Limma is not appropriate, such as for
low-throughput data, so we term it Low-throughput mediation analysis (Lotman), and it is available in the
R package Hitman.

Mathematical proof

Here, we consider Hitman theoretically to show that it controls its false positive rate. Hitman’s use of
the partial correlation approach in step 2 is a valid alternative to multiple regression, and incorporating
Limma maintains control of the false positive rate, because Limma is theoretically sound8 and empirically
validated.6 We do not consider these aspects theoretically here, although Hitman controls its false positive
rate in simulations below, providing evidence that these aspects do not corrupt Hitman’s validity. Hitman
without these aspects is Lotman, so we consider the validity of both methods by essentially considering
Lotman, but we point out where results with Limma would differ. Lotman applies tests in steps 1 and 2
with ordinary least squares (OLS), which provides unbiased estimates with valid p-values.

For a single mediator, the null and alternative hypotheses are:

H0 : α1 = 0 ∪ θ2 = 0 ∪ S = 0
Ha : α1 ̸= 0 ∩ θ2 ̸= 0 ∩ S = 1.

where ∩ represents “and” and ∪ represents “or”. The terms in Ha are not independent, because the definition
of S depends on α1, θ2, and λ1 in equation 4. We have rejected the null hypothesis that λ1 = 0 before
applying Hitman, so λ̂1 ̸= 0, and the results of this test are convincing, so we assume that there is a true
causal effect in the direction observed, i.e. sgn (λ1) = sgn

(
λ̂1

)
̸= 0. Without loss of generality, we consider

sgn (λ1) = sgn
(
λ̂1

)
= 1. Thus, from equation 4, S = 1 =⇒ sgn (α1θ2) ̸= 0 =⇒ α1 ̸= 0 ∩ θ2 ̸= 0, with

=⇒ representing “implies”. By definition, Ha =⇒ S = 1. Consequently,

S = 1 ⇐⇒ Ha. (5)

Thus, S = 0 =⇒ H0. Both α1 =⇒ S = 0 and θ2 =⇒ S = 0, so H0 =⇒ S = 0:

S = 0 ⇐⇒ H0. (6)

From equation 4, S = 0 ∩ sgn (λ1) = 1 =⇒ sgn (α1θ2) ̸= 1. We can see from the Hitman algorithm and
hypotheses that α1 and θ2 are treated symmetrically, so without loss of generality, we consider the null
hypothesis space,

H⋆
0 : α1 ≤ 0 ∩ θ2 ≥ 0 ∩ λ1 > 0
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where by assumption A5 we also have λ̂1 > 0. To demonstrate that Hitman yields valid p-values, we need to
show that Hitman p-values, pHM , obey P (pHM ≤ u|H⋆

0 , λ̂1 > 0) ≤ u for each 0 ≤ u ≤ 1. Hitman is partially
based on the joint significance test, and it has been shown that the joint significance p-values (pJS) satisfy
this property.5 Let pJS = max{p1, p2}. Then, under H⋆

0 and λ̂1 > 0,

pHM = pJS
2 Ŝ + (1 − Ŝ)

=
{
pJS

2 , if Ŝ = 1
1, if Ŝ = 0.

(7)

where 0 ≤ pJS

2 ≤ 1
2 . We can immediately see for u = 1 that P (pHM ≤ 1) ≤ 1, and for u = 0, P (pHM = 0) =

0, because pHM is continuous over
[
0, 1

2
]
.

We now consider how p1 and p2 are calculated. We know by assumption A4 that 0 < σα1 , σθ2 < ∞. For
arbitrary sample size N (sufficient to estimate parameters and variances) and full rank covariate matrix X
of rank k, using OLS we have T1 := (α̂1 − α1)/σ̂α̂1 = α̃1 − α1

σ̂α̂1
∼ tN−k−1, for α̃1 := α̂1

σ̂α̂1
, where := refers

to “defined by,” and T2 := (θ̂2 − θ2)/σ̂θ̂2
= θ̃2 − θ2

σ̂θ̂2
∼ tN−k−2, for θ̃2 := θ̂2

σ̂θ̂2
. Whereas if we consider the

asymptotic case or the actual instead of the estimated standard deviation, T1 and T2 follow the standard
normal distribution with density ϕ and cumulative distribution function Φ. The degrees of freedom of the
t-statistics will be increased with Limma’s empirical Bayesian variance estimate, especially when N − k is
small.

Instead of relying on the t-statistics converging to the normal distribution asymptotically, our mathematical
proof extends to small sample sizes, so we account for the two t-distributions’ different degrees of freedom.
We define the T1 as having cumulative distribution function F1 and probability density function f1, whereas
T2 as having cumulative distribution function F2 and probability density function f2. To explain properties
that apply to t-distributions (i.e. independent of their degrees of freedom, so including the standard normal
distribution as a special case), we use F or f with subscripts suppressed. For example, we use below the
properties of the t-distribution that F (−x) = 1 − F (x) and F−1(1 − x) = −F−1(x). We also suppress
subscripts for the joint distribution of α̂1 and θ̂2.

In steps 1 and 2 of Hitman we test α1 = 0 and θ2 = 0 with estimates α̃1 = a and θ̃2 = t under H⋆
0 and

λ̂1 > 0 by assumption A5. Then p1 = 2F1(−|a|) and p2 = 2F2(−|t|). So,

pJS
2 =

{
F1(−|a|), if F1(−|a|) ≥ F2(−|t|)
F2(−|t|), otherwise.

(8)

Overview of mathematical proof

We have shown above that P (pHM ≤ u|H⋆
0 , λ̂1 > 0) ≤ u for u = 0 and for u = 1, so we must show this

for 0 < u < 1. Equation 7 says that we need to consider P (Ŝ = 1|H⋆
0 , λ̂1 > 0), so our next step is to

examine maxP (Ŝ = 1|H⋆
0 , λ̂1 > 0), where we show that P (Ŝ = 1|H⋆

0 , λ̂1 > 0) ≤ 1
2 . This bound allows us to

immediately show that P (pHM ≤ u|H⋆
0 , λ̂1 > 0) ≤ u for u ≥ 1

2 .

However, the case of u < 1
2 is more challenging, so we tackle it in several steps. First we show that

P (pHM ≤ u|H⋆
0 , λ̂1 > 0) ≤ u when either α1 = 0 or θ2 = 0, which is on the boundary of the space

α1 × θ2 | H⋆
0 , λ̂1 > 0. We then evaluate the false positive rate over the full space α1 × θ2 | H⋆

0 , λ̂1 > 0. To
find the optima of this space, we calculate its derivative and identify where the derivative is zero. We then
calculate the values on the optima and on the boundary. We find that the maxima of P (pHM ≤ u|H⋆

0 , λ̂1 > 0)
is on the boundary, where we know P (pHM ≤ u|H⋆

0 , λ̂1 > 0) ≤ u, which completes the proof.
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Maximizing probability estimated direction is consistent

Under H⋆
0 we also have λ̂1 > 0. However we suppress the notation of conditioning on these variables for

brevity in the following equation. We also have α̂1 ⊥⊥ θ̂2.9

P (Ŝ = 1)

=
∫ ∞

α̂†
1=−∞

∫ ∞

θ̂†
2=−∞

P
(
Ŝ = 1

∣∣α̂1 = α̂†
1, θ̂2 = θ̂†

2

)
ϕ
( α̂†

1 − α1

σα̂1

)
ϕ
( θ̂†

2 − θ2

σθ̂2

)
dθ̂†

2dα̂
†
1

=
∫ 0

α̂†
1=−∞

∫ 0

θ̂†
2=−∞

ϕ
( α̂†

1 − α1

σα̂1

)
ϕ
( θ̂†

2 − θ2

σθ̂2

)
dθ̂†

2dα̂
†
1 +

∫ ∞

α̂†
1=0

∫ ∞

θ̂†
2=0

ϕ
( α̂†

1 − α1

σα̂1

)
ϕ
( θ̂†

2 − θ2

σθ̂2

)
dθ̂†

2dα̂
†
1

because P
(
Ŝ = 1

∣∣α̂1 = α̂†
1, θ̂2 = θ̂†

2, H
⋆
0 , λ̂1 > 0

)
=
{

1, if α̂†
1 ∗ θ̂†

2 > 0,
0, otherwise,

=
∫ 0

α̂†
1=−∞

ϕ
( α̂†

1 − α1

σα̂1

)
dα̂†

1

∫ 0

θ̂†
2=−∞

ϕ
( θ̂†

2 − θ2

σθ̂2

)
dθ̂†

2 +
∫ ∞

α̂†
1=0

ϕ
( α̂†

1 − α1

σα̂1

)
dα̂†

1

∫ ∞

θ̂†
2=0

ϕ
( θ̂†

2 − θ2

σθ̂2

)
dθ̂†

2

= lim
ψ→∞

[
Φ
(

− α1

σα̂1

)
− Φ

(−ψ − α1

σα̂1

)][
Φ
(

− θ2

σθ̂2

)
− Φ

(−ψ − θ2

σθ̂2

)]
+
[
Φ
(
ψ − α1

σα̂1

)
− Φ

(
− α1

σα̂1

)][
Φ
(ψ − θ2

σθ̂2

)
− Φ

(
− θ2

σθ̂2

)]
= 2Φ

(
− α1

σα̂1

)
Φ
(

− θ2

σθ̂2

)
+ 1 − Φ

(
− α1

σα̂1

)
− Φ

(
− θ2

σθ̂2

)
,

because lim
ψ→∞

Φ(ψ) = 1 and lim
ψ→∞

Φ(−ψ) = 0.

(9)

Then, 1
2 ≤ Φ

(
− α1

σ̂α̂1

)
≤ 1 and 0 ≤ Φ

(
− θ2

σ̂θ̂2

)
≤ 1

2 .

To find the upper bound of equation 9, we maximize equation 9 as ω(v1, v2) with v1 = Φ
(

− α1
σ̂α̂1

)
and

v2 = Φ
(

− θ2
σ̂θ̂2

)
. Our bilinear program is

max
v1,v2

2v1v2 − v1 − v2 + 1

subject to
1
2 ≤ v1 ≤ 1

0 ≤ v2 ≤ 1
2

which cannot be solved by convex programming. However, we can examine where one of v1 or v2 is fixed,
giving a linear program. Consider the linear program for any fixed v1 ∈ ( 1

2 , 1]:

argmax
v2

(2v1 − 1)v2 + 1 − v1

subject to

0 ≤ v2 ≤ 1
2

yields v∗
2 = 1

2 . Whereas, v2 ∈ [0, 1
2 ) =⇒ v∗

1 = 1
2 . So we have v∗

1 = 1
2 ∪ v∗

2 = 1
2 , and under the

above constraints, max
v1,v2

ω(v1, v2) = 1
2 . Transforming back to equation 9, v1 = 1

2 =⇒ α1 = 0 and

v2 = 1
2 =⇒ θ2 = 0, so α∗

1 = 0 ∪ θ∗
2 = 0. Consequently,
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max
α1,θ2

P (Ŝ = 1|α1 ≤ 0, θ2 ≥ 0, λ1 > 0, λ̂1 > 0) = 1
2 .

Case of u ≥ 1
2

A straightforward consequence of the bound on P (Ŝ = 1) is for 1
2 ≤ u < 1. Under H⋆

0 and λ̂1 > 0, we see
that

P (pHM ≤ u) = P (1 ≤ u|Ŝ = 0)P (Ŝ = 0) + P
(pJS

2 ≤ u|Ŝ = 1
)
P (Ŝ = 1)

= P (Ŝ = 1)

≤ 1
2 , as shown above,

≤ u.

(10)

False positive rate on the boundary

We next consider the special case of α1 × θ2 on its boundary under the null. The boundary of H⋆
0 for α1 × θ2

is α1 = 0 ∪ θ2 = 0. A property of the boundary is that it corresponds to the null hypothesis of the joint
significance test, where P (pJS ≤ u) ≤ u. We can use this fact to show pHM control its false positive rate
under H⋆

0 on the boundary for 0 < u < 1
2 :

P (pHM ≤ u|α1 = 0 ∪ θ2 = 0) =P
(pJS

2 ≤ u|α1 = 0 ∪ θ2 = 0, Ŝ = 1
)
P (Ŝ = 1)

= 1
2P (pJS ≤ 2u|α1 = 0 ∪ θ2 = 0, Ŝ = 1)

≤ 1
22u

≤ u.

(11)

In the special case α1 = 0 and θ2 → ∞, pJS = p1 so:

lim
θ2→∞

P (pHM ≤ u|α1 = 0, θ2) = lim
θ2→∞

P
(p1

2 ≤ u|α1 = 0, θ2, Ŝ = 1
)
P (Ŝ = 1)

= lim
θ2→∞

1
2P (p1 ≤ 2u|α1 = 0, θ2, Ŝ = 1)

= 1
22u

= u.

(12)

because p1 ∼ U(0, 1). Analogously, in the special case α1 → −∞ and θ2 = 0, pJS = p2, and we find that
P (pHM ≤ u|α1 → −∞, θ2 = 0) = u. So we see in these special cases that P (pHM ≤ u) reaches its maximum
value of u.

When both parameters are zero,

7



P (pHM ≤ u|α1 = 0, θ2 = 0) =P
(p1

2 ≤ u,
p2

2 ≤ u|α1 = 0, θ2 = 0, Ŝ = 1
)
P (Ŝ = 1)

= 1
2P
(p1

2 ≤ u|α1 = 0, Ŝ = 1
)
P
(p2

2 ≤ u|θ2 = 0, Ŝ = 1
)

= 1
2P
(
p1 ≤ 2u|α1 = 0, Ŝ = 1

)
P
(
p2 ≤ 2u|θ2 = 0, Ŝ = 1

)
= 1

2(2u)(2u)

= 2u2

< u, for 0 < u <
1
2 .

(13)

False positive rate in general

As above, under H⋆
0 we have λ̂1 > 0. We now define a density and cumulative distribution function of α̃1

that suppresses notation:

g1(α̃1 = a) = f1

(
a− α1

σ̂α̂1

∣∣H⋆
0 , λ̂1 > 0, σ̂α̂1

)
G1(α̃1 = a) = F1

(
a− α1

σ̂α̂1

∣∣H⋆
0 , λ̂1 > 0, σ̂α̂1

)
where σ̂α̂1 ⊥⊥ α1, α̂1. We have similar notation for θ̃2 with density and distribution having subscript 2. We
determine the false positive rate for fixed 0 < u < 1

2 through the law of total probability,

P (pHM ≤ u|H⋆
0 , λ̂1 > 0, σ̂α̂1 , σ̂θ̂2

)

=
∫ ∞

a=−∞

∫ ∞

t=−∞
P (pHM ≤ u|α̃1 = a, θ̃2 = t,H⋆

0 , λ̂1 > 0, σ̂α̂1 , σ̂θ̂2
)g(α̃1 = a, θ̃2 = t)dtda

=
∫ ∞

a=0

∫ ∞

t=0
P (F1(−a) ≤ u, F2(−t) ≤ u)g1(α̃1 = a)g2(θ̃2 = t)dtda

+
∫ 0

a=−∞

∫ 0

t=−∞
P (F1(a) ≤ u, F2(t) ≤ u)g1(α̃1 = a)g2(θ̃2 = t)dtda

=
∫ ∞

a=0

∫ ∞

t=0
P (−a ≤ F−1

1 (u),−t ≤ F−1
2 (u))g1(α̃1 = a)g2(θ̃2 = t)dtda

+
∫ 0

a=−∞

∫ 0

t=−∞
P (a ≤ F−1

1 (u), t ≤ F−1
2 (u))g1(α̃1 = a)g2(θ̃2 = t)dtda

=
∫ ∞

a=0

∫ ∞

t=0
P (a ≥ −F−1

1 (u))P (t ≥ −F−1
1 (u))g1(α̃1 = a)g2(θ̃2 = t)dtda

+
∫ 0

a=−∞

∫ 0

t=−∞
P (a ≤ F−1

1 (u))P (t ≤ F−1
2 (u))g1(α̃1 = a)g2(θ̃2 = t)dtda

(14)

where for fixed values a, t and u, the probabilities P (a ≤ F−1
1 (u)) and P (t ≥ −F−1

2 (u)) resolve to zero or
one and are independent because a and t are realizations of random variables, rather than being random
variables themselves. That is,

P (a ≤ F−1
1 (u), t ≤ F−1

2 (u)) = P (a ≤ F−1
1 (u))P (t ≤ F−1

2 (u)) =
{

1, if a ≤ F−1
1 (u) ∩ t ≤ F−1

2 (u),
0, otherwise.
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We continue equation 14 to evaluate P (pHM ≤ u|H⋆
0 , λ̂1 > 0, σ̂α̂1 , σ̂θ̂2

) but suppress conditioning on H⋆
0 , λ̂1 >

0, σ̂α̂1 , σ̂θ̂2
:

∫ ∞

a=−F−1
1 (u)

g1(α̃1 = a)da
∫ ∞

t=−F−1
2 (u)

g2(θ̃2 = t)dt

+
∫ F−1

1 (u)

a=−∞
g1(α̃1 = a)da

∫ F−1
2 (u)

t=−∞
g2(θ̃2 = t)dt

= lim
ψ→∞

[
F1

(
ψ − α1

σ̂α̂1

)
− F1

(
−F−1

1 (u) − α1

σ̂α̂1

)][
F2

(
ψ − θ2

σ̂θ̂2

)
− F2

(
−F−1

2 (u) − θ2

σ̂θ̂2

)]

+
[
F1

(
F−1

1 (u) − α1

σ̂α̂1

)
− F1

(
−ψ − α1

σ̂α̂1

)][
F2

(
F−1

2 (u) − θ2

σ̂θ̂2

)
− F1

(
−ψ − α1

σ̂α̂1

)]

=
[
1 − F1

(
−F−1

1 (u) − α1

σ̂α̂1

)][
1 − F2

(
−F−1

2 (u) − θ2

σ̂θ̂2

)]

+
[
F1

(
F−1

1 (u) − α1

σ̂α̂1

)
− 0
][
F2

(
F−1

2 (u) − θ2

σ̂θ̂2

)
− 0
]

=F1

(
F−1

1 (u) + α1

σ̂α̂1

)
F2

(
F−1

2 (u) + θ2

σ̂θ̂2

)

+ F1

(
F−1

1 (u) − α1

σ̂α̂1

)
F2

(
F−1

2 (u) − θ2

σ̂θ̂2

)
.

When one of the parameters is on the boundary at zero, say α1 = 0, then equation 14 simplifies to

u

[
F2

(
F−1

2 (u) + θ2

σ̂θ̂2

)
+ F2

(
F−1

2 (u) − θ2

σ̂θ̂2

)]

and if also θ2 → ∞, then in this special case,

lim
θ2→∞

P (pHM ≤ u|α1 = 0, θ2) = u [1 + 0] = u,

which is the same result as equation 12, confirming our calculations.

Derivative of the false positive rate

We examine the derivative of equation 14 with respect to α1 and θ2 for 0 < u < 1
2 under H⋆

0 , λ̂1 > 0, σ̂α̂1 , σ̂θ̂2
to understand where the maxima may be:

∂P (pHM ≤ u)
∂α1

= 1
σ̂α̂1

{
f1

(
F−1

1 (u) + α1

σ̂α̂1

)
F2

(
F−1

2 (u) + θ2

σ̂θ̂2

)
− f1

(
F−1

1 (u) − α1

σ̂α̂1

)
F2

(
F−1

2 (u) − θ2

σ̂θ̂2

)}
.

(15)

We find that equation ∂P (pHM ≤u)
∂α1

= 0 if α1 = 0 ∩ θ2 = 0 or for any θ2 ≥ 0 if α1 → −∞. Next,

∂P (pHM ≤ u)
∂θ2

= 1
σ̂θ̂2

{
F1

(
F−1

1 (u) + α1

σ̂α̂1

)
f2

(
F−1

2 (u) + θ2

σ̂θ̂2

)
− F1

(
F−1

1 (u) − α1

σ̂α̂1

)
f2

(
F−1

2 (u) − θ2

σ̂θ̂2

)}
.

(16)
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And ∂P (pHM ≤u)
∂θ2

= 0 if α1 = 0 ∩ θ2 = 0 or for any α1 ≤ 0 if θ2 → ∞.

So off the boundary there is the optimum,

= lim
α1→−∞,θ2→∞

F1

(
F−1

1 (u) + α1

σ̂α̂1

)
F2

(
F−1

2 (u) + θ2

σ̂θ̂2

)

+ F1

(
F−1

1 (u) − α1

σ̂α̂1

)
F2

(
F−1

2 (u) − θ2

σ̂θ̂2

)
=0 ∗ 1 + 1 ∗ 0
=0

which is a minimum. Thus, the false positive rate is controlled off the boundary and on the boundary, so
the false positive rate is controlled in general.

Example of inconsistent mediator

We provide a clear example of an inconsistent mediator in the figure below, which includes regression lines
and 95% confidence interval bands. Source data is available at src_data_hm_toy.csv.

−0.5
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This figure is reminiscent of Simpson’s Paradox.10 The exposure increases the mediator and the exposure
increases the outcome, so the direct effect is positive. But the mediator decreases the outcome, so the indirect
effect is negative. Thus, we have inconsistent mediation, so Hitman conservatively estimates this mediator’s
p-value as 1, whereas the joint significance method would yield a p-value < 0.001 for this example.

Simulations following Barfield et al. (2017) & MacKinnon et
al. (2002)

We validated our size and power following a simulation study.11 This study’s parameters were a subset of
a previous simulation study (MacKinnon et al., 2002). Unlike the methods tested with these simulation
scenarios, Hitman requires a predefined direction of the total effect, and includes a pre-test that the total

10

https://github.com/jdreyf/slimm-t2d-omics/tree/master/hitman_supp/src_data_hm_toy.csv


effect is significant and that its direction agrees with the observed total effect direction. It would seem unfair
to provide Hitman the true direction of the total effect and this also wouldn’t be sufficient to increase the
chances that the total effect is significant. Instead, we could address this with a robust direct effect, so that
the observed effect will tend to be significant and in the same direction as the true total effect. Although
Barfield et al. (2017) set the direct effect to be “small”, θ1 = 0.14, MacKinnon et al. (2002) included a
scenario with a parameter that was “large” with value 0.59, so we chose to set θ1 = 0.59.

Like Barfield et al. (2017), we simulated data from Y = θ0 +θ1E+θ2M +θ3X+eY , where M was simulated
as M = α0 +α1E+α2X+ eM . (Note that our α corresponds to Barfield et al.’s β.) Again following Barfield
et al. (2017), X and E and the error terms eY and eM were simulated as independent standard normal
variables; we set ν0 = ν1 = 0 and θ0 = θ3 = α0 = α2 = 0.14; and we simulated all combinations of θ2 , α1 ∈
(0, 0.14, 0.39), which correspond to effects of “zero”, “small,” and “medium” size, respectively (MacKinnon
et al., 2002).

To account for the high-throughput data Hitman is designed to be applied to, we simulated other, null
mediators as Mi = α0 + α2X + eMi

for i = 2, 3, ..., 10, which are independent of the exposure and the
outcome. These null mediators are utilized by Limma to estimate the shared technical variance, as would
happen in an omics study. We do not test these other mediators.

We tested in what proportion of 10,000 simulations across 50 samples M achieved a p-value ≤ 0.05. Our
results for these parameter values for Hitman, the joint significance test, and the mediate function from the
R package mediation are shown in the table below.

α1 θ2 Hitman Lotman joint mediate
0.00 0.00 0.006 0.005 0.002 0.002
0.00 0.14 0.013 0.011 0.006 0.005
0.14 0.00 0.016 0.013 0.008 0.007
0.00 0.39 0.040 0.041 0.036 0.030
0.39 0.00 0.049 0.040 0.038 0.028
0.14 0.14 0.064 0.055 0.023 0.015
0.14 0.39 0.208 0.199 0.108 0.103
0.39 0.14 0.211 0.195 0.111 0.127
0.39 0.39 0.685 0.681 0.539 0.574

A statistical test’s size is the probability of falsely rejecting the null hypothesis, which is the probability of
a false positive or a Type 1 error. All the methods here control their size, as they maintain a false positive
rate less than 5%.

A statistical test’s power is the probability that the test correctly rejects the null hypothesis when the
alternative hypothesis is true, and it’s inversely related to the probability of making a Type 2 error. To test
Hitman’s power, we look at the cases where both of θ2 and α1 are positive. Here, Hitman’s power is greater
than the other methods.

Hitman’s power is similar to Lotman because we have a relatively large sample size. However, for a smaller
sample size, we can see a larger difference between Hitman and Lotman. Here we show the same table, but
for 15 samples.

α1 θ2 Hitman Lotman joint mediate
0.00 0.00 0.007 0.004 0.002 0.002
0.00 0.14 0.011 0.007 0.004 0.008
0.14 0.00 0.010 0.007 0.003 0.003
0.00 0.39 0.023 0.017 0.008 0.013
0.39 0.00 0.029 0.018 0.013 0.015
0.14 0.14 0.019 0.012 0.005 0.006
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α1 θ2 Hitman Lotman joint mediate
0.14 0.39 0.050 0.032 0.012 0.024
0.39 0.14 0.064 0.042 0.016 0.026
0.39 0.39 0.161 0.118 0.052 0.066

Omics simulations

We also validated our methods in an omics setting with 500 analytes (which can interchangably be called
“features” or “genes”; g = 1, 2, ..., G with G = 500), where we address the multiplicity issue by controlling
the false discovery rate (FDR). We simulated the data under 3 scenarios.

Scenario 1: Genes are independent and mediators are consistent

Scenario 2: Genes are dependent and mediators are consistent

Scenario 3: Genes are dependent and there are both consistent and inconsistent mediators

In all scenarios, we simulated datasets with sample sizes of N=15 or N=50 and either 1, 5, or 25 consistent
mediators. The exposure often affects many analytes, so simulated that the exposure additionally affects 200
analytes with the same effect size that it affects mediators. However, these 200 analytes are not simulated
to affect the outcome, so they are not mediators.

In scenario 3, for each consistent mediator there was also an inconsistent mediator of the same effect size. As
above, we set θ0 = θ3 = α0 = α2 = 0.14, and here we set β1 = θ2 = 2. To satisfy Hitman’s requirement that
the total effect be known a priori and observed in the dataset where Hitman is applied, we wanted θ1 >> 2
* number of mediators, so we set θ1 = 10 * number of mediators (including both consistent and inconsistent
mediators).

We tested each gene for mediation using Hitman, Lotman, and the joint significance method. We corrected
the p-values using the Benjamini-Hochberg method, thresholded the FDR at 15%, and calculated the number
of potential mediators whose null is rejected, the proportion of true mediators whose null is rejected (power),
and the proportion of false rejections among all rejections, which is the false discovery proportion (FDP). We
conducted 1,000 such simulations and report the averages (means) of these statistics. Because FDR=E(FDP),
the mean FDP is an estimate of the empirical FDR.

We still simulated following equation (1) here, with E ∼ N(0, 1), X ∼ N(0, 1), and ν0 = ν1 = 0. The matrix
M with 500 rows and N columns is simulated as

M = α0 + α1E + α2X + UM

where α0, α1, α2 ∈ RG; α1g = 1 if gene g is a consistent or inconsistent mediator or is otherwise simulated to
be affected by the exposure and α1g = 0 otherwise; and UM ∼ NG(0,Σ) with Σ a G-by-G positive definite
matrix.

Our covariance matrix is derived from GTEx v8 RNA-seq gene read counts downloaded from https://
gtexportal.org/home/datasets. We choose to focus on skeletal muscle tissue, since it had the most samples.
We filtered out genes with low expression, applied TMM normalization,12 accounted for measured covariates
known to affect expression and inferred technical factors with SVA, like,13 calculated the covariance matrix
of 500 randomly sampled genes, and then scaled this matrix so that the median variance would be one.
The script implementing this process is gtex_muscle_cov_subset_scaled.R and the processed matrix is at
gtex_muscle_cov_subset_scaled.csv.

When genes are independent (scenario 1), Σ is the matrix whose diagonal elements are the same as the
diagonal of the scaled covariance matrix, and all off-diagonal elements are zero. When genes are dependent
(scenarios 2 & 3) Σ is the scaled covariance matrix.

12

https://gtexportal.org/home/datasets
https://gtexportal.org/home/datasets
https://github.com/jdreyf/slimm-t2d-omics/blob/master/data-raw/gtex_muscle_cov_subset_scaled.R
https://github.com/jdreyf/slimm-t2d-omics/blob/master/data/gtex_muscle_cov_subset_scaled.csv


Finally,

Y = θ0 + θ1E +
G∑
g=1

θ2gMg + θ3X + UY

where UY ∼ N(0, 1) and

θ2g =


− 1, if gene g is an inconsistent mediator
0, if gene g is not a mediator
1, if gene g is a consistent mediator.

For scenario 3, the joint significance method has power to identify both consistent and inconsistent mediators,
whereas Hitman and Lotman only have power for consistent mediators, so we had a choice as to assess the
joint significance method’s power and FDR with respect to only consistent mediators (like Hitman and
Lotman) or with respect to both types of mediators. We chose to show both types of assessments: one as
“Joint signif consistent” and the other as “Joint signif both”.

The omics simulation results in the figure below shows the FDR and power of the considered methods in the
three scenarios. Our code implementing the simulations is at simulations_omics.Rmd and the CSV tables
with the simulation output are in the folder validation whose file names include “sc1”, “sc2”, or “sc3” for
scenarios 1, 2, and 3, respectively.
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Figure S1. HbA1c and BMI for SLIMM-T2D cohort and those that had omics per time point. (a) HbA1c and (b) BMI for participants in the
SLIMM-T2D cohort (“Total”, squares) and those that had proteomics or metabolomics per time point (“Omics”, circles). Data are reported as
mean ± SEM. Data were analyzed by two-sided t-tests. For HbA1c and BMI, no significant difference was found between the Total and Omics groups
within RYGB or within DWM at any time point. However, differences between RYGB and DWM per time point were found, with p values for omics
subcohort as follows: (a) HbA1c: 12 months: ***=0.0015; 24 mo: ***=0.0012; 36 mo: ***=0.00046; (b) BMI: 12 mo: #<0.0001, 24 mo: #<0.0001; 36
mo: ***=0.00014. Samples with HbA1c were available from 19, 19, 19, 17, 16, and 15 participants from the RYGB arm, and 19, 19, 18, 11, 10, and
10 participants from the DWM arm at the baseline, 3, 12, 18, 24, and 36 month time points. Source data are provided as a Source Data file.

a

b
# #



b

c d

a

Figure S2. IGFBP2, choline, and choline phosphate levels. (a) IGFBP2 log2 abundance measured by SOMAscan in samples from independent
human participants at baseline, 3, 12, 24, and 36 months from 19, 19, 16, 10, and 9 DWM and 19, 19,19, 15, and 14 RYGB participants. (b) IGFBP2
concentration measured by ELISA in 4 RYGB participants and 4 DWM participants at all time points. (c-d) Choline and choline phosphate log2
abundance measured by metabolomics in samples from independent human participants at baseline, 3, 12, and 36 months from 19, 18, 16, and 9
DWM and 19, 18, 19, and 13 RYGB participants. Data were analyzed by two-sided moderated t-tests; post-baseline time points were baseline-
corrected. All data are reported as mean ± SEM. P values are indicated as follows: a: IGFBP2 (SOMAscan): 3 mo: ***=0.00018; 12, 24, and 36 mo:
#<0.0001; b IGFBP2 (ELISA): 12 mo: **=0.0058; 24 mo: *=0.026, 36 mo: *=0.042; c choline: 3 mo: #<0.0001; 12 mo: ***=0.00035; 36 mo: **=0.0016;
d choline phosphate: 3 mo: *=0.02. These p-values are nominal for (a), (c), (d). Supplementary Data 2 includes FDRs and source data for a, c and d;
source data for b are provided as a Source Data file.
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Figure S3. Retinol, RBP4, and TTR abundance. (a) Log2 abundance of retinol measured by metabolomics in samples from independent human
participants at baseline, 3, 12, and 36 months from 19, 18, 16, and 9 DWM and 19, 18, 19, and 13 RYGB participants. (b) Log2 abundance of
RBP4 measured by SOMAscan in samples from independent human participants at baseline, 3, 12, 24, and 36 months from 19, 19, 16, 10, and 9
DWM and 19, 19,19, 15, and 14 RYGB participants. (c-d) RBP4 and TTR plasma levels measured by quantitative western blot in 6 RYGB
participants at baseline, 3, 12, 24, and 36 months, and 6 DWM participants at baseline, 3, 12, and 24 months but 4 participants at 36 months. Data
were analyzed by moderated two-sided t-tests; post-baseline time points were baseline-corrected. Data are reported as mean ± SEM, and p values
are nominal for (a) and (b); FDRs are reported in Table S2. P values designated by symbols are as follows: (a) retinol: 0 mo: *=0.035; 3 mo:
#<0.0001; 12 mo: *=0.018. (b) TTR: 36 mo: *=0.038. Source data for a and b are provided in Data S2, and source data for c and d are provided as
a Source Data file.
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Figure S4. IGF-1 and GH abundance. (a) Log2 abundance of IGF-1 measured by SOMAscan in samples from independent human participants at
baseline, 3, 12, 24, and 36 months from 19, 19, 16, 10, and 9 DWM and 19, 19,19, 15, and 14 RYGB participants. (b) Plasma levels of total IGF-1
measured by ELISA at baseline, 3, 12, 24, and 36 months from 9, 9, 9, 7, and 7 RYGB participants and 9, 9, 9, 6, and 4 DWM participants,
respectively. (c) Plasma levels of growth hormone measured by ELISA at baseline, 3, 12, 24, and 36 months from 11, 11, 11, 8, and 8 RYGB
participants and 9, 9, 9, 6, and 4 DWM participants, respectively. Data were analyzed by moderated two-sided t-tests; post-baseline time points were
baseline-corrected. Data are reported as mean ± SEM: **=0.0057. Source data and FDRs for a are provided in Data S2, and source data for b and c
are provided as a Source Data file.



Supplementary Table 1: Primers 

Primer Primer Sequence (5’ – 3’) 

Ghr_Forward CTGCAAAGAATCAATCCAAGCC 

Ghr_Reverse CAGTTCAGGGGAACGACACT 

Igf1_Forward CACATCATGTCGTCTTCACACC 

Igf1_Reverse GGAAGCAACACTCATCCACAATG 

Pepck_Forward CTAACTTGGCCATGATGAACC 

Pepck_Reverse CTTCACTGAGGTGCCAGGAG 

G6pc_Forward TCTTGTCAGGCATTGCTGTGGC 

G6pc_Reverse GGTGGACCCATTCTGGCCGC 

Socs1_Forward CTGCGGCTTCTATTGGGGAC 

Socs1_Reverse AAAAGGCAGTCGAAGGTCTCG 

Socs2_Forward AGTTCGCATTCAGACTACCTACT 

Socs2_Reverse TGGTACTCAATCCGCAGGTTAG 
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